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ABSTRACT. In this paper, we attempt to approach to the problem of connection between differ-
entiation and one−side differentiation in a more simple and explicit way than in existing math
literature. By replacing the condition of differentiation with one−sided differentiation, more
precisely with right-hand differentiation, we give the generalization of a theorem having to do
with Lebesgues integration of derivative of a function. Next, based on this generalized result it
is proven that if a continuous function has bounded right−hand derivative, then this function is
almost everywhere differentiable, which implies that the set of points where the function is not
differentiable has measure zero.
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1. I NTRODUCTION

The problems of relations between differentiability and one-sided differentiability of a func-
tion are so old and well known. The purpose of this paper is to bring a way of analysis for one
of these problems, like the relation between derivative and right-hand derivative for function
f : [a, b] → R, in the case whenf is continuous in closed interval[a, b] and the right derivative
f

′
+(x) is bounded in[a, b), where

f
′

+(x) = lim
h→0
y>0

f(x + h)− f(x)

h

Let B be a Banach space (a complete normed space).

Lemma 1.1. Let f : [a, b] → B be a continuous function on the closed interval[a, b]. Let us
suppose that for any pointx ∈ [a, b) the right-hand derivativef

′
+(x)exists. If the right derivative

f
′
+ is bounded in[a, b), that means exists any constantK ≥ 0, such for everyx ∈ [a, b) we have
‖f ′

+(x)‖ ≤ K, then the inequality

(1.1) ‖f(b)− f(a)‖ ≤ K(b− a)

is true.

A proof of this Lemma can be found in [2].
Note. Inequality (1.1) can be expressed also in the form:

(1.2) ‖f(b)− f(a)‖ ≤ (b− a) sup
t∈[a,b)

‖f ′

+(x)‖

Definition 1.1. Let I be an interval, and letf : I → R be a function. We say thatf is a
Darboux function provided that for any two pointsp, q ∈ and any pointy betweenf(p) and
f(q), there is a pointx betweenp andq such thatf(x) = y (i.e., for any subintervalJ of I,
f(J) is an interval).

There are fairly simple functions that are Darboux but not continuous. For example, let

f(x) =

 sin
1

x
, if x 6= 0

0, if x = 0.

Bolzanos theorem or intermediate value theorem, the theorem that if a real functionf is con-
tinuous on a closed bounded interval[a, b], then it takes every value betweenf(a) andf(b) for
at least one argument betweena andb. This intermediate value property, which derivatives also
possess by virtue of the Mean- Value Theorem, is also called the Darboux property. (Named
after the Czech analyst Bernhard Bolzano (1781-1848).)

2. GENERALIZATION OF SOME RESULTS

Theorem 2.1. If the functionf : [a, b] → B is continuous on the closed interval[a, b] and has
continuous right−hand derivative on[a, b), then functionf has continuous derivative on[a, b).

Proof. Let analyze a fix pointx0 ∈ [a, b) and any pointx ∈ [a, b). If we write inequality (1.2)
on closed interval[x0, x](x > x0) for function

(2.1) x 7→ F (x) = f(x)− f
′

+(x0)(x− x0)

we find inequality:
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(2.2) ‖F (x)− F (x0)‖ ≤ (x− x0) sup
t∈[x0,x]

‖F ′

+(x)‖

or

(2.3) ‖f(x)− f(x0)− f
′

+(x0)(x− x0)‖ ≤ (x− x0) sup
t∈[x0,x]

‖f ′

+(t)− f
′

+(x0)‖

After dividing by (x− x0), inequality (2.3) becomes

(2.4) ‖f(x)− f(x0)

(x− x0)
− f

′

+(x0)‖ ≤ sup
t∈[x0,x]

‖f ′

+(t)− f
′

+(x0)‖

It is obvious that inequality (2.4) maintains the same form even if we write inequality (1.2)
for functionF on interval[x0, x](x < x0). If we pass to the limit whenx → x0(x 6= x0) on the
both sides of inequality (2.4), and take into consideration that functionf

′
+ is continuous at point

x0, we find

(2.5) 0 ≤ ‖ lim
x→x0

f(x)− f(x0)

x− x0

− f
′

+(x0)‖ ≤ 0

that means

(2.6) ‖f ′
(x0)− f

′

+(x0)‖ = 0, f
′
(x0) = f

′

+(x0)

Since pointx0 is scalene, derives that the derivativef
′
(x) exists for everyx ∈ [a, b) and that

derivative is continuous on[a, b), same as the right−hand derivativef
′
+.

Lemma 2.2. Let f : [a, b] → R be a continuous function on the closed interval[a, b]. Let us
suppose that for any pointx ∈ [a, b) the right-hand derivativef

′
+(x) exists. Then in(a, b) exist

pointsc andd such as

(2.7) f
′

+(c) ≤ f(b)− f(a)

b− a
≤ f

′

+(d)

A proof of this Lemma can be found in [3].

Theorem 2.3. Let f : [a, b] → R be a continuous function on the closed interval[a, b], which
has right−hand derivativef

′
+(t) at every pointt ∈ [a, b). If the functionf

′
+ is bounded on[a, b),

then it is Lebesgue integrable on every closed interval[a, x] ⊂ [a, b) and the formula

(2.8) (L)

∫ x

a

f
′

+(t)dt = f(x)− f(a)

is true.

