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INEQUALITIES FOR DISCRETE--DIVERGENCE MEASURES 1

1. INTRODUCTION

In this introductory chapter we present the definition and some fundamental resufts for
divergence measure. Certain examples that are useful in various applications including mathe-
matical statistics, information theory and signal processing are provided as well.

Given a convex functiory : R, — R, the f-divergence functionalor f-divergence
measure

(1.1) I (p,q) = Zqif (g)

was introduced by Csiszar i29], [23] as a generalized measure of information, a “distance
function” on the set of probability distributiori¥’.

The restriction to discrete distributions is only for convenience, similar results hold for more
general distributions.

The definition [(1.]L) can be extended for nonconvex function, however in this case the posi-
tivity property of /¢ (p, ¢) is not always assured.

As in Csiszar 23], we interpret the following, otherwise undefined expressions, as indi-
cated:

F0)= tim (1), Of (g) o,

t—0+
or ()= i £ () =epm 12 0o

The immediately following results were essentially given by Csiszar and Ka2agr [

THEOREM 1.1 (Csiszar & Korner, 19812F]). If f : R, — R is convex, thed; (p, q) is
jointly convex inp andg.

The following lower bound for thg-divergence functional also holds.

THEOREM 1.2 (Csiszar & Korner, 19812f]). Let f : R, — R, be convex, then for every
p,q € R, we have the inequality:

- D i1 Pi
1.2) Iy(pq) > ) aif ( > :
d ZZI Zi:1 qi
If f is strictly convex, equality holds i (1.2) iff
(1.3) pr _ P2 _  _Pn
q1 q2 qn
COROLLARY 1.3. Letf : R, — R be convex and normalized, i.e.,
(1.4) f(1)=0,

then, for anyp, ¢ € R’} with

(1.5) Zpi = Z di,
=1 =1
we have the inequality,

(1.6) Iy (p,q) > 0.
If 1 is strictly convex, equality holds if (1.6) iff = ¢; forall i € {1,...,n}.
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In particular, ifp, ¢ are probability vectors, thefi (1.5) is assured. Coroflary 1.3 then shows
that, for strictly convex and normalize: R, — R,

a.7) It (p,q) >0 forallp,qge P
The equality holds i (1]7) ifp = q.

These are “distance properties”, howevkr,is not a metric since it violates the triangle
inequality, and is asymmetric, i.e, for genepad € R, I; (p,q) # I (¢, D).

2. SOME EXAMPLES

In the examples below we obtain, for suitable choices of the kefnebme of the best
known distance functiong; used in mathematical statistic83 — [87], information theory
[12], [119 and signal processin@$§], [98].

ExAMPLE 2.1. (Kullback-Leibler) For
(2.1) f(t):=tlogt, t >0

the f-divergence is

(2.2) Iy (p,q) = KL (p,q szlog(pl)

called the Kullback-Leibler distand®4]-[97].

ExXAmMPLE 2.2. (Hellinger) Let

(2.3) f(t)——(1—ﬂ)2,t>o.

ThenI; gives the Hellinger distandd 0q

n

(2.4) Iy 0) = 1 (.0) = 5 D (i — V)

=1

which is symmetric.

EXAMPLE 2.3. (Renyi) Fora > 1, let

(2.5) F(t) =t t>0.
Then
(2.6) I;(p,q) = Da (p.q) = Zp?qzl Y

which is then-order entropy[117].

EXAMPLE 2.4. (2-distance) Let

(2.7) f)y=0t—-1>% t>0.

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA
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Then
B _ - (pi_Qi)2
(2.8) Iy (p,q) = Dyz (p,a) = ) T
i=1 ¢
no,2

i=1 1t

n 2 2
=y Pt itp =0,
im0
is thex?-distance betweepandq, whereP,, = >  p; and@, = >_" | ¢
Finally, we have

ExAamPLE 2.5. (Variation distance). Lef (¢) = |t — 1|, t > 0. The corresponding-
divergence, called the variation distance, is symmetric,

Vpa) =) Ipi—al
=1

For other examples of divergence measures, see the [&dhby[J. N. Kapur, where further
references are given.
For other examples of divergence measures and further reference®gjsee |
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CHAPTER 1

Inequalities for f-Divergence

In this chapter we present some Jensen type inequalities with emphasis on some reverses
and apply them for the general case fotlivergence measure. We make use of Gruss type
inequalities to provide simpler upper bounds and apply the general results for some particular
divergence measures of interest.

1. JENSEN'STYPE INEQUALITIES
We start with the following general result:
THEOREM 1.1 (Dragomir, 200343)). Let f : R, — R be differentiable convex, then for

all p,q € R%,
2

(L1) memfawsumw—%ﬂnsucgﬁ—M@m,

whereP, : sz >0,Q, = 2 ¢; > 0andf’ : (0,00) — Ris the derivative of.
If fis strlctly convex ang;, g; > 0 (i =1,...,n), then equality holds irj (1]1) iff = ¢.

PrRooOF We follow the proof inlf3].
As f is differentiable convex o ., then we have the inequality,

(1.2) fWly—=)=fy)—f)=f(2) -2
forallz,y € R,.
Choosey = £ andx = 1in ), to obtain,

o3 (B ()2 (E)rwzrn(3)

foralli e {1,...,n}.
Now, if we multiply (1.3) byg; > 0 (i = 1,...,n) and sum ovef from 1 to n, we deduce,

& Pi

> - f (2
i=1 di

)zhmﬁ—@szfﬂﬂﬂ—@J

and as

n 2

Di p
i — i =1y | — — Iy (p,q)
;(p a) ' (qz) f (q ) 7 (0, )
the inequality in[(1.]L) is obtained.
The case of equality holds in (1.2) for a strictly convex mapping # y and so the equality

holds in ) iff2 = 1foralli € {1,...,n}, and the theorem is proved.

REMARK 1.1. In the above theorem, if the differentiability condition is dropped, we can
choose instead of’ (z), any numbet = I (z) € [f' (z), f} (z)] and the inequality is still
valid. This follows by the fact that for the convex mappifigR, — R,

L@ (z—y)>f@)—fy)>Ly)(r—y), z,y€(0,00);
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wherel, (y) € [f' (y). f} ()] andly (x) € [f/ (2), f} ()]
The following corollary is a natural consequence of the above theorem.

COROLLARY 1.2 (Dragomir, 200343)). fLet f : R, — R, be convex and normalized. If
f (1) (P, — @) > 0, then we have the positivity inequality,

2

(L.4) 0< 1, (pa) < Iy (%p> ().

The equality holds irf (1}4) for a strictly convex mappihif p = ¢.

THEOREM 1.3 (Dragomir, 200343]). Assume thaf is differentiable convex of, co). If
pY), ¢ (j = 1,2) are probability distributions, then for alk € [0, 1],

(1.5) 0 <Ay (P, ¢W) + (1 =N I (p?, 4" ))
— I (W + (1= ¢, AP + (1= 2)¢®)
UG

b, D
n (ORS¢

SUEDS 4 4

(1) (2)
f pz _ f/ pz_ 7
i=1 )‘qi + (1= A) qi(2) qi(l) qi(2)

wheref’ is the derivative off.

ProoOF We follow the proof of #3].

Using (1.2),
(L.6) ; M+ 1 =0p7 Y (a1 =0p? p
M+ (1= g )\ + 1= 0P g
s (el a=py
T\ (=g a/
Lo (p0) (e a=Np gl
S\ =N g
and
w7 A+ =Np7 (e =N
M+ (1 =0g ) \ A+ (1 =0 g g

W+ =0pP\ (P
f(M +(1—-X) g g ¢\”

. pf W+ a=np? pl?
B ¢? ) \ M+ (1-Ng?  ¢?

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA
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Multiplying (| .) by/\qz , .) by
18 Apz =097 [ (A =N p
(1.8) Z f @) 4 6) ©) 1)
)\qz +(1=Ng Ag +(1=2)g, 4;
)

L)o@ w410 p?
+1-Ng ) @ ®
A+ (1 =N g q;

> I (Ap™ + (1= A) p@, AgW + (1= N) ¢?)
_ )\[f( M 41 ))

(1) g1 p(l)
A T
q;
2 1 2 2
- N p PP\ (2 + @ =0p” P '
C\e? ) NP+ - 0 g
However,
oD (Apgl) + (1 — )\)pz@ P§1)>

(13 g? w4+ (1 =Np? p?
T =A)g ) @ @
g+ (1= A) g 4

—

1-XNg 2 and adding gives:-

(
A+ (L= N p” p
) (2) (1)

® @ O @
Y p! Y p!
MNP Pl -] By P
¢ ¢® ¢ ¢?

+
gt + (1= ) g A+ (1= N g

)

which shows that the first term ip (1.8) is zero.

In addition,

o @

" pl

AI=XN| " b

A (=Y p” a’ ¢
A+ (1-0g® ¢ DY BV

and

o @

Y pl

MNI—N) | P P
¢ ¢

(-2 o il R A - i
g - g

and so the second term [n (IL.4) is,

)

n (ORS¢ (1) (2)
q; q; P; D;
_)\ (1 o )\) f/ 7 _ f/ (3 7
Zm At + (1= X) g [ g ¢\”

which proves the theorens.

REMARK 1.2. The firstinequality i (1]5) is actually the joint convexity property of-, -)
which has been proven here in a different manner from thi&éh [

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA
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We have the following reverse of Jensen’s discrete inequality established in 1952 lny [
Dragomir and lonescu.

LEMMA 1.4 (Dragomi[ & lonescu, 19946p)). Letf : I C R — R be a differentiable con-
vex mapping od. If z; € I, the interior ofI, ¢; > Owith7,, :==>"" ¢, >0 (i=1,...,n),
then we have the inequality,

1 < 1 <
(1.9) 0< T ;tzf (zi) = f <ﬁ ;tz%)
< iitw‘fl () — iitz . iit.f’ (x;);
— Tn — (Al 2 1 Tn — 1M Tn — (2 1)

wheref’ : I — R is the derivative off on /.
If ¢, > 0 (i=1,...,n) and the mapping is strictly convex or/, then the case of equality
holds in [1.9) iffx; = 2o = - - - = .

PROOF For the sake of completeness, we provide here a short proof.
As f: I — Ris convex on/, then we have,

(1.10) f@)=fy)=fy@—y) foralzyel
In (1.1Q), choose = - Ztifm e I,y=u;, j=1,....,ntoobtain,

(1.11) ( Ztml>— (z;) > ' g;j< Zmz_ )

forallj € {1,...,n}.
Multiplying (I.11) by¢; > 0 and summing ovey from 0 to n, gives

(1.12) zn:tj f< Zm)— x]]

A simple calculation shows that,

th [f <Tinztz$z) — f (%))

and
thf/ (ZL']) (Tiztzl'z —$j> = Tiztzl'zztlf, (Zlﬁ'l Zt ZBZ z
j=1 "oi=1 " =1 i=1

and then, by{(1.72),

f(%ztle>—thf(xz)z%ztleztzf’( Ztﬂﬁz ;).
"oi=1 i=1 "oi=1 i=1

Dividing by 7,, > 0, we obtain the second inequality [n (IL.9).
If fis strictly convex, then the equality holds jn (1].10):ff= y. Using this and an obvious
argument, the equality holds in (1.9)iff = --- = z,,. n

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA
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REMARK 1.3. If, in the above lemma we drop the differentiability condition, and choose,
instead off’ (;) , any numbet = [ (z;) € [f" (z;), f} (x;)], the inequality still remains valid.
This follows by virtue of the fact that for a convex mappipg R, — R, we have,

f@)=fy) >y (x—y) forz,yeR,,
wherel (y) € [~ (y), [} ()]

REMARK 1.4. For an extension of this theorem to convex mappings of several variables
see Q] by Dragomir and Goh where further applications in Information Theory for Shannon’s
Entropy, Mutual Information, Conditional Entropy, etc. are given. An integral version of this
result can be found iriZd] by Dragomir and Goh where further applications for the continuous
case of Shannon’s Entropy have been given. Extensions of the above results for convex map-
pings defined on convex sets in linear spaces, and particularly in normed spaces, can be found
in the Ph.D. dissertatioilDJ by M. Mati¢ where other applications in Information Theory for
Shannon’s Entropy have been considered.

The following reverse inequality for th&-divergence also holdg§].

THEOREM 1.5 (Dragomir, 200343]). Let f, p andq be as in Theorern 1.1, then we have
the inequality:

P, P’ P,
where@,, == > ¢ > 0, P, :== > p; > 0. If f is strictly convex, ang;, ¢; > 0,
(i =1,...,n), then the equality holds i3) = =t

PROOE In Lemm choos¢ = £, t; := ¢; andz; = 2 to obtain,

I (e _ (B
OSQanzf(%) f(Qn)

=1
1 ¢ p\ 1 ¢ 1 ¢ pi
< = pi]’(_)__ Dit T~ q@'['<—)7
Qn ; d qi Qn 22:1: Qn ; d qi
which is equivalent tq (1.13). The case of equality is obviqus.
The corollary below follows as a natural consequence.

COROLLARY 1.6. Let f : R, — R be differentiable convex and normalized. For any
p,q € R} with P, = Q,,, we have then the reverse of the positivity inequdity| (1.7),

2

p
(1.14) 0<1Is(p,q) <Ip (E,p) — Iy (p,q)

The equality holds irf (1.14) for a strictly convex mappjhidf p = ¢.

2. APPLICATIONS FOR SOME PARTICULAR f-DIVERGENCES

Consider the convex functiofi(t) = —logt, t > 0. For this function we have th¢-
divergence,

(2.1) Iy (p,q) = gqi {— log (2—” = gqi log (Z—) = KL(q,p)-

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA
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PROPOSITION2.1. Letp, ¢ € R", then,

n 2
(2.2) Qu—P.<KL(g.p) <Y % Q..

i=1 "
The case of equality holds jif= q.
PROOF. Sincef (t) = —logt, thenf’ (¢t) = —1,t > 0. We have,

Iy (%2719) = ipz - (_2)1 = —Qn,
2

and then, from[(1]1), we obtain,
n_o2
—(Pa=Qu) SKL(q.p) < —Qu+ Y. %
i=1 **

which is the desired inequality (2.2).
The case of equality is obvious, taking into account thaig is a strictly convex mapping
on (0,00). B

The following result for the Kullback-Leibler distance also holds.

