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1. I NTRODUCTION

The spread of infectious diseases has always been a threatening concern to public health.
It has always remained one of the top potential sources of threat to life. It has affected the
economic and social developments of societies. Mathematical modelling for infectious diseases
has a long history, and great progress has been attained, especially during the 20th century.

To prevent and control infectious diseases, it is important to fully understand their spread
mechanisms and transmission dynamics. Hence, we can provide a better strategy to control
them. Researches on infectious diseases can be classified as analytical, experimental and theo-
retical. The study of epidemic dynamics is an important theoretical approach to investigate the
transmission dynamics of infectious diseases. Mathematical models have been used to explore
these dynamics. The first mathematical model of an infectious disease was presented for small-
pox in 1760 [10, 20]. Research on epidemic models, using deterministic mathematical models,
began in the 20th century, and a lot of progress have been particularly made in the past 20 years,
and mathematicians have presented some models for new diseases like HIV [12, 15].

Most of these models which were introduced by different mathematicians were deterministic
[10, 7], but deterministic models have some drawbacks associated with them, which can be
responsible for errors in the predicted behaviour of a particular epidemic. For example, Murray
et al. suggested a deterministic model to predict the dynamics of rabies prevalence among foxes
in England. They predicted the number of infected foxes will increase rapidly until the number
of susceptible animals is so low and then the disease was predicted to disappear, but in reality
after approximately 2 years there was a sudden reappearance of rabies in foxes [24, 23].

What was the problem? Murray et al. used a continuous approximation for the number of
infected foxes. During the years when rabies was seemingly disappeared, there was around one
infected,10−18 of a fox per square kilometer, which was responsible for the emergence of a new
wave of infection [22, 27].

This example shows that continuous approximation alone does not suffice to determine the
dynamics of infectious individuals. Therefore, where the number of infectious or susceptible in-
dividuals is small, for example, at the beginning and at the end of an epidemic, or for modelling
the spread of infections on networks, deterministic models can be prone to wrong predictions
[10, 27]. In1928 and1931 Reed-Frost and Greenwood suggested discrete time stochastic mod-
els Known as chain binomial epidemic models [13]. Later on, Bartlett studied a continuous
time stochastic SIR model [9]. Bailey has studied deterministic and stochastic epidemic models
and the estimation of their parameters with more details in his book [8]. Recently, Allen has
investigated discrete time Markov chain (DTMC) models and their applications in biology [1].
In this paper, we consider epidemic models based on her ideas.

One of the most important differences between deterministic and stochastic epidemic models
is their asymptotic behaviour. For example, in the DTMC SIR model, which is presented in sec-
tion 4, all the sample paths eventually are absorbed into the disease-free equilibrium, regardless
of the magnitude of the basic reproduction number (R0), while in the deterministic SIR model if
R0 > 1, the model converges to the endemic equilibrium [10]. Moreover, stochastic epidemic
models have exclusive advantages associated with them such as, probability of an outbreak,
final size distribution of an epidemic, quasi-stationary distribution and expected duration of an
epidemic [1, 3, 28, 4, 2, 18, 19]. In this work we have focused on another feature of stochastic
models known as the entropy.

The term entropy appeared for the first time in the study of thermodynamics in1865. In
1948 it was used by Shannon in information theory were entropy (more specifically, Shannon
entropy) is a measure for the uncertainty in a random variable that quantifies the expected value
of the information contained in a message [26, 11, 5].
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The concept of measure theoretic entropy has been introduced in ergodic theory [30]. Also
the topological and algebraic versions of the entropy have been defined over special topolog-
ical spaces, algebraic structures and hyperstructures [14, 21]. The concept of entropy is also
employed in other areas of science such as biology, economics, physics and social science [25].

In recent years, the entropy theory has been developed to random walks and transformations
over general groups [16], and Shanon entropy has been extended to continuous random vari-
ables [17]. Moreover, the ordinal patterns, permutation entropy and complexity for stochastic
processes referred to as random dynamical systems over totally ordered state spaces have been
developed [5, 6].

