The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 15 Issue 2, Article 5, pp. 1-9, 2018

EXISTENCE OF OPTIMAL PARAMETERS FOR DAMPED SINE-GORDON
EQUATION WITH VARIABLE DIFFUSION COEFFICIENT AND NEUMANN
BOUNDARY CONDITIONS

N. THAPA

Received 16 March, 2018; accepted 05 July, 2018; published 1 August, 2018.

DEPARTMENT OFMATHEMATICAL SCIENCES, CAMERON UNIVERSITY, 2800 WEST GORE BLVD, 73505
LAWTON, OKLAHOMA , USA.
nthapa@cameron.edu
URL: http://www.cameron.edu/~nthapa/

ABSTRACT. The parameter identification problem for sine-Gordon equation is of a major inter-
ests among mathematicians and scientists. In this work we the consider sine-Gordon equation
with variable diffusion coefficient and Neumann boundary data. We show the existence and
uniqueness of weak solution for sine-Gordon equation. Then we show that the weak solution
continuously depends on parameters. Finally we show the existence of optimal set of parame-
ters.
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2 N. THAPA

1. INTRODUCTION

Let Q be an open bounded subsetRf with C!' boundary. Let us consider the following
sine-Gordon equation with variable coefficigt{t:) with Neumann boundary data.

%tt(x,t) + auy(x,t) — V(B(x)Vu(z, b)) + osinu(z, t) = f(x,t); (t,z) € Q
St @)er =0, t € (0.7)
(1.1) uw(0,z) = up(x), w(0,2) =wu(zr), =€

whereT > 0, Q = (0,T) x Q, f € L*(Q), up € V = H'(Q) andu; € H = L*(Q2). The
diffusion coefficientd(z) € B= {3 € L*(Q) : 0 <m < f(z) < M a.e. in Q}. Throughout
this work we assume th#t is equipped with.! () topology.

For equation(1.1)) with constant parameters and Dirischlet boundary conditions, Ha and Gut-
man estimated the parameters. For details, See [6]. Similarly for constant parameters with Neu-
mann boundary data, Thapa estimated parameters. For details, see [9]. In this paper we consider
B(x) € L*>(Q2) along with Neumann boundary data and establish the optimality conditions such
that equatior(L.1]) exhibits the desired behavior listed below.

Let
(12) Pad - {q - (aaﬁa 5) € [amirn amax] x B x [6mm7 6mam]}7

Define the cost functional(q) by
(1.3) J(q) = krlu(g; T) = 24” + Eallu(a; t) — 231720 o)

wherez} € H, 22 € L*(0,T; H) andk; > 0fori = 1,2 with k;+k, > 0. The data:} andz? can
be thought of as the targeted behaviof of|(1.1). We claim that thereggxis{a*, 5*,0") € Puq
such that

(1.4) J(¢") = inf J(q)

qepad

Let ¢ — u(q) from P, — C([0,T]; H) be the solution map. The existence and uniqueness
of solution map is established in Sectjdn 2. In Sedfion 3 we establish the continuity of solution
map with respect to parameters so that the equdfiai) has a solution if the minimization is
restricted to a compact subset’y,.

2. EXISTENCE AND UNIQUENESS OF WEAK SOLUTION

In this section, we use the standard argument outlined In|[6, 7, 9] for the existence and unique-
ness of weak solution dffl.1)). Let H = L?(Q2) be a Hilbert space with following inner product
and norm

(2.1) (6,0) = /ﬁ ()dz, |6 = (6,6)}

forall ¢ , ¢ € L*(Q). LetV = H'(Q) be a Hilbert space with following inner product and
norm

(2.2) ((6,9) = (6, 9) + (V6, V), 8]l = ((¢,9))?
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forall ¢ , v € H'Y(Q2). The dualH’ is identified with H leading toV ¢ H C V' with
compact, continuous, and dense injections. For details,/ $ee [1] Hence there exists a constant
Kl = Kl (Q) SUCh that

(2.3) lw| < Ki||w|| forany weV.

Givenj € B, we define the following bilinear, continuous, and coercive form.

(2.4) ag(u,v) :/qudx+/ﬂﬂ(x)Vu(x)Vv(x)dx

Let < u,v >y, denotes the duality pairing betweéhand V' and the assoicated linear
operator formV” to V' defined by< asu,v > = ag(u,v) is an isomorphim fronV" onto V.
Let {\s}32, and{wy}?2, are nonzero eigenvalues and eigenfunctions for the operatof /
defined inV” such thaf{w };2, forms an orthonormal basis iif. Then the functiong 7= }7°
form an orthonormal basis ilW. For details, see [2]. From now on, the dependency: as
supressed and we usand” for the time derivatives.