PROPOSITION2.2. Letp, ¢ € R", then,
2
(2.3) P,—Qn<KL(p,q) <P,—Qn+KL(q,p) — KL (p,%)
The case of equality holds jif= q.

PROOF As f (t) = tlog(t), thenf’ (t) = logt + 1. We have, then,
If (p,Q) =KL (p7Q);

2 2 2
p p p
Iy (?71)) = Ilog(~)+l (g,p) =P, + ]log(~) (E’p) .

Sincel_i. (p,q) = KL (q,p) (see[2.]L)), then,
2 2
b b
Tioe(. —,p) =KL <p,—>.
log(-) (q q

[f/ (pa Q) = [log(-)+1 (p7 Q) = Qn + Ilog(-) (p> q)
=Qn— KL(q,p)

and so, by[(1]1), we can state that,

In addition,

2
p
P,—Qn<KL(p,q) <P, —Q,— KL (p,;) Q.+ KL (q,p)

and the inequality (2]3) is obtained.
The case of equality holds from the fact that the mapgfirit) = ¢logt is strictly convex
on(0,00). B

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA
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Itis known that Rényi’s entropy is actually ttfedivergence for the convex mappiridt) =
t* a>1,t>0).

PROPOSITION2.3. Letp, ¢ € R}, then,

24  a(Pi=Qu) < Dalpa) = Qu<a | Dalpa) = Da (a5 07|
The case of equality holds jif= q.
PROOF. Sincef (t) = t*, thenf’ (t) = at* L.

We have )
< ) Z)J (w) ]
—oYn () o _aqu "1 = aDa (p,)
and h
Iy (p,q Zqz[ ( i)‘”]
_41§:;ﬂ ‘¢ =a (q%f,%)
Using (1.1),

@U%—@JSDA@@—QnSaPL@AyJ%<5£ﬁ)]

p
and [(2.4) is proved.
The case of equality holds since the mappjhg) = t is strictly convex on(0, co) for

a>1.1
PROPOSITION2.4. Letp, ¢ € R}, then,
L[ (V)
qi :
Pi 4qi
The equality holds iff = ¢.
PROOF As f(t) = 1 (Vi— 1)2, we havef' (t) = ; — 5 and f" (1) =

(t € (0,00)) which shows thaf is indeed strictly convex o("[) )
We also have,

(25) 0< 1 (p0) < 3 [P~ Qul +

NI
S
w

Is (p,q) = b* (p.q),

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA
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and asf’ (1) = 0 and f (1) = 0, then, by [(1.1) applied fof as above, we deduce (R.5). The
case of equality is obvious by the strict convexityfofy

ConsidemBhattacharyya’s distancesee for exampleds)),
= Z VPidi,
=1

wherep, ¢ € RY.
We know that for the convex mappingt) =

z%[

PROPOSITION2.5. Letp, ¢ € R}, then,

26) 3@ P)<Qu-Blng Zq(\/gi—\/gi)

The case of equality holds jif= q.

PROOFR As f (1) = —Vt,t > 0, thenf’ (t) = —33- and f" (t) =
shows thatf (-) is strictly convex on(0, co). We also have,

2 n i
p 1 1 1
i i=1
qiPi

4ﬁ,t > 0, which also

i=1

If’ b, q :__ZQZ pz :__Z [

and asf’ (1) = —1, f (1) = —1, then by |(1.] .) applied for the mappirfgas defined above, we
deduce[(2]6).

The case of equality is obvious by the strict convexityf ol

We continue now with some particular inequalities which may be obtained from Theorem
[L5.

PROPOSITION2.6. Letp, ¢ € R}, then,

Qn) 1 = q2 2
2.7 0< KL (g, o 1o <— (PSS L@
(2.7) _(qp)Qg( o ZlQ
'2
sz (n-2).
withequalityiﬁ%:---:{;—z.

PROOF. If f (t) = —logt, thenf’ (t) = —1, ¢ > 0. We have,

2 n 1
£ g«
i=1 ol
I (oo qu [ ] z%
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and from [1.1B),
P,
0<KL(qp)+inog(Q )
Zqz B —~4¢
pl n i=1 (] " ’
ie.,

0<KL(q,p) — Qnlog (%) < <

On the other hand, we observe that,

- ZW’J (q_z _ _J)

Z]l 2]1

1P OULEE SRS 9

i,7=1 2,7=1 2,7=1

2

LS (520 )
Pj , 2
pip; D

Z

=P, - q_i — Qi
i=1 £
and the inequality] (2]7) is proved.
The case of equality follows by the strict convexity of the mappinigg. 1

COROLLARY 2.7. If P, = Q,, in (2.7),

Zp’p] (_ N py">2’

1,7=1 Pi

(2.8) 0< KL(q,p) Zq’ bi

with equality iffp = q.
REMARK 2.1. We know that thq?-distance between andq is

D,z (p,q) = Z (pl —a)’ (Z p, if P,= Qn> .
As :

n 2 no2 2
4 —Pi 9% —Pi ;
D, (q,p)zz—( ) _ (Z if Pn:Qn),
-1 P - P
then [2.8) can be rewritten as,

(2.9) 0< KL(q,p) < Dy2(q,p)-
COROLLARY 2.8. Letp andq be two probability distributions, then,
(2.10) 0 < KL(¢.p) < Dy (q,p),

with equality iffp = q.
REMARK 2.2. For a direct proof of (2.10) se&d] where further bounds are also given.

PROPOSITION2.9. Letp, ¢ € R}, then,

—a (e 2—a 1
(211) 0 S Da (p7Q) _PTLaQ717, S Q_ QnDa (paq) _PnDa <(] « 75):| )

n

i ity iffel — ... — Pn
with equality |ffq1 ==
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PROOF If f (t) =t thenf’ (t) = at®™L.
We have,

e (fa)-So ()]

\ a-1
~a3on (%) =a X - an
i=1 ‘

and

(2.13) Iy (p.g qul () ] Zpa%“

Using [T-T3),

P \" P, 2o
0 S Da (p7Q) - Qn (Q_> S OéDa (p7Q> _aQ_Da <q « 71)

=, [0 0= R0 (47 )

and the inequality (2.11) is obtained.
The case of equality follows by the fact that the mappfn@) = t* (o > 1, ¢t > 0) is
strictly convex on(0, co) . B

COROLLARY 2.10.If P, = Q,, in (2.17),

(214) OSDa<p7Q)_Pn§04|:Da(p7q)_Da <q2aa7%):|a
with equality iffp = q.
In particular, if p, ¢ are probability distributions, then,

2—a 1
(215) OSDa(p,Q)_lg&[Da(p,Q)_Da (qaa§>:| )

with equality iffp = g.
PROPOSITION2.11. Letp, ¢ € R, then,

1 di
(2.16) 0<\OnP,— B(pq) < = % gl
() < 3 Qn; il = B.a)
with equality ifff = ... = £z,
PROOF. If f (t) = —v/, thenf’ (t) = —3 - % ¢ > 0. It follows, then, that,
P’ - 1 — 1
b (r) =2m (3 = =52 _Vapi =589,
=1 i=1
CIzpz

Iy (p,q Zqz ——'\/; =——Zq1\/>
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and, from [(1.1B),

0<—B(p.0) + Q[ 5 < 5B 00 %Q—Z N
-1 l

which is equivalent tq (2.16).
The case of equality follows by the strict convexity of the mapping

REMARK 2.3. The second inequality in (2]16) is equivalent to

/ 1 Pn - [ 4i
n i=1 )
with equality iff% == g—n
COROLLARY 2.12.If P, = @, in @) then,
[ 43

with equality iffp = q.
Another important divergence measure in Information Theory is/tkvergencedefined

by, §
J(p.q) =Y (pi— q;)log (2’)

i=1 !
Note that the mapping (¢) :== (t — 1) Int, t € (0, 00), has the derivatives
t + 1

f’(t)zlnt—%—l—l, t>0, f"(t)=

which shows thaf is convex on(0, 1) and

- )n(2) -0

PROPOSITION2.13. Letp, ¢ € R, then,

P,
(2.18) 0< 7 (na) - (P =) ()
P, qZ
< KL (p, >+—KLqp+—Z——Qn
n n’Ll ’L
withequalityiﬁ%:---:%.

PrROOE We have

2 n 2
p P; 4;Di
Iy —,p)zgpi[ln( Z)— —i—l}
! (q i1 qiPi p;

:Zpiln(pz> Qu+ Po=KL(p,q) — Qu+ Pa,

i
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and then, from[(1.13), we can state that,

<o )n(2)

P, N
SKL(p,q)—Qn+Pn—Q—[—KL(q,p)—§ ;+Qn
n i=1 £t
P, <~ 2
—KLp,q)+ P+ 23" % _p —q,
Qn i=1 Di

and the inequality (2.18) is obtainesl.

3. FURTHER BOUNDS FOR THE CASE WHEN P, = ),

The following inequality of the Gruss type is known in the literature as the Biernacki, Pidek
and Ryll-Nardzewski inequality (see for exampld.(}).

LeEmmA 3.1 (Biernacki, Pidek & Ryll-Nardzewski)Leta;, b; (i = 1,...,n) be real num-
bers such that

(3.1) a<a; <A b<b<Bforallie{l,...,n},
then,

n n n

i=1 i=1 i=1

where[z| denotes the integer part af
The following inequality holds43] as a consequence.

THEOREM 3.2 (Dragomir, 200343]). Let f : R, — R, be differentiable convex. If
p,q € RY are such that®, = @,, and

(3.4) 0<r<P <R<coo, i=1,.. . n,

4i

then we have the inequality,

@5 0<npa-Qr<[3] (11 [5]) or-m e @- o).

ProoF From [1.]1),

(36) 0< If (p> < Z - QZ <ql) .
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Applying (3.2),
(3.7) %i(pz _Qi)f/ (%) - %i(pz - Qi) j fl (%)‘
< [ (1- 2 [3]) or-mu @ - e,

as the mapping’ is monotonic nondecreasing, and then,
frir)<f ( ) f(R) forallie{l,...,n}.
As> " | (pi — ¢;) = 0, we deduce, using (3.6) ard (B.7), the desired result (8.5).

The following inequalities for particular distances are valid.
(1) If p,q € R} are such that the conditiorjs (.3) ahd (3.4) hold, then,

38) o< kL < [3] (1-1 [5]) or-m A2,
and
(3.9) 0<KL(p.g) < |5 (1 - % ED (M —m) {log (R)} .
(2) If p,q are as in[(3]3) and (3.4)x > 1) then,

1™

(3.10) 0< D (p.g) = Qu < |3 (1 - H) (M —m) (R — o1,
(3) If p,q are as in[(3]3) and (3.4),

(3.11) 0 < h2(p, >§§[Z} (1-%[%})(]\4-@%.

(4) Under the above assumptions foandg,

(3.12) 0<Qn— B, )_;m (1—%[%})(1\4—@%.

The following is a Griiss weighted inequality.

LEMMA 3.3. Assume that;, b; (i = 1,...,n) areasin Lemmp3|1. If > 0,7 ¢ =1,
then we have the inequality,

Z Qlal ) Z qlal Z qZ 7

Using this we may prove the following reverse inequality as vés].[

THEOREM 3.4 (Dragomir, 2003/43]). Let f : R, — R, be differentiable convex. If
p,q € R} are such that®, = @,, and

Di

(3.13) —a)(B—1).

(3.14) 0<r<—=<R<oo, i1=1,...,n,
4q;
then we have the inequality,
1 ! !
(3.15) 0<1Is(p,g) = Qnf (1) < 7 (R=r)[f'(R) = f"(r)].
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PrROOF From [1.1),

(3.16) Oélﬂn@—%%fﬂ)SE:@erf<%)

( ) / ( Z) '

frim<f (q) < f'(R) forallie{l,...,n}.

Applying (3.13) fora; = 2 —1,b; = f <§—> we obtain

o(i-)r ()2 G 2w G

(3.17)

)

=) [f"(R) = ' (r)]

il

and as

> <& - 1) 0,
i=1 t
then, by [(3.16) and (3.17) we dedufe (3.16).
The following inequalities for particular distances are valid.
(1) If p,q are such thaP, = @,, and [3.14) holds, then,

(R—r)*

1 <KL <
(3.18) 0<KL(q,p) < R

and
(3.19) 0<KL(gp) < 7 (R—r)hn (g) .
(2) With the same assumptions farg, we have,
(3.20) 0< Da(pg) = Qu< T (R=r) (R =) (a>1);

VB JF

2 Lr-
(3.21) 00 (pg) < g (R —r) =m0

and
VRV
VR

REMARK 3.1. Any other Griss type inequality can be used to provide different bounds for

the difference
A = )
So-ar (%)

(3.22) OSQn—B(p,q)Sé(R—T)

We omit the details.
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4. OTHER BOUNDS VIA DISCRETE GRUSSINEQUALITY

Using Griss’ inequality for weighted means (see Lemima 3.3), we point out the following
reverse of Jensen’s inequality.

LEMMA 4.1. Let f, z;, t; be asin Lemm.4. If there exist real constants\/ € Isuch
thatm < x; < M forall i € {1,...,n}, then we have the inequality:

1 & 1 &
(4.1) 0< T ;tif (w5) — f <T_n ;h%)

1
< 5 (M =m) (f (M) = f"(m)),
wheref’ :i— R is the derivative of.

PROOF In Gruss’ inequality put; := x; andb; := f’ (x;) . As f is convex,f’ is monotonic
nondecreasing and therefofe(m) < b; < f' (M) . Applying the Griss inequality,

% Zn: tivif (v:) — % Zn: tix; - % Zn: tif' (z:)
" oi=1 " i=1 " i=1

< 5 (M =m)(f (M) = f"(m))
and by the inequality (1}9) we dedu¢e (4.i).
REMARK 4.1. Similar results can be obtained using other Griss type inequalities.
The following reverse inequality for the Csisz&divergence hold43].