In a recent paper the entropy which determines the average uncertainty about outcomes of
a random experiment has been introduced over the DTMC SIS epidemic models [29]. Thus,
one can use this indicator to compare two stochastic models to see which model is more reli-
able. In this paper a comparison between two stochastic models regard to the entropy has been
presented.

In section 2 and 3, some concepts in the probability theory when the state space is finite and
the stochastic process is Markov have been reviewed. In section 4, the entropy of DTMC SIR
models is computed. In section 5 a chain binomial epidemic model which is similar to SIR
models is introduced and its entropy is computed. In the last section a comparison between
these two models based on their entropy is presented.

2. PRELIMINARY

Let (Ω, β, µ) be a probability state, and(S, A) be a measurable space. A random variable
X : Ω −→ S overΩ with state spaceS, is a measurable function. In this paperS is a finite set.
A stochastic process is a family of random variablesX = {Xt}t∈τ . The joint probability of the
random variablesX0, X1, ..., Xn is shown by the following notation:

µ({ω ∈ Ω : X0(ω) = x0, ..., Xn(ω) = xn}) = Prob{X0 = x0, X1 = x1, ..., Xn = xn} = p(x0, x1, ..., xn).

The stochastic processX = {Xn}n≥0 is called a Markov process or Markov chain if

Prob{Xn = xn | Xn−1 = xn−1, ..., X0 = x0} = Prob{Xn = xn | Xn−1 = xn−1},

wheren ≥ 1, andx0, x1, ..., xn ∈ S = {0, 1, 2, ..., N}.
The probability mass function associated with the random variableXn is denoted by{pi(n)}N

i=0,
where

pi(n) = Prob{Xn = i}.
The one-step transition probability or only transition probability which is noted aspji(n), is

defined as

pji(n) = Prob{Xn+1 = j | Xn = i}.
If the transition probabilitiespji(n) do not depend onn, thenX is called time homogeneous

or homogeneous.
Let X = {Xn}n≥0 be a homogeneous Markov chain, the matrixP = (pji) is called the

transition matrix ofX.
Let X = {Xn}n≥0 be a homogeneous Markov chain, then-step transition probability that is

denoted asp(n)
ji , is defined by

p
(n)
ji = Prob{Xn = j | X0 = i}.

Then- step transition matrix is denoted asP (n) = (p
(n)
ji ), P (0) := In, andP (1) = P .
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There is a relationship between then- step transition probabilities that is known as Chapman-
Kolmogrov equation,

p
(n)
ji =

N∑
k=0

p
(n−s)
jk p

(s)
ki , 0 < s < n.

Thus,P (n) = P (n−s)P (s). SinceP (1) = P , we haveP (n) = P n, for all n.
The vector of probability mass function associated withXn is denoted byp(n); that is,p(n) =

(p0(n), ..., pN(N))T , and
∑N

i=0 pi(n) = 1. The probability distribution associated withXn+1

can be found by multiplying the transition matrixP by p(n); that is,

p(n + 1) = Pp(n),

In general,p(n) = P np(0), so

p(Xn = i) = pi(n) =
N∑

j=0

p
(n)
ij pj(0).

3. STOCHASTIC PROCESSES AND THEIR ENTROPY

Let X be a random variable with sample space(Ω, β, µ) and finite stateS. Entropy ofX is
defined by

H(X) = −
∑
x∈S

p(x) log[p(x)],

wherep(x) = µ({ω ∈ Ω | X(ω) = x}).
Let X and Y be two random variables with sample space(Ω, β, µ) but, in general, with

various finite state spacesS andS
′
respectively.

If X andY have the joint probability function

p(x, y) = µ({ω ∈ Ω | X(ω) = x, Y (ω) = y}) = Prob(X = x, Y = y),

wherex ∈ S andy ∈ S
′
, then the joint entropy ofX andY is defined as follows,

H(X, Y ) = −
∑
x∈S

∑
y∈S′

p(x, y) log[p(x, y)].