Let

(2.5) W(0,T)={u : ue L*(0,T;V),u € L*(0,T; H),u" € L*(0,T;V")}.

«' andu” are the derivatives in the distributional sense. That'is; L?(0,T’; H) is derivative
of u € L*(0,T; V) in the distributional sense if for any € C5°(0,7) andv € V

(2.6) A@mewﬁ=jAW®wW@ﬁ

similarly, v” € L?(0,T; V") is second derivative of € L?(0,T; V) in the distributional sense
if forany ¢ € C5°(0,7) andv € V

(2.7) A(wwxmawu—ﬁ<wwwwwww

Let {c;}32, be the eigenfunctions of the operatdy. The weak solution ol) is a function
u € W(0,T) satisfying

(0 e3) + a(ul c5) + aglu,c5) + S(sin(u), ¢5) = (f,e5) + (), ¥j €N,
(2.8) u(0)=up €V, u(0)=u €H,
Thus
(2.9) u" +ou' + Agu+osinu=f+u, u(0)=u €V, u(0)=u €H

which is understood in the sense of distributiong @ri’) with the values in/’. For details
see[[3]. Two establish uniqueness of weak solutiof2df), the following results are of critical
importance.

Theorem 2.1.Letw € L*(0,T;V), w' € L*(0,T; H) andw” + Agw € L*(0,T; H). Then,
after a modification on the set of measure zetos C([0,7];V), w' € C([0,T]; H) and, in
the sense of distributions df, 7') one has

1d
(2.10) (" + Agw,w') = S + aglw, w)}

For proof see [4].
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Theorem 2.2. (Gronwall's Lemma) Let(t) be a nonnegative, summable function on [0, T]
which satisfies the integral inequality

t
(2.11) () < C’l/ £(s)ds + Cy for constants Cy ,Cy >0
0

almost everywhered [0,T]. Then
(2.12) E(t) < Co(1 + Crte“ ) ae.on 0 <t < T.
In particular, if

(2.13) £(t) < Cy /tﬁ(s)ds a.e.on 0 <t <T, then &£(t) = 0 a.e.on [0, T]
0

For proof see [2].
Theorem 2.3. The solution of]2.9) is unique.

For proof see [9].

Theorem 2.4.Letq = (o, 5(2),0) € Pug, uo €V, uy € Hand f € L*(0,T; H). Then
(i). There exists a unique weak solutioft; ¢) of (1.1). This solution satisfiese C([0,77; V)N
W(0,T),« € C([0,7T7; H), and

(2.14) - max ([lu(t)[[* + [/ (OF) + [w" (Ol 720,70 < C [Hw\l2 +lul® + 12200 |

whereC is a constant independent @fc P,,. The approximate solutions,, (¢; ¢) also satisfy
the energy estimatg (2[14) with the same constant

(il). The solutionu(t; ¢q) and its approximations.,, (¢; ¢) satisfy the following convergence
estimate

[/ (t) — i, (O + [Ju(t) - tum(?f)\l2 < Cy(ur = P [* + [Jug — Pruol®
(2.15) +||f — me|]%2(07T;H) - /0 |sinu(s; q) — Py, sinu(s; q)|*ds)

where(Cs is a constant independent @k P.
(iii). Furthermore,u,, — win C([0,7T]; V) andw, — u"in C([0,T]; H) asm — oo.

Proof. Proof of this theorem is an analog of the one we developedlin [9]. However, special
attention will be given for the variable diffusion coefficiefitx) € L>(2) throughout the
proof. From the priori estimate outlined in [9] we have,

(2.16) ma (Ilum (O + i ()2) + (Ol ) < C [woll® + s + £ 2oz
whereC' is a constant independent ofe¢ P = {¢ = («,((2),d) € [Qmin, Vmaz] X B X
[5min7 5max]}-

Existence and convergence:

Estimate[(2.16) shows that for anye P,, andm € N the approximate solutions,,(¢) belong

to same bounded convex b@lv||y, < C of W(0,T) for the same’' > 0. Fixaq € Pu4.
Sincel¥ (0,T') is a reflexive space, there exists a subsequepcef u,, that converges weakly

to a functionz € W(0,T'). According to the energy estimafe (2.16) we see that the sequence
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{u,,}2°_, is bounded inL?(0,T; V), {u, }°_, is bounded inL?(0,T; H), and {u, }°_, is
bounded inL?(0,7; V"), whereV" is the dual space of’. SinceL?(0,T;V), L*(0,T; H),
and L2(0,T; V") are reflexive spaces, there exist a subsequénge}, C {u,,}3>, and
z € L*0,T;V),d" € L*(0,T; H),d* € L*(0,T; V") such that

Um, — 2, In LQ(O,T;V),

Uy, —d', in L*0,T;H),

(2.17) u, —d* in L*0,T;V),

mg

where— indicates the weak convergence. Since the convergendé(inT') is the distribu-
tional convergence, we have

u;/nkéz/, in L*0,T; H),

(2.18) u, —z in L*0,T;V) as k— oo.

mg

But the weak limit is unique when it exists. S = 2 andd? = :". Energy estimate
(2.16) also implies thafu,,}2°_, is bounded inL>(0,7;V) and the sequencgu,,}5°_, is
bounded inL>(0,7"; H). By the Alaoglu Theoremni [10], we can find subsequerfags }5°_,
and{u,, }2o_; of {u,,}3_; and{u,,}3_, respectively such that

U, — 2z weakstarin L*(0,7;V),
(2.19) w, — 7 weakstarin L>(0,T;H).

mp

Now we show that is a weak solution. Sinc® is compactly imbedded i/, then by the
classical compactness theorémd4], — zin L*(0,T; H). Using Cauchy Schwartz inequality,
|(8in(tm,, ) —sin(2), wi) L2070y < || I (U, ) =SI0(2) || 220,80 | Wk || 200,7:0) - SiNCE{wR } 724
is orthonormal inH the sequencéw }5°, is bounded in?(0, T'; H).
Thus|(sin(uy,, ) —sin(z), wi) r20,7;m)| < || sin(wy, ) —sin(2)|| 20,77y — 0 ask — oco. Hence
sin(uyy,, ) — sin(z) in L?(0,T; H). Thus we have,

(U W) + Aty w5) + (U, w5) + 6( P sin(uy), w5)

= (mea ’LU]') + (Um, wj)a
(2.20) um(0) = Ppug, ul (0)=Pyu; for j=1,2,...,m.
We pass to the limit iff2.20)) to obtain

(2", wy) + a2, wy) + ag(z,w;) + (sin(2), w;) = (f,w;) + (2, w;)

(2.21) 2(0) =ug, 2'(0)=w; for j=1,2,...,m.
Thus:z is a weak solution off1.1)). It satisfies the energy estimate

max [[|2(6)|1* + [2(t) '] + 12(t) 11720 77y < Cullluoll® + Jual® + 1 f | 2oirsmm),

0<t<T

where C is a constant independent f € P,y = {¢ = (a,3,0) € [min, Vmaz] X
[Bomins Bmaz) X [Omins Omaz). By Lemma(2.3) the solutionz is unique. Therefore,,, — =
asm — oo in L*(0, T; H) for the entire sequence. Heng@9) can be rewritten as” + Agz =
f+z—az —§sin z. Hencez” + Agz € L2(0,T; H). Similarly approximate solution can be
rewritten asu,, +Agt,, = P f+tm—au,,—0 P, sin u,,. Thereforeu, +Asu,, € L*(0,T; H).
Subtract(2.20]) from (2.21)) to get
(2.22) (2 = tUm) + Ag(z — ) = f — Puf — a(z — t)

—6(sin(z) — Py sin(up)) + (2 — u,,) € L*(0,T; H).

!

AJMAA Vol. 15, No. 2, Art. 5, pp. 1-9, 2018 AIJMAA


http://ajmaa.org

6 N. THAPA

Therefore by Lemm#2.1)) we have

S — (2 = )} = (2 = )"+ Ag(z ), 2 — )

=(f = Punf —a(z —ul,) —d(sin(z) — Py sin(uy,)) + 2 — ty, 2" — ul,)
=(f = Punf,? —u,) —aly —ul,|* —6(sin(z) — Py sin(upy), 2’ —ul,)

(2 = Uy 2 — L), "
Integrating both sides ovél, t| we get
[2/(6) = (O + ap(2(0) = (1), 2(1) = wn (1)) < s — P
+(ug — Ppug, ug — Pprug) + 2/ |(f = Pnf)(z' —ul,)|ds

+2]a!/ (2 —ul)|? ds+2\(5]/ |(sin(z) — P, sin(uy,)) (2" — 2,)|ds

—i—/ |(z — um) (2 — ul,)|ds.
0

Use|ab| < 1% to get
[2'(8) — up, (OF + [|2(t) — un(D)]* < - Pru|* + [Jug — Pryuol|?
Hf = PuflZeorm + 2+ la] + |5|)/ |2 — | (s)ds

(2.23) /|z—um] ds+/ |sin(2) — Py, sin(u,,)|*(s)ds.