THEOREM4.2. Let f, p andq be as in Theorein 1.5. If there exist real number® such
that0 < r < ’qi < R<ooforallie{l,...,n},then,

42) 0= 1100~ Quf (7)< FR=DU (R = 1 ()G
PROOF Apply Lemm forf = f, ti=gandz; =2 (i=1,...,n). 1

The following particular inequalities are noted:

43 0SKL(a) - Rog () < T (=) log ()~ log 1)
<P (Bor)
SR

Indeed, if we choos¢ (¢) = tlog ¢ in (4.9), we obtain the Kullback-Leibler divergence. The last
inequality in [4.3) follows by the well known inequality between ge®metric meat (a, b) =

v/ab and thelogarithmic meary. (a,b) := 4= (a,b>0, a #b), i.e.
(4.4) L(a,b) > G (a,b) foralla,b>0, a+#b.

In addition, if in (4.2) we putf (t) = — logt, we deduce that,

02
(4.5) 0 < KL(gp) = @nlog (%) < %,%Tﬂ,

provided that <r <2 < R <ooforalli € {1,...,n}.
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Now, if in (4.2) we choos¢ () = t* (a > 1), t > 0, then we get the following inequality
for the a«—order Renyi entropy,

(4.6) 0< Da(peg) = PPQL" < T+ Qu(R—r) (B —1°7).

provided thah <r <2 < R <ocoforall: € {1 ,n}.
If we apply Theorer@z for the Bhattacharyya distance, we get,

| (R=1) (VE=7)

4.7 0<VP,Q,—B(p,q < < " n,
(4.7) < Q (pa) < ¢ JiE Q
provided thal <r < 2 < R <ooforalli € {1,...,n}.
Finally, if we apply Theorer 4]2 for thé- dlvergence we can obtain the inequality,
@8 0= - (B-@g < -0 (w4 20,
n r 7”

provided that) < r < ZL < R<ooforallie{1,...,n}.

5. FURTHER REVERSE INEQUALITIES

We start with the following result.

THEOREM 5.1 (Dragomir, 200344]). Let f : [0,00) — R be a convex mapping on the
interval [r, R] C [0,00) withr < 1 < R. If p,q € P" andr < B < Rforallie {1,...,n},
then we have the inequality

5.1) I (pa) S o F )+ F(R).
PROOF As f is convex onr, R], we may write that
(5.2) flr+A-t)R)<tf(r)+(1—1t)f(R)
forallt € [0,1].
Chooset = £=2 7 ¢ [r, R]. Thenl — ¢ = (5.) we deduce
(53 f(w)ég:f-f(rH;::,-f(R)

forall z € [r, R],
ie€{l,..,n},toget

R = z. Putin )x: o,

5.4) F(B) st ot

foralli e {1,...,n}.
If we multiply (5.4) byg; > 0, sum over and take into account that

Zpi = ZQZ' =1
i=1 1=1
then by [(5.4) we obtain (5.1p

The following result also holds.
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THEOREMS.2 (Dragomir, 200344]). Let f : [0,00) — R be differentiable convex dn, R]

andp, ¢ be as in Theorein 5.1. Then we have the inequality:

(5.5) 0 fy S e )~ b
SLE%E%XQHKR—lﬂl—m—J&NRW]
gi(}z—m F(R) = f ()],

whereD,: (-, -) is the chi-square divergence.
PROOF Since the mapping is differentiable convex, we can write
(5.6) fu)=f) = f ) (w—v)

forall u,v € (r, R).
Now, assume that, 3 > 0 anda + 3 > 0. Then, by [(5.F), we have

57) () - sz rw (S o)
e EAGIT

and

o () mere(2)
——aiﬁ-f’(b)(b—a)-

Now, if we multiply (5.7) bya and [5.8) by5 and add the obtained results, we get

@01 (SR ) —af @ - 0f ) 25 0= (7 @) - ' 0)

which is equivalent to:

(5.9) 0< @50, (aa - ﬁb)

a+ 0 a+
af / /
< P (S (b) = f(a) (b—a).

Now, if in (5.9) we chooser = R — z, 3 = = — r,a = 1, b = R, then we obtain

(R—x) f(r)+ (& —7) f(R)

If in (), we choose = 2 and then multiply withy, we get
(5.11) (Rg: —pi) f (%Jr (hi=ra) f(B) (g)
-r q;

(Rq; — pz‘) (i —ra) , /
< R-r)q (f' (R) = f'(r))
foralli e {1,...,n}.
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If we sum overi in (5.11) and take into consideration that

Zpi = Z%’ =1,
i=1 i=1

we get
(5.12) (R— 1)f(7’;t(rl —r) f(R) I (p,q)
f'(R) = /(1) <~ (R — i) (pi — i
<! (B))_T());(q p;i(p ai)
However,
Ogi(R%—pi;(pz’—TQi)
:R—ipi](‘y)—TR+7":R+7“—7‘R—1—DX2(]?,Q>
—(R=1)(1=1r) = Dyz (p,q).
As

(R=1)(1-r) <= (R—r)* and D2 (p,q) >0,

N

the last inequality is obvious

The following results also holds.

THEOREM 5.3 (Dragomir, 200344]). Assume that the functiofi: [0,00) — R is twice
differentiable onr, k] and

(5.13) m < f"(t) <M forall t € [r, R].

If the probability distributiong, ¢ € P" satisfy the conditions of Theorém|5.1, then we have the
inequality:

(5.14) Sml(R=1)(1 =) = Do (p,0)]
< O) e (R = 1 (r0)
< %M[R—l)(l—r)—DXZ(p,Q)]-

PROOF Define the functiory,, : [0,00) — R, f,, (t) = f (t) — smt*. Thenf,, is twice
differentiable andf), (t) = f” (t) —m > 0, t € [r, R], which shows thaf,, is convex onr, R].
If we write the inequality[(5]1) for the convex mappifig, we obtain

R—-1

(515) Iffém(-)Z (p, Q) < E |:f (T) -

1 2
émrl—i-

1—7r
R—r

1

{ f(R) - 5mzﬂ .
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However,

If—%m(~)2 (P q)

= I (p,q) — %m [Z v (Zy)

q,

—1+1

1 1
=1Ir(p,q) — 5Dy (p,q) — zm

2
and then, by{(5.15), we can get

R—-1 1—7r
(5.16) m‘f(T)JFR_T‘f(R)_[f(p,Q)
1 1—7r) 1 (R—1) 1 1
S 2o R2. L2 L ) ot
> 2mR 7, + 2mr - szX (p,q) 2m

Nonetheless, the right hand side[of (5.16) is

%m (R—1)(1—7) - Dy (p,q)]

and the first inequality irf (5.14) is obtained.
The second inequality follows by a similar argument applied for the mapfin@d) :=
TMt* — f (t). We omit the detailsn

COROLLARY 5.4 (Dragomir, 200344]). With the assumptions in Theorém|5.3, ana it
0, then

1
(5.17) 0< gml(R=1)(1=r) =Dy (p.q)
R—-1 1—r
< . . — :
< e, fO+ o F(R) — 1 (pq)
PROOF We only have to prove the fact that
(5.18) Dy (p,q) < (R=1)(1—r),

which follows by the fact that (see the proof of Theofen} 5.2)

ogi(Rq"_pi;(p"_m") —(R—1)(L—7)— Dy (p.q).

6. APPLICATIONS FOR PARTICULAR DIVERGENCES

Before we point out some applications of the above results, we would like to recall the
following special means:

3 if o=0
L{(e, B) :{

lng:ﬁm if 3+#a,a,3>0 (logarithmic meaip

and

6 if a=p;
I(a,p) = e
1 (ﬁ) it B+#a, (identric meaj.
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(1) Kullback-Leibler DivergenceConsider the convex mapping: (0,00) — R, f (t) =
tInt. Then

It (p.g) =) piln {ﬂ =D (p,q),
i=1 !

whereD (p, q) is theKullback-Leibler distance.
PROPOSITIONG.1. Letp, ¢ € P" with the property that:

(6.1) r<P <Riforallie{1,..n}.
4q;
Then we have the inequality
G (r,R)

(6.2) D (p,q) Sln](r,R)—m—Fl,

where! (-, -) is the identric meanl[ (-,-) is the logarithmic mean and' (-, -) is the
usual geometric mean.

PROOF. We apply Theorern 51 fof (¢) = ¢t Int to get

1 1—
D(p,q)gg_rrlnr—i- _:;RlnR
7RlnR—rlnr_ R InR—Inr
N R—r " R—r
G?(r, R)
=1In/ 11— —""7
nl(r,R)+ L R)

and the inequality (6]2) is proved.
PROPOSITIONG.2. With the assumptions of Propositijpn 6.1, we have
G? (r, R)

: < - -
(6.3) 0<Inl(r,R) LB +1—D(p,q)
cB-D(A=7)=De(pa)
B L(r,R) ‘
The proof follows by Theorerh 5.2 applied f@r(t) = ¢Int, and taking into ac-
count that
PR -F0) 1

R—r L(r,R)

Using Theorem 5]3, we may be able to improve the inequélity (6.3) as follows.
PROPOSITIONG.3. Letp,q € P satisfy the condition (6/1). Then we have the

inequality:
(6.) S l(R=1)(1 =) = Dy (p.a)
G? (r,R)
<InI(r,R)— W+l — D (p,q)
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PROOF We havef” (t) = 1, ¢ € [r, R] and then

1 1

= < 1 < - .

R_f (t) < = t € r, R
Applying Theoreni 53 foif (¢) = ¢ Int, we obtain[(6.4) s

Now, assume thaf (¢) = — Int, which is a convex mapping as well.

We have
Zqzln [pz} Zqzln[ } D(q,p).

Using Theorem 5]1, we may state the following proposition.

PROPOSITIONG.4. Letp, g € P"with the property thaf (6]1) holds. Then we have
the inequality:

11 1
. D <InIfl - —F 4+ 1.
©5) an<wi(Lg) - ot
ProOOF. Applying the inequality[(5]1) forf () = — Int, we may write that
D (q,p)
< (R—1)(=Inr)+ (1 —r)(—InR)
- R—r
_rlnR—RlnT_lnR—lnr_TR(%lnR—%lnr)_ 1
B R—r R—r R—r L(r,R)
ilnl—LIn 1 11 1
_r r R —InJ(Z. = 1—
e ()

and the inequality (6]5) is proved.
PROPOSITIONG.5. Letp, ¢ be as in Propositiop 6]1. Then

(6.6) 0<In/ (1 ;) — L(iR) +1-D(q,p)

< o (=10 =1) = De ).

The proof follows by Theorern 5.2 applied for the functifiit) = —Int¢, and
taking into account that

'R —f(r) 1 1
R—r "R G2 G?(r,R)’
The inequality[(6.6) can be improved as follows.

PROPOSITIONG.6. Letp, ¢ be as in Propositiop 6]1. Then

(6.7) 5z (B=1)(1—=7) = Dy (p, q)]

11 1
<InlI(==)-— 1-D
<In (T,R) L(T’R)+ (¢.p)

S 272 [(R - 1) (1 — T) - Dx2 (pa q)] :
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The proof is obvious by Theore@.& taking into account tffatt) = tig and
2 < f"(t) < S forallt € [r, R].
(2) Hellinger discrimination. Consider the convex mappinfy : [0,00) — R, f(t) =
1 (WVt- 1)2. Then

1 Di ? 1 ¢
It (p.q) = 52% (,/; - 1) = 52(\/@— V@) =1 (p,q),
i=1 ¢ i=1
whereh? (p, q) is theHellinger discrimination.
PROPOSITIONG.7. With the assumptions of Propositijpn|6.1, we have
(\/ﬁ - 1) (1 —/7)
VR+r
PROOF. We apply Theore.l fof (1) = 1 (Vi — 1)2 to get
h* (p,q)
1 2 1 2
(R-D3r-D*+ -1} (VR-1)

R—r

:%<¢F;1_)£ﬁ—1) [(\/EH) (1=v7)+ (1+v7) (@—1)}

(VR )W (VE-v)  (VE-1) - )

(6.8) h* (p,q) <

<

R—r VE+E
and the inequality (6]8) is proved.

Using Theorem 5]2, we may state the following proposition as well.
PROPOSITIONG.8. With the assumptions of Propositijpn|6.1, we have
(\/E - 1) (1 —/7)
VR + /1
1

R— - T —D2, s
§4(T—R)A(\/F,\/}_%>K 1) (1 —=71) =Dy (p,q)]

whereA (-, -) is the arithmetic mean.

(6.9) 0<

- h’2 (pa q)

The proof is obvious by Theor.2 applied foft) = 1 (vt — 1)2, taking into
account thay’ (1) = 3 — 5.z, and
f'(R)—=f'(r)  VR—r 1

B=r 2WrR(R=1) 2iR (VR+ i)
Finally, by the use of Theorejm 5.3, we may state:
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PROPOSITIONG.9. Assume thap, ¢ € P are as in Propositiof 6]1. Then
1

(6.10) Wi [(B=1)(1=7) =Dy (p,q)]
_(vr-ya-vm o
= \/E-i- \/; b, q

1
SV [(B=1)(1=7) =Dy (p,q)]-
The proof follows by Theore@s applied for the mappihg) = 1 (Vi — 1)2
for which f” (t) = .= and, obviously,
1 . 1
Wi < f"(t) < Vs forallt € [r, R].
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CHAPTER 2

Jensen Type Inequalities for(m, M )-Convex Functions

The concept ofm, M )-convex functions defined on convex subsets in normed linear spaces
is introduced and some inequalities of Jensen'’s type are derived. Applications for norm inequal-
ities andf-divergence measure are provided as well.

1. GENERAL RESULTS IN NORMED SPACES

Let (X, ||-||) be a real or complex normed linear spa€eC X a convex subset ok and
f:C —R,seelB7].

DEFINITION 1.1. Leta, B € R.

(4) The mappingf will be calleda—lower convexonC' if f- - |-]|* is @ convex mapping
onC,
(71) The mappingf will be called—upper convexn C' if g- |]|” — f is a convex mapping
onC,
(74i) The mappingf will be called(«, 3) — convexon C'if it is both «—lower convex and
(G-upper convex o'

Note that if f is («, 5)-convex onC, thena < £.
Indeed, iff is (a, 3) —convex, thenf-$ - 1117 and§ - |I-I> = f are convex, which clearly
implies that the sum
0—«
2

o 2 B 2 . 2
f=g P+ 5P = f = I
is convex, and thef > a.

