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ABSTRACT. In this paper, we attempt to approach to the problem of connection between differ-
entiation and oneside differentiation in a more simple and explicit way than in existing math
literature. By replacing the condition of differentiation with ersded differentiation, more
precisely with right-hand differentiation, we give the generalization of a theorem having to do
with Lebesgues integration of derivative of a function. Next, based on this generalized result it
is proven that if a continuous function has bounded rigtgnd derivative, then this function is
almost everywhere differentiable, which implies that the set of points where the function is not
differentiable has measure zero.
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1. INTRODUCTION

The problems of relations between differentiability and one-sided differentiability of a func-
tion are so old and well known. The purpose of this paper is to bring a way of analysis for one
of these problems, like the relation between derivative and right-hand derivative for function
f :]a,b] — R, in the case wherf is continuous in closed interval, b] and the right derivative
f.(z) is bounded ir{a, b), where

fjr(az) ~ im fl@+h) = f(z)

h—0 h
y>0

Let B be a Banach space (a complete normed space).

Lemma 1.1. Let f : [a,b] — B be a continuous function on the closed interjal]. Let us

suppose that for any pointe [a, b) the right-hand derivativgfjr (x)exists. If the right derivative
£, is bounded ira, b), that means exists any constdnt> 0, such for every: € [a, b) we have

If(2)]| < K, then the inequality

(1.1) 1£(b) = f(a)]| < K(b—a)
is true.

A proof of this Lemma can be found inl[2].
Note. Inequality (1.1) can be expressed also in the form:

(1.2) 1F(6) = (@)l < (b—a) S I+ @)

Definition 1.1. Let I be an interval, and lef : I — R be a function. We say that is a
Darboux function provided that for any two poinisg € and any pointy betweenf(p) and
f(q), there is a point: betweernp andq such thatf(z) = y (i.e., for any subinterval of I,
f(J) is aninterval).

There are fairly simple functions that are Darboux but not continuous. For example, let
1.

sin—,if x #0
Xz

0,if z = 0.

Bolzanos theorem or intermediate value theorem, the theorem that if a real fufici@on-
tinuous on a closed bounded inter{@lb], then it takes every value betwegtr) and f(b) for

at least one argument betweeandb. This intermediate value property, which derivatives also
possess by virtue of the Mean- Value Theorem, is also called the Darboux property. (Named
after the Czech analyst Bernhard Bolzano (1781-1848).)

f(z) =

2. GENERALIZATION OF SOME RESULTS

Theorem 2.1. If the functionf : [a,b] — B is continuous on the closed interal ] and has
continuous right-hand derivative orja, b), then functionf has continuous derivative da, b).

Proof. Let analyze a fix point, € [a,b) and any point: € [a,b). If we write inequality [(1.2)
on closed intervalxy, z|(x > x,) for function

(2.1) z— F(z) = f(z) = f(w0)(x — 20)

we find inequality:

AJMAA Vol. 15, No. 2, Art. 10, pp. 1-6, 2018 AJMAA


http://ajmaa.org

RELATIONS BETWEEN DIFFERENTIABILITY AND ONE—SIDED DIFFERENTIABILITY 3

(2.2) 1F(x) = Fzo)|l < (2 — o) S 1F, ()l
or
(2.3) 1 (2) = f(x0) = filwo)(z — )| < (& — o) S 1F5(8) = f (o)

After dividing by (z — ), inequality (2.8) becomes

f($) - f(ajo) / !’ ’
———— — [y (@) < sup [[f(t) = fi (o)l

(ZE :L‘O) t€[xo,]

It is obvious that inequality (214) maintains the same form even if we write inequality (1.2)
for function F' on interval[z, ] (z < ). If we pass to the limit when — xy(z # x,) on the
both sides of inequalit .4), and take into consideration that fungtﬂde continuous at point
xo, we find

(2.4) |

25) 0< | tim LI ) <
T—T0 r — Xo
that means
(2.6) 1 (o) = fi(@o)|l =0, f (z0) = fi(w0)

Since pointz, is scalene, derives that the derivatifé¢x) exists for every: € [a,b) and that
derivative is continuous ofa, b), same as the righthand derivativef’, .
1

Lemma 2.2. Let f : [a,b] — R be a continuous function on the closed interjtal). Let us
suppose that for any point € [a, b) the right-hand derivativeg’, (x) exists. Then iffa, b) exist
pointsc andd such as

2.7) filo) < %ﬂ)

A proof of this Lemma can be found inl[3].

< fi(d)

Theorem 2.3.Let f : [a,b] — R be a continuous function on the closed interjab], which
has right-hand derivativef, (¢) at every point € [a, b). If the functionf, is bounded offa, b),
then it is Lebesgue integrable on every closed intelvat] C [a, b) and the formula

(2.8) (L) / CFL (0t = f(2) - f(a)
is true.

Proof. First we extend to the intervala, b+ 1] by settingf (¢t) = f(b) forb < ¢t < b+ 1. This
implies thatfjr(t) =0forb <t < b+ 1. Now, let us apply Lemm@.Z) for functiofito the
arbitrary intervalu, v] C [a, b].