The conditional probability functionp(y | x) = p(x,y)
p(x)

allows us to define the conditional
entropy ofY givenX which is

H(Y | X) = −
∑
x∈S

∑
y∈S

′

p(x, y) log[p(y | x)].

It’s clear thatH(X, Y ) = H(X) + H(Y | X) [5, 6, 30, 11].
The (joint) entropy of the random variable vectorXn−1

0 = {X0, ..., Xn−1}, where all compo-
nents have the same stateS, is defined by

H(X0, X1, ..., Xn−1) = −
∑

x0,x1,...,xn−1∈S

p(x0, x1, ..., xn−1) log[p(x0, x1, ..., xn−1)].

Lemma 3.1. Let the random variablesX0, ..., Xn−1 be given. Then

(i) p(X0, ..., Xn−1) =
n−1∏
i=0

p(Xi | Xi−1, ..., X0),

(ii) H(X0, ..., Xn−1) =
n−1∑
i=0

H(Xi | Xi−1, ..., X0),

wherep(X0 | X−1) := p(X0), andH(X0 | X−1) := H(X0).
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Definition 3.1. Entropy of a stochastic processX = {Xn}∞n=0 on a probability space(Ω, β, µ)
with finite stateS is defined by

h(X) = lim
n→∞

1

n
H(X0, ..., Xn−1),

provided that the limit exists [5, 6, 11].

Lemma 3.2. If X = {Xn}∞n=0 is a homogeneous Markov process, then

H(Xn | Xn−1, ..., X0) = H(Xn | Xn−1).

Proof. Here we use ’P’ instead of ’Prob’ to make our proof shorter.

H(Xn | Xn−1, ..., X0) =

−
∑

x0,x1,...,xn

P(Xn = xn, Xn−1 = xn−1, ..., X0 = x0) log [P(Xn = xn | Xn−1 = xn−1, ..., X0 = x0)]

=−
∑

x0,x1,...,xn

P(Xn−1 = xn−1, ..., X0 = x0)P(Xn = xn | Xn−1 = xn−1) log[P(Xn = xn | Xn−1 = xn−1)]

=−
∑

x0,x1,...,xn

P(Xn−1 = xn−1)P(Xn−2 = xn−2, ..., X0 = x0 | Xn−1 = xn−1)P(Xn = xn | Xn−1 = xn−1)

log[P(Xn = xn | Xn−1 = xn−1)]

=−
∑

xn−1,xn

∑
xn−2,...,x0

P(Xn−1 = xn−1)P(Xn−2 = xn−2, ..., X0 = x0 | Xn−1 = xn−1)

P(Xn = xn | Xn−1 = xn−1) log[P(Xn = xn | Xn−1 = xn−1)]

=−
∑

xn−1,xn

P(Xn−1 = xn−1)P(Xn = xn | Xn−1 = xn−1) log[P(Xn = xn | Xn−1 = xn−1)]×∑
xn−2,...,x0

P(Xn−2 = xn−2, ..., X0 = x0 | Xn−1 = xn−1).

It is clear that for everyxn−1:∑
xn−2,...,x0

P(Xn−2 = xn−2, ..., X0 = x0 | Xn−1 = xn−1) = 1.

Therefore

H(Xn | Xn−1, ..., X0) =

−
∑

xn−1,xn

P(Xn−1 = xn−1)P(Xn = xn|Xn−1 = xn−1) log[P(Xn = xn | Xn−1 = xn−1)]

=−
∑

xn−1,xn

P(Xn−1 = xn−1, Xn = xn) log[P(Xn = xn | Xn−1 = xn−1)]

=H(Xn | Xn−1).