Taking into account the above, when we talk about(@n3) —convex function, we can
assume without loss of generality that= m < M = §.

The following theorem holds3[7].

THEOREM 1.1 (Dragomir, 200137)). Letf : C C X — R, C be convex onX, z; € C,
pi>0@G=1...,n)withP, :=>"" p; > 0.

(z) If fis a—lower convex orC, then we have the following inequality (far > 0 -
refinement of Jensen’s inequality),

2

a 1 -
(1.1) 5 P2 P,y pillwill* -
n =1

Zpixi
1 « 1 &
anzpif(%)—f Fnzpzxz .
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(73) If fis 5—upper convex o', then we have the following inequality (which is a coun-
terpart of Jensen’s inequality jf is convex),

(1.2) Pi szf (w5) — f (% szwi
" i=1 =1

N——

i Ly

l\DIQ

_2 sz |$z|’ -

(z30) If fis (m, M) —convex or(', then we have the following ‘sandwich’ inequality,

n 2
P [Pnzpz‘ ]| — ]
1 ¢ I
Fn Zpif (i) = f (Fn prz)
i g

M
7'_2 ZPzH%H -

PROOF If g : C C X — R is a convex mapping o€, z; € C, p; > 0 with P, > 0, then,
Jensen’s inequality holds

1 < IR
(1.4) g ( 2 ;:1 pm) <5 ;:1 pig (T;)
(i) Letg(z) = f(z) — § - |||, theng is convex onC' and by ) we get,

which is clearly equwalent t@ 1).

(i7) Leth(z) = & - ||z||* — f («), thenh is convex orC, and by [(1.4), we obtaif (1.2).
(7i7) Follows by(z‘) and(ii).

(1.3)

o] 3

IN

IN

The following corollary for inner product spaces holds.

COROLLARY 1.2 (Dragomir, 200137]). Let (X, (-,-)) be an inner product spacé;|| :=
V{(,), C C X aconvex subsetoN, f: C — R,andz; € C,p; > 0 (i=1,...,n) with
P, > 0.

(i) If fisa—lower convex o, then,

a
(1.5) 5p? Z pipj i — |

N 1<i<i<n
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(73) If fis B—upper convex od’, then,

(1.6) >l (Pi Zpixi>

g 2
< >p2 Z pip; ||z — @™
n 1<i<j<n
(23i) If fis (m, M) —convex orC, then,

2
> o lle—

1<i<j<n

D pif (v) = f <% ZP#&)
o "oi=1

M

2

2
"o > vl — x5

no1<i<j<n

(1.7)

m
2

;S| =

n

IN
—_

IN
[
o

PrOOF. The argument follows by Theorgm 1.1, taking into account that, for inner products,

we have:
2
Z pipj ||z — ;]

1<i<j<n
1 — 1 &
2 2 2
=5 E pipj Nl — z||° = 5 E pip; [|lzill” — 2Re (zi, z;) + [|z;]7]
i,j=1 i,j=1

= % [Zpi || P — 2Re <Zpi:cz-, ijxj> + P ijH?]
=1 i=1 j=1 j=1
n n 2

:PaniniHQ— sz‘xi
i=1 i=1

REMARK 1.1. Results for the case of mappings defined on real intervals have been obtained
by Andrica and Rasa irf].

Furthermore, assume that,

Ar) = max o —
and
6(2) = min |z — ]

The following corollary also holds.

COROLLARY 1.3 (Dragomir, 200137]). Let X, C, f,x;,p; (i =1,...,n) be as in Corol-
lary [1.2.
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(1) If fis a—lower convex orC' with & > 0, then we have the following refinement of
Jensen’s inequality:

(1.8) 0<2 (1 - Lﬁ’?) 5% (z)

(73) If fis convex ang—upper convex o', then,

(19) 0 < o sz xz (%ﬂ Zzlpzxz>

g%(b%&“)ﬁ(@.

(73) If fis (m, M) —convex orC with m > 0, then,

m D i I

§%(1—M)A2(m).

To prove the above corollary we use the following lemma which is also of inherent interest.

LEMMA 1.4 (Dragomir, 200137]). Let (X, (-,-)) be an inner product space and € X,
pi >0 =1,...,n)with P, > 0, then,

2
1 S p? 1 <
) (1 - ==L ) < — E — E T
1 E D
< _ 1 _ =111 2 .
5 ( —Pg )A (x)

PrRoOOFE As above, we have,

2
1 - 2 1 “ 1 “ 2
(1.12) P ;pi llx:||” — 7 ;pm = 2—P7%”z:1pipj |z — x|
1 2
= Z pip; =i — ;™
n 1<i<j<n
Obviously,
1 2
(1.13) 5% ( —2 Pip; < Z pip;j ||lzi — ;]
n 1<i<j<n n 1<7,<]<’n

= > b

n 1<i<j<n
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On the other hand,

N
> b= (ZZ%) = P?
=1

ij=1
and

n

ppi= Y. ppit > pipi+ Y pips

ij=1 1<i<j<n 1<j<i<n i=j=1
=2 E pip; + E ;)
1<i<j<n

from which we obtain,

(1.14) Z pip; = % (Pg — pr) :
i=1

1<i<j<n

Now, using [(1.1R) [(1.74), we get the desired inequality (1.§1).

2. APPLICATIONS FOR f-DIVERGENCE

In this section we apply some of the above results ffativergence and obtain other in-
equalities that are similar, in a sense, to those presented &é®dve [

THEOREMZ2.1 (Dragomir, 200137]). Letf : Ry — Randp, ¢ € R} with P, = Q,, > 0.
(1) If fis a—lower convex oiR,, then,

(2.1) % “Dy2 (p,q) < Iy (p,q) — Quf (1).

(7i) If fis B—upper convex ok, , then,

22) 5 (p0) = Qul (1) 5 D (p.0).
(230) If fis (m, M) —convex orR,, then,
m M
(2.3) 5 D (p:0) < 15 (p,0) = Quf (1) < 5~ Dy (p,9)
whereD,: (p, q) is thex*—distance, i.e.,
n 2 2
bi —4;
Dy (p.g) =) T
i=1 !

PROOF We follow the proof in/B7].
We use Theore@.l inwhich= f,C' =Ry, X =Ry, p; — ¢;, z; = 2. We have,

%n;mf (zi) = f (Pin me)
) g ) e

i=1 i=1 t n

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

32 S. S. IRAGOMIR

and

2
1 n n
Fﬁ P, ;pﬂ? - (;M%)

n

BT P O S VA N DS I PSS e
T Q@ Q";q’<qi> (Z% q‘> @ [Qn;% K

) i
n i=1

1
= o. D (p.q)-
Now, by (1.1){1.B), we obtain the desired resylis|(Z.I)}(a3).
COROLLARY 2.2 (Dragomir, 200137]). Let f : R, — R be normalised, i.e.f (1) = 0,
andp,q € R} with P, = @Q,, > 0.
(7) If fis a—lower convex oiR,, then,

«
(73) If fis S-upper convex ofR ., then,
p
(23i) If fis (m, M) —convex orR,, then,
m M

In practical applications, it is important to have sufficient conditions for the mappsw
that it will be a—lower convex,5—upper convex, ofm, M )-convex on a certain intervdl of
R_’_.

PROPOSITION2.3. Let f : I C R, — R be a differentiable mapping af{/is the interior
of I).

() If there existsy € R such that,
[ (w2) = [ (1)
T2 — I
then f is a—lower convex or.
(77) If there exists? € R such that,

f (@2) = [ (1)
Ty — 2
then f is f—upper convex oi.
(23i) If there existn, M € R such thatn < M and

< J (@2) — [ (21)
To — X1
then f is (m, M) —convex on/.

(2.7) > o forall @y > 21, 29, 71 € 1;

(2.8) < 3 forall x>z, 79, 71 € I;

(2.9) < M forall my > zy, 29, 71 €I,

PROOF. It is well-known that a differentiable mapping : / — R is convex iff ¢ is
monotonic nondecreasing d),l‘l e..q (xg) > ¢ () forall z5 > wl, X1, To el
Applying this criterion to the mapping (z) — $ - 22, § 2?2 — f(x), f(x) —m - %
2

M - % — f (z), we obtain the desired results.
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PROPOSITION2.4. Let f : I C R, — R be a twice differentiable mapping on
() If there existsy € R such that,

(2.10) f'(z)>a forall z e,

then f is a—lower convex or.
(73) If there exists? € R such that,

(2.11) ' (z) < forall z €,

thenf is J—upper convex o.
(2ii) If there existn, M € R such thatn < M and

(2.12) m< f"(x) <M forall z €,
thenf is (m, M) —convex ory.

The proof is obvious by the well-known fact that a twice differentiable mapping — R
is convex iffg” (z) > 0 for all © el.

We omit the details.

In what follows, we apply the previous result to some well-known information measures
which are Csiszaf-divergences for some appropriate choices of the mapfing

3. APPLICATIONS FOR SOME PARTICULAR f-DIVERGENCES

PROPOSITIONS.1. Letp, ¢ € R} with P, = (), > 0. Denoter; := ’;— (1=1,...,n).
(1) Ifr; <R,i=1,...,n,then,

(3.1) KL(q,p) 2 555Dy (p,q) -
(i7) If r; > r >0, then,
(3.2)

(z37) If 0 <m <71 < M < 0, then,

1 1
(3.3) oD (pa) < KL(g,p) < ﬁDXQ . q)-
PROOF As f (t) = —logt, thenf’ (t) = —1, /" (t) = % and ift € [a,b] C (0,00), then
= SI () < 5, t € [a,b]. Using Proposmo N 2|4 and Corollary 2.2, we deduce the desired
results.y

We know that forf (¢) = tlogt,

Iy (p,q) = KL (p,q).

If we apply Corollary 2.P for the mapping(¢) = ¢ log ¢, we can, therefore, state the following
proposition.

PROPOSITION3.2. Letp, ¢ € R} with P, = ), > 0 andr; := o B(i=1,...,n).
(i) fr; <R, (i=1,...,n),then,
1
(3.4) s (p,a) < KL(p,q).
(i) If r; > r >0, then,
1
(3.5) KL(p.q) < 5-Dya (p.q)-
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(tii) FO<m <r;, <M, (i=1,...,n),then,
1
2M
Now, let us consider the Réngi—distance ¢ > 1).

1
(3.6) D2 (p,q) < KL(p,q) < 5D (p,q) -

PROPOSITION3.3. Letp,q € R, P, =@, > 0andr; :== 2, (i=1,...,n).

K3

[}

(1) We have the inequalities,

/

a(a—1)ro—2
A= Dy (p, )

if « €2,00)andr; >r>0, (i=1,...,n),

(37) Da (p7 Q) - Pn Z

o(a—1)R™—2

A=V D (pq)

| if e (1,2)andr; <R (i=1,...,n).
(i7)
( a(a2—1) RaiQDXQ (p7 q)
if a«€[2,00)andr; <R (i=1,...,n),

(38) Doc (p7Q)_Pn S

alelpa=2Dp s (p, q)

| if ae(1,2) andr; > 7 (i=1,...,n).

(13i) f m < r; < M anda € [2,0), then,

ala—1)

(3.9) 5

m*2D,2 (p,q) < Da (p,q) — P,
ala—1)
9

If o € (1,2), then the reverse inequality holds jn (3.9).

< Ma_2DX2 (p,q) -

Now consideHellinger discrimination]9].

PROPOSITION3.4. Letp, g € R with P, = @), > 0. Denoter; := 2 (i =1, ...

qi

(1) fr; <R(i=1,...,n),then,

(3.10) (p,q) < h*(p,q).

1
—— Dy
SVRE
(i) If r; > r > 0, then,
1
3.11 h%(p,q) < ——=D.2 (p, q).
(3.11) (p@_g\/r—3 e (0,q)

(z32) If 0 <m <r; < M, then,

1 1
3.12 ——D. 2 (p, < K? ,q) < D.2(p,q).
(3.12) SV e () < (pCD_Sm e (1, q)
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PROOF As f (t) =

1
2

I
a = inf ”(t):;
0<t<R AV R
1
=sup " (t) = )
b tzgf <> 4\/7’_3

Using Corollary 2.P forf as above, we obtain the desired inequalities.

Consider now the Bhattacharyya distance.

PROPOSITIONS.5. Letp, g € R with P, = Q,, > 0. Denoter; := 2 (i =1, ...

qi

(2) fr; <R(i=1,...,n),then,
1
3.13 Dy (pq) < Py—B(pq).
(3.13) ST v (P, q) (P, q)
(i) fr; >r>0(=1,...,n),then,

(3.14) P, —B(p.q) <

1
D2 (p,q).
8\/7“_3 X(pQ)

(23i) If 0 <m <r; < M, then,

(3.15) (p,q) < P =B (p,q) <

1 1
WDXQ 8—WDX2 (p, Q) .

The proof follows by Theore@.l applied for the mappjhg) = —v/%.
Now consider thédarmonic distancésee for exampledg])

n

M (p,q) =) i

— pit+a
If f(t) = =24, € (0,00), then obviously,
2
‘)= ——"—, t>0
)= —2 50
S+ 1)

and
Iy (p,q) = —M (p,q) .

PROPOSITIONS.6. Letp, ¢ € R with P, = @,, > 0. Denoter; := 2 (i =1,...

qi
(2) fr; <R(i=1,...,n),then,
2
WDXQ (p,q) < P, — M (p,q).
(i) If r; > r > 0, then,

(3.16)

(3.17) P, —M(p,q) < o 1)3Dx2

(z32) If 0 < m <r; < M, then we have the ‘sandwich’ inequality,

(3.18) 2D (p,q) < Po— M (p,q) < D> (p,q).

(M +1)° % (m+ 1)

(p,q) -
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The proof follows by Theore@.l applied for the mappjh@) = —24.
Finally, considedeffreys’ distancésee for exampledq)).

