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ABSTRACT. The principle of finding an integrating factor for a none exact differential equations
is extended to a class of third order differential equations. If the third order equation is not exact,
under certain conditions, an integrating factor exists which transforms it to an exact one. Hence,
it can be reduced into a second order differential equation. In this paper, we give explicit forms
for certain integrating factors of a class of the third order differential equations.
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1. INTRODUCTION

Third order nonlinear differential equations play a major role in Applied Mathematics, Physics,
and Engineering [4,18, 10, 14,115]. To find the general solution of a third order nonlinear dif-
ferential equation is not an easy problem in the general case. In fact, a very specific class
of nonlinear third order differential equations can be solved by using special transformations.
Other technique is to reduce the order of the differential equation into the second order, by find-
ing a proper integrating factor. Recently, many studies appear to deal with the problem of the
existence of an integrating factor for certain differential equations. For example/in [1,13, 5, 9],
the authors investigated the existence of an integrating factor of some classes of second order
differential equations. I [3], the authors investigated the existence of an integrating factor of
n — th order differential equations which has known symmetries of certain type.! In [7], the
authors improve some symbolic algorithms to compute the integrating factor for certain class
of third order nonlinear differential equation. In this paper, we investigate the existence of an
integrating factor of the following class of third order nonlinear differential equations:

(1.1) Fs(t,y, ' y" W' + Fa(t,y. v, y" W' + Filt,y, ' y" )y + Folt,y, 9, y") =0,

whereF,, Fy, F, and F5 are continuous with their first partial derivatives with respect 10v/,
andy”, respectively, on some simply connected dom@irc R*. In fact, we present some
theoretical results related to the existence of certain forms of the integrating facfor for (1.1). We
also present some illustrative examples.

2. INTEGRATING FACTOR AND FIRST INTEGRAL OF A CLASS OF THIRD ORDER
DIFFERENTIAL EQUATIONS

In this section, we investigate the existence of some special forms of integrating factors of
(I.7) in case that it is not exact differential equation. In generalntitfe order differential
equation

f(t7 Y, y/7 T 7y(n71)7 y(n)) =0
is called exact if there exists a differentiable functibt, y, s/, - -- , 4" V) = ¢, such that
d / (n—1) / (n-1) , (n)
a\ll(taymy?'”ay )If(t7y7y77y Y ):0
Inthis caseW (t,y,y',- -,y V) = cis called the firstintegral of (¢, 3,1/, - - - ,y™ 1, 4y) =

0, e.g., see,/[11, 13]. In[2], the author gave the conditions so thatttte order differential
equation

Foty sy oy Ny + oy (g oy )y
(2.1) + 0ty y vy Y + R (ty Yy y™Y) = 0.
is exact. Also, he gave an explicit formula for its first integral(¢,y, v/, - ,y™) = c. In

particular, the class of third order differential equations|(1.1) is exact if the following conditions:
(2.2)
6y~F0 = 0, F3, 8y//F1 = Ong, ay//Fg = 8y/F3,ay/F0 = 8tF2, 8y/F1 = Ong, andayFo = 0, F}
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hold. Moreover, the first integral df (1.1) is given by

t Yy
‘P(t7yayluy//) = / FO (573/71/73//) d€+ / Fl <t07£7y/7y”) df

to Yo
y/ y//
+ // F2 (t07y07§7y/,) d§+/// F3 (t()?y()ayéug) dé
Y Yo
(2.3) = ¢

wherec is the integration constant. Assume that](1.1) is not exact differential equation. Then,
according to conditions (2.2), an integrating factdt, v, v/, v") of (1.1) exists if it solves the
following system of partial differential equations:

¢

() Fse(y) + 1 (y) F3(y) = p(y) Foyr () + e () Fo (),
p(y) Far(y) + 1 (y) Fay) = p(y) Foy (y) + 1y (¥) Fo(y),
(2.4) () Ere(y) + i (y) Er(y) = () Foy(y) + p, (¥) Fo(y),
' p(y) Fry (y) + 1,y () F1(y) = p(y) Foy (y) + 1, (y) Fa(y),
p(y) Fryr (y) + pyn () F1(y) = p(y) Fy(y) + 11, () F3(),
L (Y) Foyr (Y) + pryn (y) Fo(y) = 1(y) Fay () + 11, (y) F3(y),

wherey = (¢,y,v,y"”). In general, to solve such system of first order partial differential equa-
tions is not easy. Thus, we consider some special case& af, v, y"). Particularly, we are
looking for an integrating factor of the form(&), where¢ := (¢, y, v/, v") = a(t) B(y)v(y')d(y").
Here, we assume thatt), 3(y), v(v'), andd(y”) to be differentiable functions with respect

tot, y, vy, andy”, respectively. By substituting(&) = u(a(t)5(y)y(y')o(y")) in (2.4), we get