Corollary 3.3. If X = {Xn}∞n=0 is a homogeneous Markov chain, then

H(X0, X1, ..., Xn) = H(X0) + H(X1 | X0) + ... + H(Xn | Xn−1).
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Remark 3.1. Let X = {Xn}∞n=0 be a homogeneous Markov chain. Then

H(Xn | Xn−1) = −
N∑

j=0

N∑
i=0

Prob(Xn−1 = j, Xn = i) log[Prob(Xn = i | Xn−1 = j)]

= −
N∑

j=0

N∑
i=0

Prob(Xn−1 = j)Prob(Xn = i | Xn−1 = j) log(pij)

= −
N∑

i=0

N∑
j=0

Prob(Xn−1 = j)pji log(pji).

The termh(X0, ..., Xn−1) = 1
n
H(X0, ..., Xn−1) is called entropy of ordern of X. Therefore,

h(Xn−1
0 ) = h(X0, ..., Xn−1) is the average uncertainty aboutn successive outcomes of the ran-

dom experiment which is modeled byX. For example, letX = {Xn}∞n=0 be a discrete- time
stochastic process of an epidemic model, so aftern- time intervals of length∆t the model out-
putsn random variables. The expressionh(Xn−1

0 ) measures average uncertainty and provides
an insight on the reliability and accuracy of the model [29].

The value ofh(Xn−1
0 ) indicates a negative correlation with the accuracy of the model, which

means the smaller the value ofh(Xn−1
0 ), the higher the accuracy of the model is expected to be.

Hence, it is deduced that the model with smallerh(Xn−1
0 ) is more reliable.

4. DTMC SIR E PIDEMIC M ODEL AND ITS ENTROPY

In a SIR epidemic model, individuals are divided into three compartments: Susceptible (in-
dividuals who might become infected if exposed), Infectious (individuals who are infected and
can transmit the infection), and Removed (individuals who are immune to the infection).

Differential equations that describe the dynamics of an SIR epidemic model are as follows

dS

dt
=− βSI + b(I + R)

dI

dt
=βSI − (b + γ)I

dR

dt
=γI − bR,

whereβ > 0 is the transmission rate,γ > 0 is the recovery rate,b ≥ 0 is the birth rate, and
N = S(t) + I(t) + R(t) the total population size is constant, i.e. the birth and death rates are

equal, so
dN

dt
= 0 [10].

To formulate a DTMC model, letS(t), I(t) andR(t) denote discrete random variables for the
number of susceptible, infected and immune individuals at timet, respectively. The population
size is constant, soR(t) = N − S(t) − I(t). Therefore DTMC SIR epidemic model is a bi-
variate process{S(t), I(t)}∞t=0 that t ∈ {0, ∆t, 2∆t, ...} and has a joint probability function
given by

p(s,i)(t) = Prob{S(t) = s, I(t) = i}.
We consider∆t sufficiently small such that at most one change occurs in the states [10, 1]. For
t = n∆t define

p(s,i)(n) := Prob{S(t) = s, I(t) = i}.
From now on, this bi-variate stochastic process is denoted byX = {Xn}∞n=0.

Lemma 4.1. The stochastic processX = {Xn}∞n=0 is a homogeneous Markov chain.
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The transition probabilities are denoted as follows:

p(s′ ,i′ ),(s,i)(∆t) = Prob{Xn+1 = (s
′
, i

′
)|Xn = (s, i)}.

Hence,

p(s+k,i+j),(s,i)(∆t) =



βis∆t (k, j) = (−1, 1)

γi∆t (k, j) = (0,−1)

bi∆t (k, j) = (1,−1)

b(N − s− i)∆t (k, j) = (1, 0)

1− βis∆t− [γi + b(N − s)]∆t (k, j) = (0, 0)

0 otherwise

.