SinceV is compactly embedded iff, (2.23) can be rewritten as
[#(1) = wn(@OF + 112(8) = un@IF < Cllur = Puwa]* + [luo — Prntio*
+[|f = meHLz (o,7:0) T / |sin(2) — P, sin(u,,)|*(s)ds

(2.24) —|—/O 12—l (s ds—i—/o |2 — um||*(s)ds]

whereC' = maz{1, (2 + |a| + |]), 4K7}.
Using Gronwall's Lemma we get

[#(t) = um(@OF + 12(8) = um@I < Cllur = Puwa]* + [lao — Prntio*
(225)  4lf — Puf e + / [5in(2) — Py sin (1) ()ds].
Therefore|2'(t) — ul,(t)]* + [|z(t) — um(t)||> — 0 @asm — oo. This impliesu,, — z in
L>(0,T;V) andu,, — 2" in L>*(0,T; H). Butu,,, u,, € C([0,T];V), being the solutions of

the systems of ODEs. This impliesc C([0,7; V) andz’ € C([0,T]; H) after a modification
on a set of measure zero @N7T].

3. EXISTENCE OF OPTIMAL PARAMETERS

In this section we establish the continuity of the functional defingd.i$) on compact subset
of B defined in(1.2).

Lemma 3.1. Letv € V. Then the mapping — Agv from B into V' is continuous.
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Proof. Suppose that, — 3 in B asn — oo. We denoted = Az andA,, = Ag . We claim
that||(A, — A)v|ly» — 0asn — oo. Letw € V with ||w|| < 1. Then

(A — Ay, )2 < (/w DIVl >||vw<x>|dx)2
< 16,(a) = B [ [Fo(o)de

For any positive constartt, let Qe = {z € Q : |V(x)|* > C}. Since|V(z)|> € L,(Q) there
existsC' > 0 ande > 0 such thatf, |V(z)[*dz < e. Butwe have,

[ 18.6) = )P /\w )Pda
-/ 18,(2) B @F [ Voo + [ o 1@ = B I

< 4M26—|—2MCHﬁn Bl 1@ — 0asn — oo.
|

Lemma 3.2. Suppose that,, — g in B, andv,, — v weakly inV, asn — oco. ThenA,v, —
Av weakly inV”.

Proof. Letw € V, then
|[(Anvn, w) — (Av, w)| = [(Anw, vn) — (Aw,v)|
(3.1) < [((An = A)w, vp)| + [(Aw, v, — v)].
Since a weakly convergent sequence is bounded, we have
[((An = Aw, v)| < [[Agw — Aw|lv[|vn]| < ¢f|Anw — Aw[lyr — 0
asn — oo by Lemmd 3.]l. The second teffiw, v, — v)| — 0 sincev,, — v. §

The weak solution o- q) depends ol € P,4. Next we show the solution map from
P.ainto C[0,T); H) is contlnuous

Lemma 3.3. Letq € P, Then the solution map — u(q) from P, into C([0,T]; H) is
continuous.

Proof. Letg, — ¢inP,,asn — co. Sinceu(t; q) is the weak solution ofl.1|) for anyq € P,q,
we have the following estimate

2 (g, 2
max ([[ults gn)I” + [/ (t 4)I*) + 10" (5 ) 220207

(3:2) < C [luoll® + [ + 1 f 320z -

whereC is a constant independent@f P,,. Estimate[(3.2) shows thatt; ¢,) is bounded in
W (0,T). SinceW (0, T') is reflexive, we can choose a subsequeri(¢ey,,, ) weakly convergent
to a functionz in W (0, 7T"). The fact that(¢; ¢,,) is bounded i/ (0, T') implies thatu(¢; ¢,) is
bounded inL?(0, T; V), sou(t; g,, ) weakly converges to a functionin L*(0,T; V). SinceV/
is compactly imbedded ii{, then by the classical compactness theorem inuf8]¢,) —
zin L*(0,T; H). Using Cauchy Schwartz inequalitysin(u.,, ) — sin(z), wx)r20.mm| <
| sin(tm,,) — sin(2)||20,r,m) — 0 ask — oo.