¢

(&) Faie(y) 4+ 1/ ()& F5(y) = (&) Foyr (y) + 1/ (§)E,n Foly),
(&) For(y) + 1/ (§)E Fa(y) = (&) Foy (y) + 1/ ()€, Foly),
(2.5) (&) Fuly) + 1'(€) tFl(Y) = (&) Foy(y) + 1'(€)¢, Fo( ),
' (&) Fry (y) + 1/ (€)E, (y') = (&) Foy(y) + (5)5 Fy(y),
(&) Fryr(y) + 1/ (€ )5 P (y) = (&) Fsy(y) +u’(£)§yF3(Y),
(&) Foyn (y) + 1/ (€ )5 B (y) = (&) Fay (y) + 1/ ()€, F3(y),

wherey/(¢) = ‘;—‘g Equivalently, we have

(&) _ Fauly) = Forly) () _ Fuly) = Foy(y)
p&)  Epbo(y) —&Fs(y) nl&)  EyRly) —&Ra(y)

M/(S) _ Flt(Y) - Fﬂy(y) M/(g) _ Fly’(Y) - FQy(Y)
) & Foly) =& Fy) w) & R(y) — &, (y)]

P& _ Fyly) —Fyy)  wE) _ Fyy) - Fy(y)
L w(€) & B(y) - ly) wé) &y B(y) = laly)

Hence, an integrating factai(¢) of (1.1) exists if

a) Fau(y)=Fon(y)  Foae(y)=Fo/ (y)  Fie(y)—Fou(y)  Fiy(¥)—Foy(y)  Fin(y)—Fay(y)
&y Fo(y)— EtFa( ) &y Fo(y) =& Fa(y)’ &, Fo(y) =6 F1(y)" & Fa(y)—Ey Fi(y)’ &, F3(y) =&, Fi(y)’
Fy i (y)—Fs, (y)
and /53(y> S Fa(y)
and

(2.6)

are functions of,
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b)
F3t(Y) - FOy”(Y) _ FZt(Y) - FOy’(Y) _ Flt( ) Fﬂy( ) _
EFo(y) — & F3(y) EyFo(y) — & bu(y) &, Fo(y) — §Fa(y)
Fiy (y) — F2y(}’) o Fly”(Y) - F3y()’) . F2y”( ) — F3y'( )

&Ry) ¢ Rly)  §B(y) - Rly)  &E(y) — & Fa(y)
hold. Therefore, we have the following theorem:

Theorem 2.1. Lety = (t,y,¢/,y") and§ = a(t)B(y)y(y')d(y") wherea(t), 5(y),~(y'), and
d(y") are differentiable functions. Assume that Equai(drd])is a none exact differential equa-

tion. Then it admits a none constant integrating fagtof); if

Fa(y) = For(y)  _ Fuly) = Foy(y) _ Fuly) = Fo,ly) _
EpFo(y) — &F3(y) EpFoly) — & bu(y) &, Fo(y) — & Fa(y)
Fiy (y) — Fyy (y) o Fy (y) — Fy(y) N Foyr (y) — F3y (y)

YY) -6, (y)  EF(y) —EpRily) &, Fs(y) —EpFa(y)
and they are functions i§. Moreover, the integrating factor is given explicitly by
Fy(y) — Foyr(y) }
=ex d€ » .
wo=enl [ e

In the following sections, we presents some special cases of the above theorem. Moreover,
we present some illustrative examples.

3. INTEGRATING FACTORS OF THE FORMS p(a(t)), u(B(y)), n(y(y')) AND wu(d(y"))

In this section, we give conditions so that an integrating factor of one of the fofmg)),
w(B)), n(v(y')) andu(s(y”)) for equation[(I11) exists. As a result of Theoren 2.1, we have
the following corollaries:

Corollary 3.1. Lety = (¢,y,v',y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating factp(¢) = p(a(t)), wherea(t) is differentiable
function; if the following two conditions hold:

a) Py (y) = Fay(y), Fiy(y) = F3y(y), and Fyn (y) = Fay (y),

an

b) F()y// F3t( ) _ FOy’(Y)_FQt(y) o F()y(y) Flt

§:F5(y) B &l (y) - & (y)
Moreover, the integrating factor is given by

oo 2550

Corollary 3.2. Lety = (¢,y,v',y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating facte(¢) = u(5(y)), wherejs(y) is differentiable
function; if the following two conditions hold:

a) Fi(y) = Foyr(y), Far(y) = Foy (y), and Foyn(y) = Fiy(y),

) and they are functions if := &(a(t)).

and
b) ~ ) _ - lyggg 2y _ 2 11/”&(:}3_(5 ) "and they are functions i := £((y)).