The time step∆t should be chosen sufficiently small such that each of the transition proba-
bilities be equal or smaller than1. In order to define the transition probability, we consider an
order on the states(s, i) that (s, i) < (s

′
, i

′
) ⇔ s < s

′
or s = s

′
, i < i

′
. According to this

order, the transition matrixP is a (N + 1)2 × (N + 1)2 matrix, andp(n) = P np(0), where
p

(n)

(s,i),(s′ ,i′ )
= (pn)(s,i),(s′ ,i′ ), and

p(n)(s,i) =
N∑

s′=0

N∑
i′=0

p
(n)

(s,i),(s′ ,i′ )
p(s′ ,i′ )(0).

Theorem 4.2. Let X = {Xn}∞n=0 be the stochastic process of the SIR epidemic model and
X0 = (s0, k0), s0 andk0 are the initial size of susceptible and infected individuals respectively,
thenh(X0, X1, ..., Xn) is the sum of(s0, k0)

th column entries of the following matrix

Hn = H(P )

(
0 + I + P + ... + P n−1

n + 1

)
,

whereP is the transition matrix and

H(P ) =
(
−p(s,i)(s′ ,i′ ) log p(s,i)(s′ ,i′ )

)
(N+1)2×(N+1)2

,

and0log0 := 0.

Proof. By corollary 3.3,

h(X0, ..., Xn) =
1

n + 1
H(X0, ..., Xn) =

H(X0) + H(X1 | X0) + ... + H(Xn | Xn−1)

n + 1
.

SinceX0 = (s, k) is fixed, it is clear thatH(X0) = 0. Thus

h(X0, ..., Xn) =
H(X1 | X0) + ... + H(Xn | Xn−1)

n + 1
.

According to Remark 3.1,

H(Xn | Xn−1) =
∑
(s′ ,i′ )

∑
(s,i)

Prob(Xn−1 = (s
′
, i

′
)) p(s,i),(s

′
,i
′
) log

(
1

p(s,i),(s′ ,i′ )

)
.

It is clear that

Prob(Xn−1 = (s
′
, i

′
)) = p

(n−1)

(s′ ,i′ ),(s0,k0)
,
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so

h(X0, ..., Xn)

=
∑
(s′ ,i′ )

∑
(s,i)

Prob(X0 = (s
′
, i

′
)) + ... + Prob(Xn−1 = (s

′
, i

′
))

n + 1
p(s,i),(s′ ,i′ ) log

(
1

p(s,i),(s′ ,i′ )

)

=
∑
(s′ ,i′ )

∑
(s,i)

p
(0)

(s′ ,i′ ),(s0,k0)
+ ... + p

(n−1)

(s′ ,i′ ),(s0,k0)

n + 1
p(s,i),(s′ ,i′ ) log

(
1

p(s,i),(s′ ,i′ )

)

=
∑
(s′ ,i′ )

∑
(s,i)

p
(0)

(s′ ,i′ ),(s0,k0)
+ ... + p

(n−1)

(s′ ,i′ ),(s0,k0)

n + 1
(H(p))(s,i),(s′ ,i′ )

=
∑
(s′ ,i′ )

∑
(s,i)

I(s′ ,i′ ),(s0,k0) + P(s′ ,i′ ),(s0,k0) + ... + (P n−1)(s′ ,i′ ),(s0,k0)

n + 1
(H(p))(s,i)(s′ ,i′ )

=
∑
(s,i)

(H(p))(s,i),(s0,k0) + H(p)P )(s,i),(s0,k0) + ... + (H(p)P n−1)(s,i),(s0,k0)

n + 1

=
∑
(s,i)

(
H(p) + H(p)P + ... + H(p)P n−1

n + 1

)
(s,i),(s0,k0)

.

Thus,h(X0, ..., Xn) is the sum of(s0, k0)
th column entries of the following matrix

(H(p) + H(p)P + ... + H(p)P n−1)

n + 1
= H(p)

(
0 + I + P + ... + P n−1

n + 1

)
.

In the DTMC SIR epidemic model, the state(s, i) = (N, 0) is recurrent and the others are
transient, therefore the matrixP n converges to a(N +1)2× (N +1)2 matrix that all entries are
zero, but the(N2 + N + 1)th row entries are1. Therefore

lim
n→∞

Hn = 0.