PROPOSITIONS.7. Letp, ¢ € R} with P, = (), > 0. Denoter; := ’i (i=1,...

)

(1) fr; <R (i=1,...,n), then,

R+1
(3.19) gz D (p:a) < T (p,q).

(6) Ifr; >r>0(=1,...,n),then,

(3.20) Tpa) <D (pa).

2r2 X
(z37) If 0 <m <r; < M, then,
M+1
2M?

+1

m
3 D (0,0).

(3.21) D2 (p,q) < J(p,q) <
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CHAPTER 3

Inequalities in Terms of Kullback-Leibler Distance

In this chapter various inequalities for geneyfatlivergence in terms of the well known
Kullback-Leibler distance are established. Particular inequalities of interest for various other
divergence measures in terms of this distance are provided.

1. UPPER AND L OWER BOUNDS IN THE GENERAL CASE

The following result concerning an upper and a lower bound foyf tdevergence in terms of
the Kullback-Leibler distanc&’L (p, ¢) holds. This result complements, in a sense, the results
presented abov@g).

THEOREM1.1 (Dragomir, 200342]). Assume that the generating mappihg(0,cc) — R
is normalised, i.e.f (1) = 0 and satisfies the assumptions,
(i) fistwice differentiable offr, R), where0 <r <1 < R < o0;
(7i) there exist real constants, M such that

(1.1) m<tf"(t)< M forallte (r,R).
If p, g are discrete probability distributions satisfying the assumption,
(1.2) r<r="<R forallie{l,...,n},

then we have the inequality,
(1.3) mKL(p,q) <1y (p,q) < MKL(p,q).
PrROOF Define the mappind,, : (0,00) — R, F,, (t) = f(t) — mtInt, thenF,, (-) is
normalised, twice differentiable and since,
! 1 m ]' 1
(1.4) Fp(t) = f"(t) = = = 5 (tf" (1) = m) = 0

forallt € (r, R), it follows thatF;, (-) is convex on(r, R) . Applying the nonnegativity property
of the f-divergence functional fofF,, (-) and the linearity property, we have,

(1.5) 0<Ip, (P; Q) = ]f (p7 Q) - mI(~)ln(') (p7 Q)

=1y (p,q) —mKL(p,q)

from which the first inequality irf (I} 3) is obtained.

Define Fy @ (0,00) — R, Fiy (t) := Mtint — f(¢), which is obviously normalised,
twice differentiable and by (1.1), convex @n R). Applying the nonnegativity property of
f-divergence forf"y,, we obtain the second part ¢f (L.3).

REMARK 1.1. Ifin (1.1) we have the strict inequality for ahg (r, R), then the mappings
F,, andF) are strictly convex and the case of equality hold$ in|(1.3) i q.

REMARK 1.2. It is important to note that if is twice differentiable or{0, co) and0 <
m < tf"(t) < M < oo foranyt € (0,00), then inequality[(1]3) holds for any probability
distributionsp, q.
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The following theorem concerning the convexity property of fhdivergence also holds
[42).

THEOREM 1.2 (Dragomir, 200342]). Assume thaf satisfies the assumptioi§ and (i7)
from Theorem 1]1. 5, ¢¥) (j = 1,2) are probability distributions satisfying (1.2), i.e.,
(4)

(1.6) rSpéj)SR forall e {1,...,n} and j e {1,2},
4q;
then,
A+ (1= ) p?
(1.7) r< pgl)ﬂ )pg) <R forallic{l,....,n} and X € [0,1]
Ag;” + (1 - )\) q;
and
(1.8) m [KL (™ + (1 =2 pP, AP + (1 - N) ¢@)

— M (p(l)’q(l)) —(1-X\)1I; (p(Q),q(Z))

<M [KL (A + (1= p?, AgM + (1= X) ¢®)

“\KL (p(l),q(l)) —~(1-\NKL (p(Q),q(Q))]

forall A € [0,1].
PROOF We follow the proof inlf2].
By (1.6),
(1.9) rag? < M < ARgY forallie {1,...,n}
and
(1.10)  r(1-N¢? <@-NpP <RA-N¢? forallie{1,...,n}.
Summing[(1.p) and (1.10), we obtaip ({1.7).

It is already known that the mappinds,, F), as defined in Theorefn 1.1 are convex and
normalised.
Applying the “Joint Convexity Principle” foig,, (-,-), i.e.,

(1.22) Tu, (A (W2 V) + (1= 1) (07.0))
< Mg, (0W,¢") + (1 =N Ir, (p?,¢?)

and rearranging the terms, we obtain the first inequalitly irj (1.8).
The second inequality follows likewise if we apply the same property tof tdevergence

IFM (" ) . |

REMARK 1.3. Ifm > 0in (1.1, then the inequality (11.3) is a better result than the positivity
property of thef-divergence. The same will apply for the joint convexity of ihdivergence if
m > 0.
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Using inequality[(1.4) which holds fof differentiable convex and normalised farg prob-
ability distributions, we can state the following theorem as vw&).[

THEOREM 1.3 (Dragomir, 200342)). Let f : [0,00) — R be a normalised mapping, i.e.,
f (1) = 0 and which satisfies the assumptions:
(1) f is twice differentiable oitr, R), whered <r <1 < R < o0;
(77) there exist constants, M such that,

(1.12) m<tf'(t)<M forallte (r,R).
If p, g are discrete probability distributions satisfying the assumption
(1.13) r<r=""<R forallie{1,...,n},
then we have the inequali';y,
(1.14) Iy (%2,29) — 1y (p.q) = MD(q,p)
< I;(p,q)

2
p
< Iy (?p) — Iy (p,q) —mD (q,p) .

ProoOF We follow the proof in#i2].
We know (see the proof of Theorgm [1.1) that the mapgihg: (0,00) — R, F,, (t) =
f(t) —mtlIntis normalised, twice differentiable and convex(@nkR).
If we apply the second inequality frofn (1.4) féf,, we may write:
2

p
(1.15) I, (p,q) < Ip; <?p> — I (p,q).
However,
Ip,, (p.q) = I (p,q) — mKL(q,p),

2 2
p p
IF’ <_7p) = Iy —m[ln(-)+1 (_7p)

m\ g f'()=mln()+1] q

2 2

p p

= Iy _7p> _mIln- <_7p> —-—m
g <q v q
p

and

I, (p.q) = Iy (p,q) + mKL (g, p) —m.
Consequently, by (1.15), we have,

Iy (p,q) = mKL(p,q)

2 2
< Iy (%,p) +mKL (p, %) —m — Iy (p,q) —mKL(q,p) +m

= I (%2713) +m (KL <p,%2> — KL (q,p)> —1Ip(p.q).

As a simple computation shows thiat. (p, ’%2) = —KL(p,q),the second inequality in (1.14)
is proved.

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

40 S. S. IRAGOMIR

ConsiderFy, (t) := MtInt— f (t), which is obviously normalised, twice differentiable and
convex on(r, R).
If we apply the second inequality from (1.4) f6k,, we may write:
2

(1.16) Iry (p,q) < Iy, (‘%m) — Iy, (P q) -
However,
Iy, (p,q) = MKL(p,q) — I (p,q);

2 2 2
I, (p—,p) =-MKL (p, p—) + M —Ip (p—,p) ;

q q q

and then, by{(1.16), we get,
MKL(p,q) = Iy (p,q)
p’ P’
< -MKL (p, ;) + M —1Ip (;,p) + MKL(q,p) — M+ 1y (p,q),

which is equivalent to the first part df (1]14).

REMARK 1.4. The inequality[ (I1.14) is obviously equivalent to,
2

P
mKL(q,p) < Iy (?p) — Iy (p,q) —Ir(p,q) < MKL(q,p).

The above results have natural applications when the Kullback-Leibler distance is compared
with a number of other divergence measures arising in Information Theory.

2. SOME PARTICULAR CASES

Using Theorem 1|1, we are able to point out the following particular cases which may be of
interest in Information Theory.

PROPOSITION2.1. Letp, ¢ be two probability distributions with the property that

(2.1) 0<T§&:n~§R<oo forall: e {1,...,n},
q;
then,
1 1
(2.2) 7KL (p,q) < KL(q,p) < SKL (p,q).

PROOF Consider the mapping : [r, R] — R, f(t) = —Int. Defineg(t) = tf"(t) =
t- () = . Obviously,
1 1
su t)=-— and inf ¢g(t) = —=.
te[r,rl)%] g( ) r ter,R| g( ) R

Also,

Using {1.3) withm = & andM = 1, we deduce the desired inequaligy.
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COROLLARY 2.2. With the above assumptions feandq, we have:

L(p,q)
~ KL(q,p) ~

COROLLARY 2.3. Assume thap, ¢ satisfy the condition,

(2.3)

(2.4) &—1‘ e foralliec {1,...,n},
gi
then,
KL
X 1‘ <e.
KL(q,p)

The following proposition connecting the —distance with the Kullback-Leibler distance
also holds.

PROPOSITION2.4. Let p, g be two probability distributions satisfying the conditipn (2.1),
then we have the inequality:

(2.5) 2r <

PROOF. Consider the mapping : [r, R] — R, f (t) = (t — 1)*. Defineg (t) = tf” (t) =
2t, then, obviously,

sup ¢ (t) =2R and inf ¢ (f) =2r.
telr,R] telr, R

Since
Iy (p,q) = Dy2 (p,q)
then, applying[(1]3) forn = 2 andM = 2R, we deduce the desired inequality.

REMARK 2.1. The following inequality is well known in the literature
(2.6) KL(p,q) < Dy (p,q).

For a simple proof of this fact as well as for different applications in Information Theory, see
[11].
Now, observe that from the first inequality [n (R.5), we have,

1
(2.7) KL(p.q) < 5 Dy (p.a)-
We note that ify- < 1i.e.,r > 3, the inequality[(2]7) is better thah (2.6).
The following corollary is obvious.

COROLLARY 2.5. Assume that the probability distributiopsq satisfy the conditior] (2]4),
then,

2.8) (pa) ‘

Bt G 1 VA |
Q‘KL(Z%Q)

PROPOSITION2.6. Assume that the probability distributiopsq satisfy the conditiorj (21),
then we have,

(2.9) vKL( q) < hQ(p,)<vKL( q).
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PROOF. Consider the mapping (¢) = 1 (vt — 1)2, giving f/ (t) = 1 — sz andf” (t) =
. [r, R] — R whereg is given by,

1
t)=tf"(t) = —.
9=t (1) =
Clearly,
1
su t and inf R
tG[T%]g() 4\/— tE[TRg() ™
Since

ff (p,q) =1*(p.q).

then by ) forn = I~ andM = we deduce the desired |nequal.2 ).

4f=
REMARK 2.2. The following inequality is well known in the literature (see for example
[27]):

(2.10) KL (p,q) > 2h* (p,q)

for two p, ¢ probability distributions.
From the second inequality ip (2.9), we have,

(2.12) KL(p,q) >4rh* (p,q) .
We remark that ift\/7 > 2, i.e.,r > 1, then the inequality irf (2.11) is better than (3.10).

The following result establishes a connection between the triangular discrimidaijsee
RemarK 3.11) and the Kullback-Leibler distance.

PROPOSITION2.7. Assume that the probability distributiopsq satisfy the conditiorj (2]1).
(i) If 0 <r < 1, then we have,

. r R 32
@12)  smin{ s S LKL < Alpo) < SKL ().
(i) If § <r <1, then,
S8R 8
(2.13) R 1)3KL (p.q) <A(p,q) < T Jl)gKL (p:q) -
PROOF Consider the mapping (t) = (m We have,
P 1 4
fo=1-c—m
and )
f = (t+1)°
Define o
[ Rl =R, g(t)=tf"(t) T telr R,
giving,
, 8 (1 —2t)
glt)= (t+1)
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which shows thay has its maximum realized &t = % and

max g(t) =g (1) = g
te(0,00) 2 27
We have the two cases:
1) If0 <r < 3, then,

32
sup g (t)=— and
te[r,R) () 27
8r S8R
inf g(t) =minl|g(r),g(R)] = min , .
() = minlg (). () = min { 2y, B
2) If 1 <r < 1,then,
8r
su t)y=g(r) = - and
te[r%g() g(r) 1P
8R
inf g(t)=¢g(R)=——.
te[nRJgU 9 (R) (R+1)°

Applying (1.3), we deduce (2.12) ar{d (2.13). We omit the details.

REMARK 2.3. Itis clear, by the above arguments, that for every probability distribution we
have the inequality

(2.1 A(p.a) < KL (p.a).

We know that (see Topsoé&Z1])
(2.15) 2h% (p,q) < A(p,q) <4h* (p,q).
Now, asK L (p,q) > 2h? (p,q), then we obtain,
(2.16) A(p,q) <2KL(p,q),
which is not as good as our resuilt (2.14).
Let us now compare theényidivergence with the Kullback-Leibler distance.

PROPOSITION2.8. Assume that the probability distributiopsq satisfy the conditiorj (2]1),
then,
(2.17) a(a—=1)r*'KL(p,q) +1 <expla(a—1) R, (p,q)]
<a(a—1)R*'KL(p,q)+1
fora > 1.

PROOF Consider the mapping : (0,00) — R, f(t) = t* — 1, a > 1, giving f'(t) =
at*~tandf” (t) = a(a —1)t*2. Defineg : [r, R] = R, g(t) =tf" (t) = a(a— 1)t It
is obvious that,

sup g(t) =a(a—1)R*!' and inf g(t) =a(a—1)r*"
te[r,R) telr,R]

Now, observe thaf (1) = 0, i.e., f is normalised and so we can apply the inequality|(1.3)
getting,

a(a—1)r" KL (p,q) < Z " [(fqi) - 1} <a(a—1)RKL(p,q),
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ie.,
a(a=1)r""KL(p,q) +1<p,(p,g) <ala—=1)R*KL(p,q) +1
and the proposition is proved.

We define theBhattacharyya distancey (seelll]) v (p,q) = —In[B (p, q)].