Proof. First we extendf to the interval[a, b + 1] by settingf(t) = f(b) for b < t ≤ b + 1. This
implies thatf

′
+(t) = 0 for b ≤ t < b + 1. Now, let us apply Lemma (2.2) for functionf to the

arbitrary interval[u, v] ⊂ [a, b].
This implies that inequality

(2.9) f
′

+(c)(v − u) ≤ f(v)− f(u) ≤ f
′

+(d)(v − u)
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hold for somec, d in (u, v). By hypothesis the right−hand derivative is bounded on[a, b);
with our extension it exists and is bounded on[a, x], that is, there existsM > 0 such that

−M ≤ f
′

+(t) ≤ M for all t ∈ [a, b).

From (2.9) it follows that

−M(v − u) ≤ f(v)− f(u) ≤ M(v − u) and | f(v)− f(u) |≤ M(v − u)

for any interval[u, v] ⊂ [a, b]. But this means that functionf is absolutely continuous on[a, x].
According to Lebesgue theorem (see [4]. p.334-335) the derivativef

′
is integrable on[a, x] and

(L)

∫ x

a

f
′
(t)dt = f(x)− f(a)

In particular,f
′
+ = f

′
a. e. and

(L)

∫ x

a

f
′

+(t)dt = f(x)− f(a)

Corollary 2.4. There is no function fromC[a,b] whose right−hand derivative on[a, b) equals
the Dirichlè function

χ(x) =

{
0, if x is rational number

1, if x is irational number

Proof. Let us suppose that there exists a function∈ C[a,b] such that

∀x ∈ [a, b), g+(x) = χ(x)

Since conditions of Theorem (2.3) are satisfied, we can write formula (2.8) in the form:

(2.10) ∀x ∈ [a, b), g(x) = g(a) + (L)

∫ x

a

g
′

+(t)dt

Since

(L)

∫ x

a

g
′

+(t)dt = 0,

the identity (2.10) becomes

(2.11) ∀x ∈ [a, b), g(x) = g(a)

which means that
∀x ∈ [a, b), g+(x) = 0 6= χ(x),

a contradiction.

Corollary 2.5. If the right-hand derivativef
′
+ of the continuous functionf : [a, b] → R is

bounded on the half−open intervalx ∈ [a, b), then the formula

(2.12) (L)

∫ x

a

f
′

+(t)dt = f(b)− f(a)

is true.
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Proof. The formula (2.12) derives from the identity (2.8) , by taking the limit of both sides
whenx → b−. Formula (2.12) is a type of Leibnitz formula (see [6]).

Corollary 2.6. If the right−hand derivativef
′
+ of a continuous functionf : [a, b] → R is

bounded on the half−open interval[a, b), then the function is almost everywhere differentiable
on [a, b).

Proof. We know that derivative of the functionx 7→ Φ(x) = (L)
∫ x

a
f(t)dt wheref is integrable

on [a, b], is almost everywhere equal with the functionf. A proof of this fact can be found in
[4]. If we take the derivative of both sides of (2.8) at the pointx ∈ [a, b), and apply the above
theorem to the integral(L)

∫ x

a
f

′
+(t)dt, we have:

(2.13) f
′

+ = f
′
(x)(almost everywhere on[a, b])

which proves that Corollary (2.6) holds.

Note. The question arises: Which conditions must be met by the right−hand derivativef
′
+

so that the equation (2.13) will be hold for every pointx ∈ [a, b)? To give an answer to the
above question we follow results from propositions (Lemma 3, Lemma 4), which can be found
in [1].

Lemma 2.7. If f is a measurable function, bounded and with the property Darboux on[a, b],
then for each closed subintervalI = [p, q] ⊂ [a, b] there exists at least a pointξ ∈ I such that

(2.14) (L)

∫ q

p

f(x)dx = f(ξ) | I |, (| I |= q − p)

The pointξ is called the mean point ofI with respect tof.

Lemma 2.8. Let f be a bounded function having the Darboux property on[a, b]. Thenf is the
derivative of a function in[a, b] if and only if:

1. f is measurable and
2. for everyx ∈ [a, b] and for each sequence of subintervalsIn = [pn, qn] ⊂ [a, b] that

converge to a pointx(In → x) we havef(xn) → f(x), wherexn is the mean point ofIn with
respect tof.

Theorem 2.9. If the right−hand derivativef
′
+ of a continuous functionf : [a, b] → R meets

the following conditions:
1. f

′
+ is bounded and has the Darboux property on the half−open interval[a, b) and

2. for eachx ∈ [a, b] and for each sequence of subintervalsIn = [pn, qn] ⊂ [a, b] that
converge to a pointx(In → x), we havef

′
+(xn) → f

′
+(x), wherexn is the mean point ofIn

with respect tof, then the functionf is everywhere differentiable in[a, b).

Proof. The functionf
′
+ satisfies the conditions of Theorem (2.1), so the formula

(2.15) (L)

∫ x

a

f
′

+(t)dt = f(x)− f(a)

is true.
Next, reasoning likewise on [1] (p. 244-245) , where Lemma (2.7) is proved , we find

(2.16) x ∈ [a, b), f
′

+(x) = f
′
(x).
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