Moreover, the integrating factor is given by

0o [ S0,
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Corollary 3.3. Lety = (t,y,v,y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating facio¢) = n(v(y’)) for some differentiable functions
v(y'); if the two conditions hold:

a) Fu(y) = Foyr (y), Fie(y) = Foy(y), and Fry(y) = Fy(y),
an
b) Four(y)—For (v)  Foy()—Fipy(y)  Foun(y)—Fs(y)
EyFoly) 0 EyRly) T &y F3(y)
Moreover, the integrating factor is given by

0 - [ )

Corollary 3.4. Lety = (t,y,v',y”), and assume that Equatidfh.T) is none exact differential
equation. Then it admits an integrating factof¢) = 1(6(y”)) for some differentiable function
d(y"); if the following two conditions hold:

a) Iu(y) = Foy (y), Fu(y) = Foy(y), and Fiy (y) = Foy(y),

, and they are functions i := (/).

and
b) F3tgf/;f ounly) _ 2 Byg);f ) _ 7 3’/5(: ¥ and they are functions i := 4(y").

Moreover, the integrating factor is given by

u() = exp { / Euly) = Forr(y) g } :

gy”FO(y)
Example 3.1. Consider the differential equation
(3.1) W)’y +2yy" = () + (y)* = 0.
Clearly,

Bty v, y") =), Bty v, y") =2y, By (ty,y,y") = =y, andFy(t,y, v, y") = (v)°.
Moreover,

Fau(t, 9,9, y") = Foyr(t, 9,9, y") = 0, Fu(t, y, ', y") = Fou (L, y, 4, y") = 0,
and
Fuy(ty, ' y") = Fay(t,y,9,y") =0,

In addition, we have

Fau(y) = Foy(y) _ Foy(y) = Pry(y) _ Fay(y) = Foyr(y) _ =3

§y Fo(y) §yFi(y) §y F3(y) Y

Therefor, the conditions given in Coroll? .3 hold. Hence, an integrating factor in tergis of
of (3.1)exists and is given by(y’ By multiplying@a) by 1«(/) = (/) °, we get

(3.2) y”’+2y(y) 3y”—(y)‘y+1=0

For this equation Fy(t,y, ', y") = 1, F(t, 4,5, 4") = 2y (y N Rty y) = ()7
andFo(t Y, y y”) = 1. Clearly,a nky = 0F3 =0, 0, //F1 =0 Fg =0, 0 //F2 = 8 Fy =
0,0, Fy = OFy = 0, 0y Fy = 0,F, = 2(y)?, and 8yF0 = atFl = 0. Hence, it is exact
differential equation. Its first integral is given by

1

t

(3.3) \If(t,y,y’,y’v:/df—( ) /d£+2yo/ £3d5+/ d = c.
to Yo ?Jo

More precisely,

(3.4) Uty y )=y — W) Py+t=c
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Example 3.2. Consider the third order linear differential equation

(3.5) p2(t)y" + ap2(t)y” + pr()y + po(t)y = h(t), pa(t) # 0,

whereP; (t) and p,(t) are differentiable functions, ang)(¢) and i(t) are continuous function

on some open interval C R. Assume thap,(¢)p)(t) — ph(t)p1(t) = po(t)p2(t). Then the
above equation satisfies the conditions in Corollary 3.1. Hence, it admits an integrating factor
u(t) = I%(t) In fact, if we multiply Eq(3.5) by u(t) = ng(t) then we get

" " pl(t) / po(t) o h(t)
S nY T T ne)

/
From the condition. (£)p)(t) — py(t)p1(t) = po(t)p2(t), we have(ﬁ; 2) — 2. Hence, the
above equation becomes

prear e (20)y 4 (2OY, O,

pa(t) pa(t) pal(t)

This equation can be written as

d pi(t) ] _ h(®)
ﬁp_%y+(m@>4_pﬂy
Hence, the first integral of Eq3.5)is given by
" / pl(t)> o ! h(s) c
yorer (pz(t) Y _/ pa(s)ds "