This implies that inequality

(2.9) Fr@w—u) < f(v) = flu) < fi(d)(v—u)
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hold for somec, d in (u,v). By hypothesis the righthand derivative is bounded qga, b);
with our extension it exists and is bounded|anz], that is, there existd/ > 0 such that

—M < f.(t) < Mforallt € [a,b).
From [2.9) it follows that

—M(v—u) < f(v) = f(u) < M(v—w)and | f(v) = f(u) |[< M(v—u)

for any intervalju, v] C [a, b]. But this means that functiofiis absolutely continuous dn, x|.
According to Lebesgue theorem (sek [4]. p.334-335) the derivatigdntegrable ora, ] and

() / CF (0t = 1) — fla)
In particular,f, = f a. e. and
(L) / CFL (0t = f(2) - f(a)

Corollary 2.4. There is no function frond’, ;; whose right-hand derivative orja, b) equals
the Dirichle function

0, if z is rational number
X(x) = e
1,if z is irational number

Proof. Let us suppose that there exists a functio@’, ; such that

Vo € [a,b), g+ (z) = x(x)
Since conditions of Theorerh (2.3) are satisfied, we can write forrhulg (2.8) in the form:

(2.10) o € [a.b).g(0) = g(a) + (L) [ g, (0
Since . '

(L)/ g, (0di = 0,
the identity (2.1D) becomes ’

(2.11) Vx € [a,b),g(x) = g(a)
which means that

Vr € [a,b),g+(m) =0 7& X(l’),
a contradictionyg

Corollary 2.5. If the right-hand derivativef, of the continuous functiorf : [a,b] — R is
bounded on the halfopen intervak: € [a, b), then the formula

(2.12) w [ CFL 0t = £(6) — fa)

is true.
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Proof. The formula [(2.1R) derives from the identify (R.8) , by taking the limit of both sides
whenz — b~. Formula|(2.1P) is a type of Leibnitz formula (séé [&i).

Corollary 2.6. If the right-hand derivativef, of a continuous functiorf : [a,b] — R is
bounded on the halfopen intervala, b), then the function is almost everywhere differentiable
onla,b).

Proof. We know that derivative of the function— &(x f f(t)dt wheref is integrable
on [a, b], is almost everywhere equal with the functlgSnA proof of this fact can be found in
[4]. If we take the derivative of both sides of (2.8) at the paint [a,b), and apply the above
theorem to the integrall) f f+ t)dt, we have

’

(2.13) fi. = f (z)(almost everywhere ofa, ])
which proves that Corollary (2.6) holds.

Note. The question arises: Which conditions must be met by theigand derivativef,
so that the equatiof (2./13) will be hold for every paint [a,b)? To give an answer to the
above guestion we follow results from propositions (Lemma 3, Lemma 4), which can be found
in [1].

Lemma 2.7. If f is a measurable function, bounded and with the property Darboux a@n,
then for each closed subinterval= [p, q] C [a, b] there exists at least a poigte I such that

(2.14) (0) [ sz = £ 111,01 1=a -
The point is called the mean point dfwith respect tof.

Lemma 2.8. Let f be a bounded function having the Darboux property@m]. Thenf is the
derivative of a function i, 0] if and only if:

1. f is measurable and

2. for everyz € [a,b] and for each sequence of subintervdls= [p,,¢.] C [a,b] that
converge to a point(f,, — =) we havef(z,) — f(x), wherez, is the mean point of,, with
respect tof.

Theorem 2.9. If the right—hand derivativef, of a continuous functiorf : [a,b] — R meets
the following conditions:

1. f; is bounded and has the Darboux property on the-haffen intervala, b) and

2. for eachz € [a,b] and for each sequence of subintervdls= [p,,q,] C [a,b] that
converge to a point(/, — ), we havef, (z,) — f.(z), wherex, is the mean point of,
with respect tof, then the functiory is everywhere differentiable i, b).

Proof. The functionfjr satisfies the conditions of Theoremz.l), so the formula

(2.15) w [ CfLt)dt = £(x) — f(a)

is true.
Next, reasoning likewise onl[1] (p. 244-245) , where Lemma| (2.7) is proved , we find

!/

(2.16) x € [a,b), f,(x) = f ().
|

AJMAA Vol. 15, No. 2, Art. 10, pp. 1-6, 2018 AJMAA


http://ajmaa.org

6 Q. D. GIONBALAJ AND V. R. HAMITI AND L. GJOKA

REFERENCES

[1] MICHEL W. BOTSKO, Exactly Which Bounded Darboux Functions Are Derivativedd@nthly
(2007), pp. 242— 245.

[2] H. CARTAN, Calcul Différenciel - Formes DifférencieHerman Paris (1967).

[3] WILLIAM J. KNIGHT, Functions With zero right derivatives are constaionthly (1980), pp.
657-658.

[4] KOLMOGOROQV A. N; S. V. FOMIN, Elements of the Theory of Functions and Functional Analy-
sis,Nauka(1981), Moscow.

[5] ROBERT M. MC LEOD, Mean Value Theorems For Vector Valued Functid?sc. Edinburg
Math. So¢ 14 serie (11).

[6] JAMES STEWART,Calculus Early Transcendentald SA, (2008), pp. 379-388.

[7] HIRIART-URRUTY, J. B., Théoreme de valeur moyenne sous forme d’égalité pour les fonctions
a valeurs vectoriellefRevue de Mathématiques Spécialdsiversité Paul Sabatier (Toulouse Il1)
Mars 1983-mensuel nr.7, pp. 290-293.

AJMAA Vol. 15, No. 2, Art. 10, pp. 1-6, 2018 AJMAA


http://ajmaa.org

	1. Introduction
	2. Generalization of some results
	References

