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ABSTRACT. In this article we address the problem of integral presentation of a convex function.
Let I be an interval ifR. Here, using the Riemann or Lebesgues integration theory, we find the
necessary and sufficient condition for a functipn/ — R to be convex inl.
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1. INTRODUCTION

For convex functions are written many articles. Here we will concentrate only on the as-
pect of their presentation by indefinite integral. In order to achieve this goal we have used
three well-known facts about convex functions dealing with their continuity and differentia-
bility (propositions (P1), (P2) and (P3)). To prove that the derivative of a convex function is
Riemann integrable, we had to prove Lemma 2.1.

This problem is also considered in [1], but only in the case of Riemann’s as the integration
operator. Here, in addition, we reorganize this problem in a simpler, shorter and clearer way
when as the integration operator is that of Riemann, and generalize it even when the integration
operator is that of Lebesgue. This was made possible because of the fact that we have used the
convex function defined by equatidn (1.2), unliké [7] and [1], where this meaning is given by

equation|[(L.11).

Definition 1.1. The real functionf : I — ‘R is called convex (from above) at an intervaliin
if

(1.1) [tz + (1= t)zg) <tf(zr) + (1 —t) f(22)

for every two pointsey, xo € I and everyt € [0, 1].
If in the inequality (1.1) we substitute= § then we obtain the inequality (1.2)

f(z1) + f(22)
2

T+ T2
2

(1.2) i

for every two pointse;, z, € 1.

) <

Conversely, from the validity of inequality (1.2) there is no validity of the inequdlity] (1.1).
For this it is sufficient to refer ta [5] , where it is indicated that for functjodefined by formula

f) 22, if x is rational number
x) = e
0,if = is irational number

the inequality[(1.R) is true, but ngt (1.1) .

Lemma 1.1. If the functionf is continuous in the interval and satisfies the inequality (1.1)
then it also satisfies the inequalify (L.2), ifeis a convex function.

An interesting proof of this fact is found in![6].

Characterization of convex functions ([7] App. I, theor. 2) is usually performed within
Lebesgues integration theory, despite the fact that the involved integrands are non-decreasing
(therefore Riemann integrable) functions. We transcribe its statement as it appears in the cited
book:

Theorem 1.2.The class of functions which are convex downward on the intésva) coincides
with the class of indefinite integrals of functions which are increasiniob) and bounded on
every[p,q] C (a,b).

The same result can be achieved in a similar way, by using only Riemann integrals. In order
to remember the usual proof and show the simpler one, we prefer to adopt the following point
of view.

Theorenj 1.R is an immediate corollary of the next result:
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Theorem 1.3. Let (a,b) be an interval and:, € (a,b). Let X be the space of non-decreasing
functions on(a, b) and letY” be the space of convex functions on the same interval tending at
zo. Then the operatorsindefinite integration fromx,, and” differentiation are inverse to each
other. So,

(1.3) =/ Ft)dt = f(x), f € X
and
(1.4) / F(t)dt = F(z),F €Y

An elementary general result provides the suitable framework for this point of view.
Theorem 1.4.Letd : X — Y andV¥ : Y — X be two mappings such that
(1.5) V. P =idy

Then, they are inverse to each other, i.e.

(1.6) DU =idy
if and only if one of the following conditions is satisfiddis one to one o is onto.

However, Theorer 1.2 may be derived alternatively from the following (Riemann-ian) ver-
sion of Theorer 1]3.

Theorem 1.5.Let(a, b) be an interval andry € (a,b). Let X be the space of right continuous
non-decreasing functions ofa, b) and letY be the space of convex functions on the same
interval tending atry. Then the operators

O(z) = /xf(t)dt,f € X

and

U(F)=D'F,FeY
are inverse to each other.

The proof of Theorer 1]5 is obtained by applying Theorem 1.4.

2. WELL -KNOWN FACTS ABOUT CONVEX FUNCTIONS

If f:1 — Risaconvex function, then the functighhas the following properties:

(P1) There are partial derivativés™ f(z) and D™ f(x), which are finite at each pointe I.
The functionsD~ f and D™ f are non-decreasing in the interdalmeanwhile the right deriva-
tive is continuous from the right, while the left derivative is continuous from the left (See [2] or
[8).

(P2) The set of points where the functigims not derivable is computable (denumerable) (see
[2] or [8]).

(P3) If [a,b] € T andM < max{D* f(z); D~ f(x)}, then for every two points andy from
[a, b], it is true inequality

| f(@) = fy) =M |z -y

which means that the functighsatisfies the Lipschitz conditionl/[8].
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To prove that the derivative of a convex function is Riemann integrable, we had to prove
Lemma 2.1.

Lemma 2.1. If the function is convex, then the derivatifeis continuous i/, with an excep-
tional denumerable set of points in this interval.

Proof. Due to the statement (P2) the derivati/eexists inZ, with an exceptional denumerable
set of points
E= {Il, T, }
Forz € I\ E the equalityD™ f(x) = D* f(z) = f'(x) is true.
Since the functionD~ f is continuous from the right and the functidn® f is continuous
from the left (according to the statement (P1)), it follows that the derivgtive a continuous
function both from the left and from the right in\ £, which means it is continuous ih\ E. 1

3. INTEGRAL PRESENTATION OF A CONVEX FUNCTION
Let f : I — R be defined at an intervdlanda € I fixed point.

Theorem 3.1.The necessary and sufficient condition that the funcfimconvex in the interval
I is that for eachr € I, this function is presented in the form

(3.2) foy=c+m) [ gty

whereg is a non-decreasing functions fnand C real constant (in factC' = f(a)).
(The symbol R) in front of the integer sign indicates Integration according to Riemann,
which, during the proof, wont be written, but we will imply).