PROPOSITION2.9. Assume that the probability distributiopsq satisfy the conditiorj (2]1),
then,

(2.18) 471 —exp[—y (p,q)]] < KL (p,q) < 4VR[L —exp [~ (p, q)]] -

PROOF. Consider the mapping : (0,00) — R, f(t) = v/t — 1, then f is normalised,
f(t) = %t‘%, () = —%t‘%. Defineg : [r, R] = R, g(t) =tf"(t) = —it‘%. It is obvious

that, . .
sup g(t) =g(R) = Wi inf g(t)=g(r)= G

te[r,R] telr,R]

Applying (1.3), we have:
[Di 1

1
- Lkl <B(p,q)<1———=KL(p,q),
VG (p.q) < B(p,q) i bwa)
which is equivalent tq (2.18)

We define thénarmonicdivergence byn (p,q) :== 1 — M (p, q) , where,

i.e.,

n

M (p,q) = Z bt

— Dt
PROPOSITION2.10. Assume thap, ¢ are two discrete probability distributions, then,

(2.19) 0<m(p,q) < ;—gKL (p.q)-
PROOF Consider the mapping: (0,00) — R, f (t) = t+1 — 1, thenf is normalised and
4 2 " —4
)= —, t) = .
Defineg : [r,R] = R, g(t) =tf"(t) = t:it?), then,
, 42t —1)
t) = ——=.

It is clear thatg is monotonic decreasing o, 5) and monotonic increasing off, co). We

have,
1 16
nf 16
tel(goo)g(t) 9(2) 27’

sup g (t) = 0.
te(0,00)

Applying the inequality[(1]3) forn = —3% and M = 0, we deduce,

16
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which is equivalent to,

16
—EKL(p,q) <M(p,q)—1<0

and the inequality (2.19) is proveq.
The above result can be improved if we know more information abaut Z—, i=1,...,n.

PrROPOSITION2.11. Assume thap, ¢ satisfy the conditior] (1]2).
(i) If r € (0,1), then,

(2.20) 1— ;—(;KL (p,q) < M (p,q)
) T R
< 1—4m1n{(r+1)3, (R+1)3}KL(177Q)~
(i) If r € [3,1), then,
4r 4R
(2.21) 1- - 1)3KL (p,q) <M (p,q) <1— Ri1P 1)3KL (p,q) -
PrROOF (1)
(i) If r € (0,1), then,
16

5 <g((t) <max{g(r),g(R)}

{ 4r 4R }
=maxq — 3, — 3
(r+1)° (R+1)
:_4mm{ ! 3, l 3}, terR.
(r+1)° (R+1)
and then, applyingd (I}.3), we may write,

16

) r R
—2—7KL(p,Q) <M(p,q) —1< —4mm{(r+1)37 (R+1)3}KL(1?,Q),

and the inequality| (2.20) is proved.
(ii) If r € [5,1), then,

g(r)<g(t)<g(R) forallte]r R],

that is,

(rj‘;’"l)ggga)s—ﬂ telrR).

(R+ 1)
Applying (1.3), we deducg (2.21).

Let us now considey-divergencd84].

PROPOSITION2.12. Assuming thap, ¢ satisfy the conditior] (1}2), then,

R+1 r+1
(2.22) TKL (p.q) < J(p,q) < TKL (p.q).
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PROOF. Considerf (t) = (t —1)Int, thenf’ (t) = Int — 1 + L and f” (t) = L. Define
g (t) =tf"(t) =1+ ;. Obviously,

1 1
sup ¢ (t) =1+ —, inf t)=1+ —.
te[r,R}g< ) r tE[r,R]g( ) R

Now, using[(1.B), for/ = ==, m = L1 we obtain the desired resui.
REMARK 2.4. Similar results can be obtained by applying Thedrem 1.3.
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CHAPTER 4

Inequalities in Terms of Hellinger Discrimination

In this chapter various inequalities for geneyfatlivergence in terms of the well known
Hellinger discrimination are established. Particular inequalities of interest for various other
divergence measures in terms of this discrimination are provided.

1. GENERAL BOUNDS IN TERMS OF HELLINGER DISCRIMINATION

The following result concerning an upper and a lower bound for the Csfsdéergence in
terms of the Hellinger discriminatio? (p, ¢) holds. These results will complement, in a sense,
the ones presented abovH].

THEOREM1.1 (Dragomir, 200241]). Assume that the generating mappifng(0, o) — R
is normalized, i.e.f (1) = 0 and satisfies the assumptions,
(1) f is twice differentiable oitr, R), whered <r <1 < R < o0,
(17) there exists real constants, M such that,

(1.1) m<tf'(t)< M forallte (rR).
If p, q are discrete probability distributions verifying the assumption,
(1.2) r<r=Y <R forallie{l,...,n},

7

then we have the inequality,
(1.3) 4mh* (p, q) < Iy (p,q) < 4AMD* (p,q) -
PrRoOF We follow the proof inlf1].

Define the mappingd?,, : (0,00) — R, Hy,, (t) = f () — 2m (Vt — 1)2. It follows that
H,, (-) is normalised, twice differentiable and since,

(1.4) Hi ()= 1" () - 7 = ti (5" (5) = m) 20

for all ¢t € (a,b), this is implied by the first inequality i (1.1). Thus, the mappitig (-) is
convex on(r, R) .

Applying the nonnegativity property of thé-divergence functional foff,,, (-) and the lin-
earity, we have that,

(1.5) 0<1In, (p.q) =1 (p,q) - 2ml( e (p,q)

= Iy (p,q) — 4mh* (p,q) ,
giving the first inequality in[(1]3).
DefineHy, : (0,00) — R, Hy (t) = 2M (vt — 1)2 — £ (t) which obviously is normalised,
twice differentiable and, by (1.1), convex ¢n R).
Applying the nonnegativity property gf-divergence fol,,, we obtain the second part of

()N
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The following theorem concerning the convexity property of fhdivergence also holds
[41].

THEOREM 1.2 (Dragomir, 200241]). Assume thaf satisfies the assumptio(i§ and (i7)
from Theorem 1]1. ), ¢\/) (j = 1,2) are probability distributions satisfying (1.2), that is,
(9)

(1.6) rgﬁﬁgf%fmmluﬂmnwn}ane{L%,
4;
then,
A + (1= ) pt?
(1.7) r< %D+( M@ﬁngmmMe{L”wﬂ-mdAemﬂ
Ag 7+ (1=A)g
and
(1.8) am[p? (A + (1= A) p@, AqV + (1 — 1) ¢@)
— A2 (p(l), q(l)) —(1-=X h2 (p(Q)’ q(2)”
< Iy (0 + (1= 0 p,Ag) + (1 - 2) )
— I (p(l),q(l)) — (1 =\ I (p(z),q@))
— A2 (p(l), q(l)) — 1=\ h2 (p(2), q(Q))}
forall A € [0, 1].

PrRoOOF We follow the proof inlf1].
By (1.6), we have
(1.9) rag” < 2l < ARgY forallie {1,...,n}
and
(1.10)  r(1-N¢? <1 -Np?P <R1-X)¢? forallic{1,...,n}.

7

Summing [(1.p) and (1.10), we obtajn ([1.7).

It is known that the mapping#/,,, H,, as defined in Theorem 1.1 are convex and nor-
malised.
Applying the “Joint Convexity Principle” fofy, (-, ), i.e.,

(1.11) Iy, (A (p™,¢M) + (1 = A) (p?,¢?))

< Mp,, (0", ¢"M) + (1 =) I, (0@, 4?)
and rearranging the terms, we obtain the first inequalitly irj (1.8).
The second inequality follows likewise if we apply the same property toftdeergence
IH]M ('7 ) 1
REMARK 1.1. Ifm > 0in (1.1), then the inequality (11.3) is a better result than the positivity

property of thef-divergence. The same will apply for the joint convexity of thdivergence if
m > 0.

Using the inequality] (1]4) which holds fgt being a differentiable convex and normalised
function, forp, ¢ probability distributions, we can state the following theorem.

THEOREM 1.3 (Dragomir, 200241])). Let f : [0,00) — R be a normalised mapping
satisfying
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(1) f is twice differentiable oitr, R), whered <r <1 < R < o0;
(7i) there exist constants, M such that,

(1.12) m<t2f'(t)< M forallte (rR).

If p, g are discrete probability distributions verifying the assumption,

(1.13) r<r="<R forallie{1,...,n},

4qi

then we have the inequality,

2
(1.14) Iy (%,p) — Iy (p,q) — 2MC (p,q) + 4MPE* (p, q)
< Iy (p.q)

2
< Iy (‘%,p) — Iy (p,q) — 2mC (p, q) + 4mh* (p,q)

whereC (p, q) == 327, (¢ — pi) \/,‘ij
ProoOF We follow the proof in#i1].

We know (see the proof of Theordm [1.1), that the mapging: [0,00) — R, H,, (t) :=

f@)—2m (Vt— 1)2 is normalised, twice differentiable and convex@nR).
If we apply the second inequality frorn (1.4) féf,,, we may write,

2

However,

In,, (p,q) = I; (p,q) — 4mh* (p,q),

P’ P’
-[ ! ) - / )
Hp, (q p) f(‘)*4m(%*ﬁ) (q p)

a P
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and
I, (p,q) = Ip (p,q) —2m + 2ml s, (p,q)

1
\/E
—[f/ (p, )—2m+2m2q”1

=1

=1y (p,Q)—2m+2qui

and so, by[(1.15), we obtain,
Iy (p,q) — 4mh* (p, q)

2
<Ip (Z;?p)—Zm—f—QmZp“/;—If/(p, q) + 2m — Qqul /;z
=1 t !

which is equivalent to the second inequality[in (1.14).

If we considerH ), (t) := 2M (vt — 1)2 — f(t),t > 0, then we observe thai, (-) is
normalised, twice differentiable and convex pnR). Applying the second inequality from
(1.4), we deduce the first part ¢f (1]14).

The above results have natural applications when the Hellinger distance is compared with a
number of other divergence measures.

2. SOME PARTICULAR CASES

Using Theorenj 1]1, we are able to point out the following particular cases which are of
interest.

PROPOSITION2.1. Letp, ¢ be two probability distributions with the property that,

2.1) 0<r<? — g <R<oo forall ic{l,...,n},
q;

then,

(2.2) 4rh? (p,q) < KL (p.q) < AVRR*(p,q).

PROOF Consider the mapping : (0,00) — R, f (t) = tInt, then,
1
THOE o t € (0,00).
Consider the mapping: [r, R] — R, g (t) = t> - L = t3, then

inf g(t)=+r, sup g(t)=VR.

te[r,R] te[r,R]
Therefore, applyind (1}3) with = /7, M = v/R, we obtain[(2.2)x

REMARK 2.1. The following inequality is well known in the literature (see for example
Dacunha-Castell2[7]):

(2.3) KL (p,q) > 2h* (p,q)

for anyp, ¢ probability distributions.
From the first inequality in (2]2) we have,

(2.4) KL (p,q) > 4Vrh*(p,q) -
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We note that ift\/r > 2, i.e.,r > 1, then the inequality (2]4) is better thgn (2.3).
PROPOSITION2.2. Letp, ¢ be two probability distributions with the properfy (.1), then,

(2.5) %hQ (p.q) < KL(g,p) < %fﬁ (p.q).

PROOF Consider the mapping : [r, R] — R, f (t) = —Int. Defineg (t) = ts f" (t) =

1
T then,
()= —, inf g(t)=—
sup g = —, mit g = —.
te[r,R] VT’ telrR) R
In addition,

It (p.g) == gl (%) => g <% =D (q,p).
i=1 ¢ i=1 ¢
Using (2.2), we get the desired inequality (2.9).

The following result for they?—distance also holds.

PROPOSITION2.3. Let p, g be two probability distributions satisfying the conditi¢pn (2.1),
then,

(2.6) 8r2h% (p,q) < Dy2 (p,q) < 8R2h?(p,q) .
PROOF. Consider the mapping : (0,00) — R, f () = (t — 1)*. Defineg : [, R] — R,
g (t) = t2 " (t) = 2t2. Obviously,

sup ¢ (t) = 2R? and inf g(t)= 2%,
te[r,R] te[r, R

Since
Iy (p,q) = Dy2 (p,q)

then, applying the inequalitm.s) with = 2r2, M = 2R?, we get the desired inequality
(2.8)-n

Now, let us consider thé—divergencd84].

PROPOSITION2.4. Letp, ¢ be two probability distributions, then we have the inequality,
(2.7) 8h* (p,q) < J (p.q) .-

PROOF. Consider the mapping: (0,00) — R, f (t) = (t — 1) Int. Defineg : [r, R] — R,

L1
gty =t:f"(t) =t2 + —+ >2,
t2
which shows that
inf ¢(t) = 2.
tel(goo)g( )

Since

Iy (p,q) = J (p.q),
then, applying[(1]3) witmn = 2, we get the desired inequality.

If we know more about; := 2 (i =1,...,n), i.e., the conditionl) holds, then we can

obtain an upper bound fof (-, -) as follows:
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PROPOSITION25. If 0 <r <r; < R<ocoforalli € {1,...,n}, then we have,

1 1
2.8 J(p,q) < 4max r+—,\/§+—}h2 ,q) -
(2.8) (p,q) {\/_ 7 Vi (p,q)

PrRoOOFE As above, we have,
1
g(t) =tz + ne

For the mapping (u) = u + +, we have,

u?—1

h' (u) =

which shows that the mapping is strictly decreasind®n) and strictly increasing ofil, o) .
It follows that,

1 1
t:}i’%]g(t) =max|[g(r),g(R)] = max{\/F—F %,\/f_%—k ﬁ}

Applying Theoreni 1]1 we deduce the desired regult.
REMARK 2.2. Observing that

L () (v
\/E—l-ﬁ—ﬁ—ﬁz ViR )

(2.8) can be rewritten in the equivalent form,
1 P 1
VR+ = if R>1

(2.9) J (p,q) < 4% (p,q) x :
\/F+\/LF if 1<R<1

PROPOSITION2.6. Let p, ¢ be two probability distributions, then, with/ (p, g) being the
harmonic distance,

(2.10) 0<1—-M(p,q) < %hQ (P, q)-
PROOF. Consider the functiorf : (0,00) — R, f (t) = 1 — 24, then,
2 4
(1) = — , "E) — .
FO=—rm 0=

Define the mapping

5 Ats
ty=tzf"(t) =
9(0) =14 (1) = =1
and a simple calculation shows that,
. 6/t (1 —t
g (t) = (—4)
(t+1)

Consequently, the mappingis increasing on the intervdD, 1) and decreasing ofil, co).
Moreover,

1
te(0,00)

Applying the inequality[(1[3) fon/ = }, we deduce| (2.10n
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If we know that the conditiorf (2/1) holds, then we can improve the first inequalify in|(2.10)
as follows.