4. INTEGRATING FACTORS OF THE FORMS p(a(t)5(y)), u(a(t)y(y)), u(a(t)d(y”)),
1By (W), n(B(y)o(y")) AND p((y)o(y"))

In this section, we give conditions so that an integrating factor of the forta$t)3(y)),

() (y), mle(®)o(y”)), n(Bwy)v(y)), n(B(y)d(y”)) andu(~(y')o(y")) for equation[(L..L)

exists. As a result of Theorgm 2.1, we have the following corollaries:

Corollary 4.1. Lety = (¢,y,v',y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating factet¢) = u(a(t)5(y)), wherea(t) and 5(y)) are
differentiable functions; if the following two conditions hold:
a) ng,,( ) = F3,(y), and
b) Fourn(y)—Fae(y)  For(0)—Fau(y)  Fiy(y)—Foyly)  Frn(y)—Fsy(y)  Fi(y)—Foy(y)
£ F3(y) - &P (y) o &y F2(y) - &, F3(y) T g Fo(y) =& Fi(y)!
they are functions ig := £(a(t)5(y)).

Moreover, the integrating factor is given by

o550

Corollary 4.2. Lety = (t,y,v,y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating factp({) = u(«a(t)vy(y')) for some differentiable
functionsa(t) and~(y/'); if the two conditions hold:

a) Fuy(y) = Fy(y),

and

and
b) Four (¥)—F3¢(y) _ Fou(y)—Fuely) _ FPoy(y)—Fiy(y) _ o (y) _ Pa(y)-Fou(y) and
£ I53(y) B & (y) o Ey/Fl(}’) - fy/FB(Y)_ng/(Y) - fy/FO(Y) &Fa(y)”

they are functions ig := «a(t)y(y').
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Moreover, the integrating factor is given by

o[ 5550

Corollary 4.3. Lety = (¢,y,v',y”), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating factaf¢) = u(«a(t)d(y”)) for some differentiable
functiond(y”); if the following two conditions hold:

a) Fiy(y) = Fay(y),

and
b) Fo ¥)=Far(y) _ Fou(y)—Fuly) _ Foy(y)—Fin(y) _ Foun(y)—Fs(y) _ Fs(y)—Fo,n(y)

£k (y) - §cF1(y) o Ey Fi(y) B Eyn Fa(y) T G Fo(y) =& Fs
they are functions ig := «(t)d(y").

Moreover, the integrating factor is given by

o255

Corollary 4.4. Lety = (t,y,v',y"), and assume that Equatidf.T)is none exact differential
equation. Then it admits an integrating faciot¢) = p(5(y)y(v')), wheres(y) and~(y') are
differentiable functions; if the following two conditions hold:
a) Fs(y) = Fy,r and
b) For(y)—Fo, (v) _ F1¢(y)—Foy(y) _ Fyyn (y)—Fay(y) _ Foyn (y)—F3,/(y) _ Fiy (y)—Fay(y)
&y Fo(y) &y Fo(y) &, F3(y) Ey () §yF2(y)—€, F1(y)
they are functions i := G(y)v(v/).

Moreover, the integrating factor is given by

10— [ B0,

Corollary 4.5. Lety = (¢,y,v',y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating factet¢) = u(3(y)d(y")), wheres(y) andd(y”) are
differentiable functions; if the following two conditions hold:
a) th(y> = Foy/(y), and
b) P =For(¥) _ FPu)-Fo,(v) _ Fiy®M=Fy) _ Foy O =For(y) _  Fiypr(y)-Fay(y)
&y Fo(y) &y Fo(y) &y F2(y) §yrFa(y) &y Fa(y)—€,n Fi(y)
they are functions i := 3(y)o(y").

Moreover, the integrating factor is given by

0o [0

Corollary 4.6. Lety = (¢,y,v',y"), and assume that Equatidf.T)is none exact differential
equation. Then it admits an integrating facio¢) = u(v(y')o(y")), wherey(y') andd(y”) are
differentiable functions; if the following two conditions hold:
a) Fu(y) = Foy(y), and
b) Fse(0)—Foun(¥) _ Fa¥)=Foy(v) _ Fry(y)=Fiy(y) _ Fsy)—Fryn(y) _ By (y)=Fy(y)
§yFo(y) &y Foly) §yI(y) &y Fi(y) £y I3(y) =€, Fa(y)
they are functions ig = v(v/)d(y").