Hence,h(X) = 0. We can say as time increases this model becomes closer to reality. This
model predicts that after a long time, disease will disappear, so this prediction is true because
h(X) = 0.

When we are using stochastic processes, it is important to determine the average uncertainty
aboutn consecutive outcomes in model.

In the next example,h(Xn
0 ) for the DTMC SIR epidemic model has been computed.

Example 4.1. PutN = 10, ∆t = 0.1, β = 0.01, γ = 0.5, I(0) = 2, b = 0 andS(0) = 8 the
entropy table is

Table 4.1: Entropy of DTMC SIR model

n 20 60 100 200 300
h(Xn

0 ) 0.2755 0.1545 0.0996 0.0507 0.0338
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5. CHAIN BINOMIAL EPIDEMIC M ODEL

Let Sn be a discrete random variable for the number of susceptible individuals at timen∆t.
∆t represents the infectious period, andIn represents new infected individuals.

There is no birth and death, so the number of susceptible individuals is decreasing over time.
Therefore,Sn+1 + In+1 = Sn andSn, In ∈ {0, 1, ..., s0}, whereS0 = s0.

Let α be the probability of a contact between a susceptible and an infected individual, and
β be the probability that the susceptible individual is infected after contact. LetPI(t) be the
probability that a susceptible individual does not become infected at timet. In the Greenwood
model we assume thatPI(t) is constant (p = 1 − αβ), and in the Reed-Frost model we assume
thatPI(t) = pI(t) [1, 10], but it is clear thatα is a function of infected individuals (I(t)).

Hence, if at timet there areI(t) infected individuals andN(t) is the population size at time
t, then

PI(t) = 1− I(t)

N(t)
β.

In this model, we assume that∆t = 1
γ
, whereγ is the recovery rate, and the model is a

bi-variate Markov chain.
This process is denoted by{Sn, In} = {(S, I)n} for n = 0, 1, 2, .... In represents infected

individuals at timen∆t. Thus, during the time intervaln to n + 1,

Pin = 1− in
N

β.

The transition probabilityP(s,i)n+1,(s,i)n is a binomial probability, and

(5.1) P(s,i)n+1,(s,i)n =

(
Sn

Sn+1

)
P

Sn+1

in
(1− Pin)Sn−Sn+1 .

This model like the DTMC SIR epidemic model is a bi-variate process. In this model, we
order the states(s, i) as previous, and this bi-variate stochastic process is denoted byX =
{Xn}∞n=0.

Transition matrix for this model is a(s0 + 1)2× (s0 + 1)2, upper triangle matrix that is given
by



(0, 0) 1 1 . . . 1 0 . . . 0 . . . 0 . . . 0
(0, 1) 0 0 . . . 0 0 . . . 1− Ps0 . . . 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

(0, s0) 0 0 . . . 0 0 . . . 0 . . . 0 . . . (1− Ps0)
s0

(1, 0) 0 0 . . . 0 1 . . . Ps0 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
(1, s0) 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

(s0, 0) 0 0 . . . 0 0 . . . 0 . . . 1 . . . P s0
s0

...
...

...
...

...
...

...
...

...
...

...
...

(s0, s0) 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0



.

Since it is possible thati0 > s0, at first for computing the entropy the start timet = 0 will be
ignored. One can prove the following theorem like Theorem 4.2.
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Theorem 5.1. let X = {Xn}∞n=1 be the stochastic process of this model andX1 = (s1, i1), then
h(X1, ..., Xn+1) is the sum of(s1, i1)

th column entries of the following matrix

Hn(s1) = H(P )

(
0 + I + P + ... + P n−1

n + 1

)
.

Corollary 5.2. Let X = {Xn}∞n=0 be the stochastic process of the model andX0 = (s0, i0),
then

h(X0, X1, ..., Xn+1) =

H(X1) + (n + 1)
s0∑

s1=0

Prob(S1 = s1)Hn(s1)

n + 2
.