PROPOSITION2.7. Assuming that the probability distributions ¢ satisfy [2.1), then, we
have the inequality,

3 3
ra R>
2.11 16 min , R* (p,q) <1 —M (p,q).
(2.11) {(r+1)3 (R+1)3} () (P q)
3
PROOF Taking into account that the mappindt) = (tﬁf)g iS monotonic increasing on

(0,1) and decreasing of1, oc), we may assert that,

7’% R%
inf ¢ (t) = mi ,g(R)} = 4mi , :
tel[rrl,R]g( ) =minig(r),g (R)} i { (r+1)* (R+ 1)3}
Using (1.3), we deduce the desired lower boynd (2.§1).
REMARK 2.3. Similar results can be stated by Applying Theorerh 1.3.
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CHAPTER 5

Inequalities in Terms of Variation Distance

In this chapter various inequalities for genefadivergence in terms of the well known vari-
ational distance are established. Particular inequalities of interest for various other divergence
measures in terms of this distance are provided.

1. GENERAL RESULTS

Define the generalised-variational distanceby

(1.2) }:q pi—al,

wherep, ¢ are probability distributions anr:l € (0,1]. Note that forr = 1, we recapture the
usual variational distance (dr-distance).
The following theorem hold<A0)].

THEOREM1.1 (Dragomir, 200240]). Letf : [0,00) — R be a normalised convex mapping
of ther — H—Holder type onr, R], i.e

1.2) lf(x)— f(y)| < Hl|z—y|" forall z,y € [r,R].
It follows that,
(1.3) 0<Ir(p,q) <HV,(p,q).

PROOF The proof follows that given ird(Q].
We choose iZj =D y=1(=1,...,n)toget,
(1.4) V(%)—fuﬂgH

forallie {1,...,n}.
If we multiply (I.4) by¢;, sum the obtained inequalities and use the generalised triangle
inequality, we obtain,

0<1I(p,q) qu ( )
<HZ :

and [1.3) is proveds

REMARK 1.1. If we assume thatis convex, normalised ant—Lipschitzian onr, R], i.e.,
r = 1andH = L, then we have the inequality,

(1.5) 0<I;(p,g) <LV, (p.q),
whereV (p, q) is the usual variational distance.

bi 4
qi

Y

n

> aif (%) - gqif(l)

i=1

—HVr(p,q)

A practical result is embodied in the following corollary.
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COROLLARY 1.2 (Dragomir, 200240Q]). If the mappingf : [r, R] — R is convex, nor-

malised, absolutely continuous énR] and f’' € L., [r, R}, i.e.,||f'||., = ess sup |f'(t)| <
te[r,R)

oo, then we have the inequality,
(1.6) 0<Is(pg) < Il Vi (pi0)-
The following theorem hold<A0)].
THEOREM 1.3 (Dragomir, 200240]). Assume thaff is as in Theorem 1J1. 15) ¢V)
(7 = 1,2) are probability distributions satisfying the condition,
()

pi’

g

r <

<R forall ie{l,...,n} and j € {1,2},

then, obviously,
(1 (2)
. 1— .
< Apzl)jL( )‘)pg) <R forallie{1,...,n} and X € [0, 1]
Ag; "+ 1-Ng
and we have the inequality,
(L7) 0< Iy (p + (1= 2)p, AgV + (1= 1) ¢?)
— )\[f( M) 41 )) —(1=)\) 1 (p(Q),q(z))
) pl(z)
) qz( )
Mg+ (1= ) qz@)y

det

n

(
¢!

gHX"(l—A)TZ [

forall A € [0,1].

ProoOF We follow the proof in Q).
If we choose, in[(1]2),

oM 4 (1 — 2 p? (M
T = pl) (1 )pz) and y—p’()(z:l,. , M)
A+ (1= N gf 9
we get,
O (2) ()
on  (Ehzamney (i)
)Qi q;
< H Apz (1 Np? pl
M+ (=N g
P =0 = — (1= x)pe® |
Mﬂﬂmﬁ+u—méﬂr
H (1= |g"p? = p"q

[qfl)} ' |:)‘Qi(1) + (1= qz@)}
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If we multiply (L.8) by \¢!", we obtain,

(1) (2) (1)
AV Ap (1 =Np AV Pi
A\ (-0 W
1—r
HA(1=\) [qfl)} ¢."p? — pMg®
[Aqfl) +(1=2A) qz@}

(1.9)

r

foralli € {1,...,n}andX € [0, 1].
If in (L.2) we choose: as above but with

p?
y=—g U(=1L....n),
q;
we get,
110 A+ (1) p? Y
(1.10) f (1) @ | f (2)
Ag; (1 - )‘) q; 4q;

T

U+ a=np? p?
A+ (1 =) Qf )
‘Apz 07+ (1 =2 pPg® = PV — (1= N)¢P )pEQ)
g+ (1= g”] [o)]

04 |

qfﬂ ' [qu +(1-N qZ@} '

<H

H(1=X"p

If we now multiply ) by(1 — )qf ), we obtain,

i+ (1 =2 pl? )
(1 - >‘) q@‘(2)f 1) @) | (1 - )‘) Qz@)f 2)
Agp '+ (1=N)g 4

7

(1.11)

1—7r
HX\ (1)) [qz@} ¢ Vp® — pM |

[Aq§1) + (=) %@)}

foralli € {1,...,n}andX € [0, 1].
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If we add [1.5) and (1.11) and use the triangle inequality, we get,

At + (1= ) pl?
A+ (=26 1 [ 0
Ag +(1=A)g,

W, [ r @, (P
_>\q@' f | (1 - )‘> q; f )
q; q;
1 (2
b; b;
det ! !
[ qﬁl) (2) ]
P¢”+O—AM9]

foralli € {1,...,n}and) € [0, 1].
Summing [(1.IR) ovei from 1 to » and using the generalised triangle inequality, we obtain
the desired inequality (1.7).

(1.12)

HN (1-2)

REMARK 1.2. If we assume that is L—Lipschitzian, then the inequality (1.7) becomes,
(1.13) 0<I; (AW + (1 =X p®, AgW + (1 - X)¢?)
— My (p™, g — (1—M (p®,¢@)

]

(

Z

det

D
(
SIA(L-M)) (

i=1 /\qz(
forall A € [0,1].

2. SOME APPLICATIONS FOR PARTICULAR DIVERGENCES
Using the inequality[ (1]6), i.e.,
(2.1) 0<Is(pg) < Il V (poa),
provided thatf is absolutely continuous dn, k] andf’ € L [r, R], |||l = ess sup |f'(t)],
telr,R

we are able to point out a number of additional inequalities between different divergence mea-
sures.

PROPOSITION2.1. Letp, ¢ be two probability distributions with the property that,

(2.2) 0<r< =1 < R<oo forallie{l,... ,n},
4i

then,

(2.3) 0<KL(p,q)

[ [+’1+lnr‘] (p,q) if 0<r<e

< :
(I1+InR)V (p,q) if el<r<i1
PROOF. Consider the mapping: (0,00) — R, f (t) = tInt, then

f'(t) =In(et).
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It follows that,
1/l = sup [f"(t)] = max {|In(er)|,In(eR)}.

telr,R]
We note the following.
(1) If0<r <e ! then|ln(er)| =In(er) = =1 — Inr and
—l—Inr+ImR+1+|lnr+1+1+InR|
2

max {|ln (er)|,In (eR)} =
=In (g)z + ‘1—|—ln\/7"R’.
(2) If et <r < 1, then|ln (er)| = 1 + Inr and

max {|In (er)|,In (eR)} = max{In(er),In(eR)} =1+ InR

and the proposition is proved.

PROPOSITION2.2. Letp, ¢ be as in Propositiop 2|1, then we have the inequality:
1
(2.4) 0< KL(g.p) <V (p,q).

PROOF Consider the mapping(t) = —Int, ¢t € (0, c0), then,

Fy=—7 and =1

Since,

Iy == an (%) - > (%) =KL,
(2.7) gives the desired resylt (R.4).
We point out now a bound foy?>—divergence.
PROPOSITION2.3. Letp, ¢ be as above, then,
(2.5) 0<Dy(p.q) <2(R-1)V(p,q).

PROOF. Consider the mapping : (0,00) — R, f (t) = (t —1)>. As f'(t) = 2(t — 1), it
follows that|| /'||, = 2 (R — 1). Using [2.1), we obtair} (2|5

The following result for Hellinger discrimination also holds.

PROPOSITION2.4. Assuming that the probability distributions ¢ satisfy the condition

(2.7), then,

(2.6) 0<h*(p,q) <

1
<7 V(p,q).

VRE— T IVR+
VrR VR

PROOF Consider the mapping : (0,00) — R, f (t) =1 (Vt — 1)2, then,

F0)=5-55 ad /()=

, t € (0,00).

1
43
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It follows that,

_— . Vr—1| |VR—-1
3 1-r VR-1
= max 2\/?’ 2@
_LIVR-E | VREVE
4 VTR VTR .

Using (2.1), we deducé (2.6§.
Now, consider Bhattacharyya distance.
PROPOSITION2.5. Assuming thap, ¢ are probability distributions, then,

(2.7) 0<1-=B(pq) <Vi(paq)),

whereVy (p,q) = >i, \/a: (i — ;) is the —variational distance.
PROOF Consider the mapping : [0, c0) — [0, 00) given by,
ft)=—Vt+1.
Obviously,
1f (@)= fW)|=|vVa—vy| <]z —yl, forallz,ye[0,00),

which shows thaf is of the; —Holder type with constant/ = 1.
Applying Theoreny 1]1, we dedude (2.7).

Another inequality for Bhattacharyya distance in terms of the variational distansem-
bodied in the following proposition.

PROPOSITION2.6. Assuming that the probability distributiopsq satisfy the the condition:

(2.8) 0<r<? forall i€ {l,....n},
then,

1
2. <1—-B < —— .
(2.9) 0< (p>Q)_2\/;V(p>Q)

PROOF. For the mapping (t) = —v/t + 1, we havef’ (t) = —ﬁ and|| f'|| ., = sup =

t€[0,00)
5=+ Applying ), we deduc.9].
PROPOSITION2.7. Assuming that the probability distributions ¢ satisfy the condition

(2.9), then,

(2.10) 0<1-M(p,q) <

whereM (p, q) is harmonic distance.
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PROOF Consider the mapping : [0,00) — R, f(t) = 1 — t% Obviously, f' (t) =
—ﬁ, fr(t) = ﬁ and| /||, = tes[ljgo) L ()] = ﬁ As

Iy (p,q) =1—=MI(p,q),
then by [(2.1) we deducg (2]10§.

PROPOSITION2.8. Assuming that the probability distributiopsq satisfy the condition:
(2.11) bicR<oo, (i=1,...,n),
4q;
then,

1
(2.12) 0<J(pg) < (lnR—EJrl)V(p,Q),
whereJ is Jeffreys’ divergence.

PROOF Consider the mapping (t) = (¢t — 1) Int, t > 0, then,

1
f’(t)zlnt—;%—l; t € (0,00),

1
f//(t) :i) te (0,00)7
t2
hence, 1
11l = sup |f" ()] = f"(R) =R~ & +1.
te(0,R]
As
It (p.g) = J (p,9),
then by [2.1) we deducg (Z]1).

Finally, the following result for triangular discrimination holds.
PROPOSITION2.9. If p, g are such that the conditiof (2.[11) holds, then,

. ZRlzr(lf)j Dy (p,q) <V (p.q).

The proof is obvious by (212) applied for the mappifg) = &1°.
t+1

(2.13) 0<A(pg) <
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CHAPTER 6

Inequalities for Two f-Divergences

In this chapter two generedl-divergence measures are compared. Cauchy mean-value
theorem is empolyed and applications for various particular inequalities are provided.

1. SOME GENERAL ESTIMATES
We start with the following result3g].

THEOREM 1.1 (Dragomir, 200138]). Let f,g : [0,00) — R be two mappings such that
f (1) =g(1) = 0. If there exist real constants, M such that,

(1.1) m|f(z) = f@]<l|g(x)—gW| <M|f(z)— f(y)
forall z,y € [r, R] C (0,00), then,
(1.2) mly (p,q) < g (p,q) < MIg (p,q)

for all p, g probability distributions with) < r < 2— < R<ooforallie{l,...,n}.
ProoF. By (1.7) it follows that,

0l ()] =wls(2) sf<h(2) o
(@)=l () o= ()
foralli e {1,...,n}.

If we multiply (1.3) byg; > 0 and sum the obtained inequalities, we ded{icg (1.2).

COROLLARY 1.2 (Dragomir, 200138]). Assume that the mappingsg : [0, c0) — R are
as above and that, g are differentiable or{r, R) with f’ (¢) # 0 fort € (r, R) and

g (1) g ()
fr (@) fr(t)
then we have the inequality (1.2) for all¢ as above.

(1.4) —o0o<m= inf
te(r,R)

b

‘ =M < o0,
te(r,R)

PROOF We use the following Cauchy theorem:
If ~,f : [a,b] — R are continuous and differentiable da,b) and f' (t) # 0 for all
t € (a,b), then there exists € [a, b] such that,
() —y(a) _ ()
f®)=f(a) [ (c)
Now, suppose that,y € [r, R] andz < y, then, by Cauchy’s theorem, we have,
g@)—gW| |9 ()
f@ =Wl 1)

and we can conclude that for amyy € [r, R] we have,

m|f(x) = fW)| <lg(x)—gW)| <MIf(x)— f(y)l.

<M

m <
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Applying Theorenj 1]1, we dedude ([L.4).
The following corollary for the variational distance holds.