By (3.2) the derivatives/(t; ¢,,) andz’ are uniformly bounded id>(0,T’; H). Therefore
functions{u(t; ¢,, ), 2}3>, are equicontinuous i@'([0, T; H). Thusu(t; g,, )z in C([0,T]; H).
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In particular,u(t; g,, )z(t) in H andu(t; ¢, ) — z(t) weakly inV for anyt € [0, T]. By Lemma
B2, Anu(t; gn,) — Az(t) weakly inV’. Now we see that satisfies equatior (2.8), i.e. itis
the weak solution:(¢). The uniqueness of the weak solutions implies th@t,) — u(q) as
n — oo in C([0, T]; H) for the entire sequenca€q,). Thusu(t; ¢,) — u(q) in C([0,T]; H) as
gn — qin P,y as claimed.

1

Theorem 3.4.Letq € P,4. Then the solution maps— u(q) fromP,, into C([0,7]; V) and
q — u/'(q) fromP,, into C([0,T]; H) are continuous.

Proof. We prove this result for approximate solutioy and then extend the proof for the weak
solutionu. Fix m € N. Suppose that, — ¢ in P,; asn — oo. Then we claimu,,(g,) — u(q)
in C([0,7]; V) andu,,(g,) — u'(q) in C([0,T]; H). The approximate solutions,,(q,) and

um(q) satisfy

ulrlrz(Qn) + At (qn) = P f + U (qn) — anu (qn) — 6P sin(um(qn)),
(3.3) U (@) + At (@) = P f + um(q) — aug,(q) — 0P sin(um(q)),

Note thatA = Ag and A, = Az . Letw = uy,(gn) — un(q). Using(3.3)) and takingH inner
product we have,

(w" + Ap(w), w') = (A = Ay)um(g), w') + (w,w') — ay|w']®
( — ) (up, (q), w') — ( ' (810(Un (¢n)) — sin(um(q))), w')
(3.4) +(0 — ' Sin(u, (q)), w

On) (D
We havew(t) € L*(0,T; V), w'(t) € LQ(O,T;H) andw” + A, (w) € L*(0,T; H). Integrating
(3.4) from 0 to ¢t we have,

W OF + @ < [ 104 Al + [ 1w/)Pds

Ho =l [ s s + o=l [ oo

#5 =0l [ ants ) Pds + el [ W5 +10,] [ )
(3.5) +[0,| /Ot lw'(s)|*ds.

In a finite dimensional normed space all norms are equivalent. Hence there exists a constant
C(m) such that|w'(s)|| < C(m)|w'(s)| foranys € [0, T7.
Now the Gronwall’'s inequality and the energy estimate|(3.2) give

Jp, (8 Gn) — U, (5 @)1+ NJtim (£5 gn) — um (£ 9|
(3.6) < ¢(m (/ (A = Ay (s: q)|2ds + |o — cun| + |5 — 6. |>

By the assumptiony, — ¢ in Py, that isa, — «, 6, — 6 and3, — [ in P, as
n — oo. The integral term in the right hand side pf (3.6) approaches zero by Lémina 3.1 and
the Lebesgue Dominated Convergence Theorem. Hence the required convergénge—
um(q) in C([0,T); V) andu!,(q,) — u.,(q) in C([0,T]; H) asn — oo follows.
Note that the mappin{), 7] x P — H defined by(s,q) — u(s;q) is continuous, since
q — u(q) € C([0,T); H) is continuous by Lemnia 3.3. Therefore the mapging’| x P — H
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defined by(s, ¢) — sin(u(s; ¢)) is continuous. Thus it takes the compact[sef’] x P into a
compact set irff, and the uniform convergence of the integrals in

(3.7) /OT |sin(u(s; q)) — Py sin(u(s; q))|*ds — 0, m — oo

Thereforeu(q,,) — u(q), m — oo in C([0,T]; V') as claimed. Similar argument can be used
for the convergence of the derivative4q,,) — u/'(¢) in C([0,T]; H). Thus the minimization
problem in([1.4)) has a solution if the minimization problem in restrected to compact subset of
Pad-

1
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