Proof. SinceX0 = (s0, i0), H(X0) = 0, then

H(X0, ..., Xn+1) = H(X1, X2, ..., Xn+1)

= H(X1) + H(X2, ..., Xn+1 | X1)

= H(X1) +
∑
x1

Prob(X1 = x1)H(X2, ..., Xn+1 | X1 = x1)

= H(X1) +

s0∑
s1=0

Prob(S1 = s1)H(X2, ..., Xn+1 | X1 = (s1, i1))

= H(X1) +

s0∑
s1=0

Prob(S1 = s1)(n + 1)Hn(s1).

Therefore

h(X0, X1, ..., Xn+1) =

H(X1) + (n + 1)
s0∑

s1=0

Prob(S1 = s1)Hn(s1)

n + 2
.

Remark 5.1. H(X1) = −
s0∑

s1=0

Prob(S1 = s1) log[Prob(S1 = s1)] becausei1 = s0 − s1, and

P (S1 = s1) = P(s1,s0−s1),(s0,i0) =

(
s0

s1

)
P s1

i0
(1− Pi0)

s0−s1 .

In the next example,h(Xn
0 ) for this chain binomial model has been computed.

Example 5.1. The population size isN = 12, the infectious period is∆t = 2, β = 0.01,
γ = 0.5, b = 0, S(0) = 10 andI(0) = 2. The entropy table is

Table 5.1: Entropy of chain binomial model

n 1 3 5 10 15
h(Xn

0 ) 0.0284 0.0171 0.0122 0.0071 0.0051

In Example 5.1 we considerN = 12 andS(0) = 10 to make the total number of states
(the dimension of the transition matrix) in the chain binomial model equal to the corresponding
DTMC SIR model. Now comparing the entropy of these two model can help us to understand
which one is more reliable. In the next section a comparison between these two models is
presented.
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6. DISCUSSION

Analysis of the entropy is an important approach in the study of dynamical systems, in par-
ticular when the study aims to explore relative comparison of two mathematical models. In
this paper the entropy of two stochastic epidemic models is introduced. In example 4.1, for the
DTMC SIR epidemic model we computed the entropy at time stepn, which is illustrated by
h(Xn

0 ). Also in example 5.1 the entropy at time stepn for the chain binomial model has been
computed.

Using Table 4.1 and Table 5.1 we have plotted Figure 1 which shows how the entropy of
these two model will change with respect to the time.

Figure 1: Red curve shows the entropy of the DTMC SIR model, and Blue curve indicates the entropy of the chain
binomial epidemic model.

Figure 1 indicates that the chain binomial model is more efficient than the DTMC SIR model.
Hence, in this case with the given parameters, the prediction of the future of this epidemic by
chain binomial model is more accurate than the DTMC SIR model. It is clear just based on
these two examples we could not derive a general conclusion. However, as you know chain
binomial models were developed to help in understanding the spread of a disease within a small
population [10], and our numerical results are in agreement that the chain binomial epidemic
models are more accurate than DTMC SIR models. Hence, when we want to study the spread
of a disease in a society, at first we can compare our models with the method that is proposed in
this paper to have an idea which model is closer to reality.

As follows, we show how the entropy of this chain binomial model changes by changing the
transmission rate (β).
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Figure 2: Black:β = 0.01, Green:β = 0.02, Blue: β = 0.03 and Red:β = 0.04.

Figure 2 illustrates, with the given parameters, by decreasingβ the entropy of this model will
decrease. Thus, the prediction of future is easier and it is more accurate over time.

There are some further directions in which this work can be extended. Since the proof of
Theorem 4.2 is general, one can extend it to all DTMC models, and use it as a tool to compare
them. The way that one can define the transition probabilities is not unique [1]. Therefore, it
could be an interesting idea to study how changing them can change the entropy.
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