Proof. First, let proof that condition 3|1 is necessary (indispensable). Supposgithepnvex
in the intervall. According to Lemma 2.1. the set of disconnection points of funcfiohas
the mass (according to Lebesgue measure) zero. In the Riemann integral theory ($ee eg [3]) it
is proven that:

- The derivativef’ is integrable according to Riemann if and only if the set of disconnection
points of f', which is of the typeF, ), have the mass zero according to Lebesgue.

- Each functionf : [a,b] — R that has an integrative derivative according to Riemann in
segmenta, b, is an indefinite integral of its derivative:

(3.2) @)= )+ | CF .

wherea < z <.

Formulg 3.2 is also true whén< «, i.e. is true in a generalized segmémtb]. Since each
pointz € I can be included in a generalized segmlent|, such thafa, b] C I, the equation
3.2 is true for each € I.

If in this formula we substitute derivativg (¢) with the right derivativeD ™ f(t), formula[3.2
takes the form

(3.3) f(z) = f(a) + / DY f(t)dt, (z € E)
or ’
(3.4) fx)=C +/ g(t)dt, (x € E)
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where, according to the statement (P1), the fungjieh= D™ f(¢) is non decreasing, mean-
while C' = f(a).
Now, let proof that conditiof 3|1 is sufficient. Suppose that for funcifioequatior] 3.2 is
true. Since the indefinite integral
/ g(t)dt

is a uniformly continuous function, it follows that the functignis continuous. To prove that
the functionf is convex, it is enough to prove thatz) = [ g(t)dt is a convex function. For
this, based on Lemma 1.2, it suffices thairoves the inequality:

A concise statement pf 3.5 is found in [8] (page 40).

Theorem 3.2. The necessary and sufficient condition that the funcfido be convex in the
interval [ is that for eache € I, this function is presented in the form

(3.6) foy=c+w [ " g(t))t.

whereg is a non-decreasing functions ja, b] and C real constant (in factC' = f(a)).
(The symbol L) in front of the integer sign indicates integration according to Lebesgue,
which, during the proof, wont be written, but we will imply).

Proof. First, let proof that conditiop 3|6 is necessary (indispensable). Supposgithepnvex
in the intervall. According to the statement (P3) it follows that the functipis absolutely
continuous in every segmefat, b] C I. Let bex € I, then there is a segmeft, b], such that
x € |a,b] C I. Based on the Lebesgue theoremm ([4], page 345), the funftaam be expressed
as an indefinite integral (according to Lebesgue) of its derivative in the form

37) fla) = f@)+ [ roa

If we substitute derivative’ () with the right derivativeD* f(t), formul takes the form
(3.8) fla) = fa)+ [ D sieya

or
(3.9) flz)=C+ /;g(t)dt

where, according to the statement (P2), the funcgigh = D f(¢) is non decreasing func-
tion, whileC' = f(a).
Now, let proof that conditioh 3|6 is sufficient. Suppose that for funcficequatior] 3.6 is
true. Since the indefinite integral
/ g(t)dt
o

is a absolutely continuous function ([4], pg. 344) it follows that the funcfide continu-
ous. To prove that the functiofiis convex, it is enough to prove thafz) = [ g(¢)dt is a
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convex function. The other part of proof proceeds in the same way as the proof of the sufficient
condition of Theorerh 3|1

Theorem 3.3. Fix a pointa € I. By the integration operators according to Riemann or ac-
cording to Lebesgue, can establish a biunivoke correspondence (one by one) between the set
¢ = {¢} of non-decreasing functions in an intendal” R and the set” = { f} of the convex
functions (from above) i, for which f(a) = 0, according to the formula

(3.10) o) = / Cot)dt, (z € 1)

Proof. - Let f € F. According to the Theorenjs 3.1 and]3.2 we can write the equation

f@) = )+ [ "D ()t = / "oty

wherex € I andy = DT f is a monotone non-decreasing functiond ifrhus, the function
f € F responds to the functiop = D* f € ®.

- Let p € ®. Sincef is a non-decreasing function in the intervalthen it is integrable ac-
cording to Lebesgue, even according to Riemann. We will build the fungion= [ ¢(t)dt,
Whereff Is the integration operator according to Riemann or according to Lebesgue. From the
reasoning we did in Theorers B.1 3.2, it follows that the fungtisrconvex in the interval
1. Thus we established a correspondence betweert'satsi .

It remains to be proven that this correspondence is biunivoke (one by one).

- Let f; and f, be two different functions fron#’, it meansf; # f,. Let's mark it

+ d+
Y1 = %(fl) andy, = %(fQ)

Let prove thatp; # ¢,. In opposite, we would have, = ¢,, which meansD™* f; = DT f,.
In [9] it is proved that if the right derivative of a continuous function is zero at an interval, then
this function is constant at that interval. Thus, in our case, sfinee f; is continuous and

dr .
%(fz — fi)=0,in1

it follows that f; — fo = c(constant) in I. Meanwhile, since we havg (a) — fa(a) = 0,
it follows that for eache € I, we havef,(z) — fo(x) = 0, which meansf; = f,, which
contradicts the assumption.
|
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