Moreover, the integrating factor is given by

P )

and

and

and

and
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5. INTEGRATING FACTORS OF THE FORMS u(a(t)5(y)y(v')), n(a(t)5(y)o(y")),
p(e(t)y(y)o(y")) AND p(B(y)y(y)o(y"))

In this section, we give conditions so that an integrating factor of the faim& ) 5(v)v(v/')),

pu(e(t)B(y)o(y")), pla)y(y)o(y")) and u(B(y)v(y')é(y")) for equation [(1]1) exists. As a
result of Theorer 2|1, we have the following corollaries:

Corollary 5.1. Lety = (¢,y,v',y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating facio¢) = w(&(t, v, y')) = u (a(t)B(y)v(y')) where
a(t), B(y), and~(y') are differentiable functions; if

Foyn (y) — Fal(y) _ Fiyn (y) — FSy(Y) _ Foyn (y) — Fzy (y) _ Fouly) — Foy (y) _
§Fs(y) £, F3(y) §yFs(y) EyFo(y) — & Fu(y)
Fuly) —Foyly)  — Fiy(y) — Fay(y)

§,Fo(y) — &F1(y) §,F(y) — &, Fi(y)

and they are functions i6 := «(t)3(y)y(y'). Moreover, the integrating factor is given by the

formula
Foyr(y) — Fauly)
o) = exp{ [ P e,

Corollary 5.2. Lety = (¢,y,v',y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating faciof¢) = u(a(t)5(y)d(y”)) wherea(t), 5(y), and
d(y") are differentiable functions; if

FOy’ (Y) — FQt(Y) _ F3y’ (y> — F2y” (Y) _ Fly’ (Y) - F3y(Y) _ Fly” (Y) B F3y(Y) _
& Fa(y) §yrFa(y) &, F3(y) & F3(y) = & Fily)
Fy(y) —For(y)  _ Fuly) — Foy(y)

EpFoly) —&Fs(y)  &F(y) —&Ri(y)
and they are functions i6 = «(t)5(y)0(y"). Moreover, the integrating factor is given by
Fo, — Fy
e = [ L e}

Corollary 5.3. Lety = (¢,y,v/,y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating factof) = p(a(t)y(y")d(y")) wherea(t), v(v'), and
d(y") are differentiable functions; if

FOy(Y) B Flt(Y) _ FQy(Y) - Fly’ (Y) _ F3y(Y) - Fly” (Y) FSt(y) - FOy” (Y) _
§Fi(y) §yFi(y) EpPily)  Eploly) — &, F5(y)
F2t (Y) - FOy’ <Y> o F2y“ <Y) - FBy’ (y)

EoFo(y) —&F(y) &y Fsly) — & Pa(y)
and they are functions i& = «(t)y(y')o(y"). Moreover, the integrating factor is given by
oy ] [ )~ Fuly) }
w0 = s { [ P e}

Corollary 5.4. Lety = (t,y,v,y"), and assume that Equatidf.T) is none exact differential
equation. Then it admits an integrating factets) = n(5(y)v(y')d(y")), wheres(y), v(v')
andé(y”) are differentiable functions; if
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Fy(y) — Fow()’) _ Fou(y) — FOy’(Y) _ Fu(y) — FOy(Y) _ F1y/()’) — F2y(Y) _
§Fo(y) £, F0(y) §,Fo(y) §,F(y) — &, Fi(y)
Fly”(Y) - F3y(Y> o F2y” (Y> - F3y’ (Y)

§F(y) =& Fily) & Fs(y) — & Fa(y)
and they are functions i := 5(y)v(y')d(y"). Moreover, the integrating factor is given by

PRy )

6. CONCLUDING REMARKS

In this paper, we investigated the existence of integrating factors of the following class of
third order differential equations:

6.1)  BEyy Yy W+ Bty y v )y + By YLy )y + Bty yT) = 0.

Particularly, we proved some results related to the existence of integrating factors of (6.1). We
also presented some illustrative examples. We remark that these results not only useful for
finding the integrating factors of (6.1) analytically but also computationally. In fact, we can
check the validity of the conditions in these results by using the symbolic toolboxes in different
mathematical softwares, e.g., MAPLE and MATLAB softwares. Also, by using these symbolic
toolboxes, we can find an integrating factor[of [6.1) using the explicit forms of the integrating
factor given in our results. Moreover, by using the same argument in the proof of ThHeotem 2.1,
we can derive an integrating factor pf(6.1) in termg ef a(t) + 3(y) +v(y/') + 5(y"), where

a(t), B(t), y(t) andd(t) are differentiable functions.
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