COROLLARY 1.3. Letg : [0,00) — R be a mapping such that(1) = 0. If there exist real
constants:, N such that,

(1.5) nlz—y| <lgx)—gW)| <Nlx—y| forallzyec]|rR],
then,
(1.6) nV (p,q) < Lig (p,q) < NV (p,q)

for any probability distribution®, g with0 < r < fl’— <R<ooforallie{l,...,n}.
The proof is obvious by Theoreim 1.1, choosjffr) = = — 1.

COROLLARY 1.4. Assuming that the mappirgs continuous of, b] and differentiable on
(a,b) and

—co<n=inf [¢(H)],  sup |g(t)]=N < oo,
te(r,R) te(r,R)

then we have the inequality (1.6) for allq as above.
2. PARTICULAR CASES IN TERMS OF THE VARIATIONAL DISTANCE
PrROPOSITION2.1. Let0) < r < Z— < R <o (i=1,...,n), then we have the inequality,

InR+ 1]V (p,q) if r>el,

21  0<KL(pg <
max{In R+ 1;|n R+ 1|}V (p,q) if r<e ™

PROOF. Consider the mapping : (0,00) — R, g (t) = tInt, theng’ (t) = Int + 1 and
obviously,

InR+1 if r>e!

Y

M= sup |g'(t)] =
te(r,R) max {In R+ 1;[In R+ 1|} if r<e '

Applying Corollary[ 1.4, we can state,

qu . <z>’<NV(p, q).

By the generalised triangle mequallty, we have,
i In <pl> ‘

KL(p,q szln( >

< sz' In (%)‘ < NV (p,q)
i=1 '

and the inequality (2]1) is proved.
If we introduce themodified Kullback-Leibledistance,

KLl (p,0) §jnln(“)
then obviously,

(2.2) K (p,q) <|KL|(p,q) forallp,qeP".
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For this modified distance, we may prove the following as well.

PROPOSITION2.2. Let0 < r < % <R<o(i=1,...,n),then,

(2.3) (Inr+1)V(p,q) <|KL|(p,q) < (InR+1)V (p,q),
provided that > e~ 1.

PrROOF. The second inequality if (1.3) has been proven above.
For the first inequality, we can apply Corolldry [1.4 by observing thayfe@j = ¢In¢, and
r>et

inf [g'(t)| =1 L.
oty |97 (O] =nr+

We omit the detailsg

PrROPOSITION2.3. Let0 < r < % <R<o(i=1,...,n),then,

Y ng).

r

(2.4) KL(g,p) <

PROOF. Consider the mapping: (0,00) — R, g (¢) = Int, theng’ (t) = 1 and obviously,

1
M= sup Ig () = 1
te(r,R| r

Applying Corollary{ 1.3, we can state:

and the proposition is proved.
The following result for the modified Kullback-Leibler distance also holds.

PROPOSITION2.4. Letp, ¢ be as in Propositiof 2|3, then,

(2.5) %V(p, q) < |KL|(g,p) < %V(p, q) -

PrROOF. The second inequality ift (2.5) has been proven above. The first inequality follows
by the first inequality in Corollary 114 by taking into account that,

= inf |¢ ()] =—=.
m=dnf lg' (1) =5

The following result forHellinger discriminationholds.
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PROPOSITION2.5. Let0 < r < % <R< o (i=1,...,n),then,

2 VR—Vr |VR+Vr 1
< h*(p,q) < ik + in 2 V(p,q).

PROOF Consider the mapping: (0,00) — R, g (t) = 1 (Vi — 1)2, then,

—~

=3 Yt e,
n= int |9’ ()] = min {ly (1] I’ (R}
_ 19 0]+ 19 (R = Il ()] =1’ (R
2

VR-r |[VR+r 1

4vTrR 4v/rR 2

and

N = sup |g' (t)] = max{|g’ ()], g (R)[}
te(r,R)

_ g @) +1g (B)+]lg' ()] — g (R)]
2

VR+r 1

“WrR 2

_VR-Vr
~ 4/rR

respectively.
As g (t) > 0, then obviously,

Ly (p,q) = Iy (p,q) = h* (p,q) -
Using (1.6), we obtair] (2|6
REMARK 2.1. The inequality[(2]6) is equivalent to,

(2.7) h*(p,q) — %V(p, q)| < % —% V(p,q).

We now point out some inequalities foni-square distance.
PROPOSITION2.6. Let0) < r < % <R< o (i=1,...,n),then,
(2.8) [R—r—|R+7r=2]V(p,q) < Dy (p,q)

S[R—r+[R+7-2[]]V(paq).

PROOF. If g : (0,00) — R, g (t) = (t — 1)% then,g’ (t) = 2 (t — 1),
n=inf |¢'(t)] =min{lg"(r)[,lg" (R)[}
te(r,R)
=R—r—|R+r—2|

and
N=R—-r+|R+r—2|.
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Using (1.6), and taking into account thatt) > 0, ¢ € R, and

fg(p,Q)zzuszz (. q)

i1 di
we deduce/ (2]8)
REMARK 2.2. The inequality{ (2]8) is equivalent to,
(2.9) Dy (p.q) = (R=7)V(p. )| < [R+7 =2V (p,q).

We point out now some inequalities for tBéattacharyya distance.

PROPOSITION2.7. Let0 <r < & < R < oo (i =1,...,n), then,

(2.10) 0<1-B(p, )SWV( q).

PROOF. Consider the mapping(t) = 1 — v/t,t € (0,00), theng (1) = 0, ¢’ (t) = —57
and

1
N = sup |g = sup —.
tE[r,R]’ ( )‘ ter,R| 2\/_ 2\/7_”
Applying Corollary 1.4,
- Di 1
i=1 i "
which is equivalent to
& 1
. i —VDPili| < = 1 q) -
(2.11) >_la = v NGAAL
=1
Using the generalised triangle inequality, we obtain,
Z |4 — /Dii| > Z( — /Pi%)

=1

=[1-B(p,q)|=1-B(p,q).

If we define the following distanc® (p, q) == 3", /@i |/@ — /pi| , then we may state
the following proposition as well.

PROPOSITION2.8. Assume thap;,, ¢;, , R are as above, then,

%V(p, q) < B(p,q) < 217‘/(19, q) .

The proof is obvious by Corollafy 1.3 applied for the mappirig) = 1 — v/%.

(2.12)

PROPOSITION2.9. Assuming thap;, ¢;, , R are as above, then,

(2.13) 0<1-M(p,q) <

2
< (T+1)2V(p,q),

whereM (p, q) is harmonic distance.
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PROOF Consider the mapping(t) =1 — then,g (1) =0,¢ (t) = —2_ and

t+_1’ C(t+1)

2
N := sup |¢' (t)| = .
te[r’R]! (@)l 1 1)

Applying Corollary{ 1.4, we can state that,

Safi- il < —2 v
G|l = 5—/=| < P q),
— % +1 (r+1)
which is clearly equivalent to:

(2 7 ’L 2
(2.14) Z alp— ol SV (p,q).

i=1 Di + qi (T’ + 1)
Using the generalised triangle inequality, we obtain (2.#3).

If we introduce the divergence measure:

i — ail
K3 ‘[ ) Y
Z G — )

wherel (t) = =1l ¢ > 0, then we have the following proposition.
PROPOSITION2.10. With the above assumptions,
2 ~ 2
2.15 L Vipq) <M(pq) < V (p,
(2.15) "1 1) (p.q) (p:q) 1 1) (pq)

Finally, considedeffreys’ distance

PROPOSITION2.11. Assume thal < r < Z— < R < o0, then,

R—r IR R—r —
2rR " ?_’27“1% —ln TR_I‘

R — /R R—r
ﬁ+l +'27’R hler—l’

(2.16) V(p,q)

< J(p,q) <

Vi(p,q).

PROOF. Consider the mapping (t) = (t —1)Int, t > 0, then,¢’ (f) = Int —  + 1,
g" (t) = 55+, which shows thay/ (-) is strictly increasing orf0, o) andg’ (1) = 0. It can be
seen that,

n= inf |¢'(t)| =min{lg' ()], |g' (R)[}

te[r,R|
R—r IR R+r —
'R +in ?_‘ 2rR —In TR_l‘
and
N = sup |¢g' ()] = max {|g" (r)],|g" (R)|}
te[r,R)
R—r IR R+r o7
R in _+‘2TR —ln _1‘
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In addition, as,

Iig (p: g Z% (——1)H (pl>‘ = |pi— il |Inp; — Ingj|
=1

_Z pi—q)(Inp;, —Ing) =1(p,q),

then by [1.6), we deduck (2]16G).
REMARK 2.3. The above inequality (2.16) is equivalent to

R—r /E
2rR T

(2.17)

J(p.q) — V(p,q)

R+r
< — — .
_’ R InvrR—1|V (p,q)

3. OTHER PARTICULAR CASES

Consider the modified Kullback-Leibler divergence.

PrROPOSITION3.1. Assume thatl < r < {IL <R<x (i=1,...,n), then,

(3.1) 0< KL (p,q)
R—r /RR
+Iny/— +
2 r’

PROOF Consider the mappings(t) = tint, f(t) = Int, t > 0andh () = gh —
tint +t.
We observe that,

R
< 7”—; +InVREr|| |[KL|(q,p) -

M = Sup, [ ()| = max {|h (r)], |h (R)[}

R—r RE
= +In

+ r—;R+lanRr”” )

,,ar

Applying Corollary{I1.2,

) 'qzl (%)'<MZ%

and since, by the generalised triangle inequality, we have,

i=1
n

E Di
i=1

and the inequality (3]1) is proved.

In (2)‘ = M|KL|(q,p)

(2

In <z—>’ > |KL(p,q)|=KL(p,q) >0,

We now compare the Hellinger discrimination wijtli Z|.
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PROPOSITION3.2. Letp;, ¢;, 7, R be as in Propositiof 3|1, then,

1|R—r \/E— T 7“—1—\/}_% r+ R
@2 VRV WVEEVE KL (¢.p)
21 2 9 9 9
1|R—r \/ﬁ— T r+\/ﬁ r+ R
Shz(P;Q)SQ 5~ 2\/_+‘f2 -5 |KL|(q,p)-

PROOF Consider the mappings(t) = 1 (vt — 1)2, f(t) =Int,t > 0with

h(t):zgl—a):l(\/i/;l)-t:%(ﬁq)\/%,t>o.

We observe that,

m = dnf 17 @) =min{|h ()], [p ()]}

te[r,R

1

2

2 2

R—r_\/}_%—ﬁ_'ﬁ+\/§_r+3
2 2

and, analogously,

M = sup [h(t)] = max {[h(r)|,|h(R)}

te[r,R)

1 R—r_\/}_%—\/F+ Vi+VR r+R

2] 2 2 2 2 '
Sinceg (t) > 0, we have,

Ly (p:a) = Iy (p,q) = 1* (p,q)
and then, by Corollary 12, we deduge (3.R).
REMARK 3.1. The above inequality is equivalent to
1|R—r \/ﬁ — /T
@B3) |PPwa-5 |5~ \/_] |KL(q,p)|
r+vVR r+R
S‘\/—Q — 5 |[IKLl(g,p).

We now compare the Chi-square distance Wit |.

PROPOSITION3.3. Letp;, ¢;, 7, R be as above, then,

(B34) [(R—r)(R+r—1)—|R+r— (R*+")|]IKL|(q,p)
<Dy (p,q) <[(R=71)(R+r—=1)+|R+7r— (R +7%)|] [KL|(q,p)-

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

INEQUALITIES FOR DISCRETE--DIVERGENCE MEASURES 69

PROOF. Consider the mappings(t) = (t — 1)%, f(t) = Int, t > 0, with i (t) = ?_8 =
2 (t —1).

m— inf |h(t) :%[27’(1—7’)+2R(R—1)—|2r(1—r)—2R(R—1)|]

te[r,R)
= [r—r2+R2—R—}r—T2—R2+RH
=R 1" —(R—r)— |R+71— (R*+r?)]
=(R—r)(R+r—1)—|R+r— (R*+r?)]

and
M= sup (h(t))=(R—r)(R+r—1)+|R+r— (R*+7%)].

te[r,R)
Sinceg (t) > 0, we have,
Lig (p,q) = Iy (p,q) = Dy (p,q)
and by Corollary 12, we dedude (B.4).

REMARK 3.2. The above inequality is equivalent to

(3.5) Dy (p,q) = (R—7) (R+7r—1)[KL[(q,p)|
< ’R+r— (R2+r2)‘ |[KL|(q,p) -
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CHAPTER 7

Some Inequalities for Lipschitzian Mappings

In this chapter various Jensen’s type inequalities for Lipschitzian functions with values in
normed spaces are given. They are applied to norm inequalities gndivergence measure. A
plethora of particular examples are provided involving various divergence measures considered
above.

1. SOME ANALYTIC INEQUALITIES

The following general result for Lipschitzian functions can be sted&@f [

THEOREM1.1 (Dragomir, 200447]). Let X,Y be two normed linear spaces with the norms
|-|| and|-| respectively. I’ : X — Y is L - Lipschitzian, that is,

(1.1) [F'(2) = F(y)l < Ll —y| forallz,y € X,

thenforallz; € X, p;, > 0with>™" p,=1(i=1,...,n), we have,

F (ZPz%) - ZPiF (;)

(1.2) 2 < Lk:{??.:}é—l | Azl Z pip; i — J] -

,j=1

PrROOF We follow the proof inlf7].
As F is L—Lipschitzian, we can choose= """ | p;z; andy = z; (j = 1,...,n) in (1.1)
to get,

(1.3)

F (Zpl:m) — F(z;)

n
<L Zpi%‘ — X
i=1

=1L Zpi(xi—xj)
i=1

Multiplying (.3) by p; > 0 and summing ovej from 1 to », we deduce,

(1.4) ij F <sz$z> — I (%)

By the generalised triangle inequality we have,

n
< LY pillei— .
=1

<Ly pips e — .

,j=1

(1.5) ij F (ZPN&) — F(z))| = |F <sz$1> - ZP;’F (25)|-
J=1 i=1 i=1 j=1
It is apparent that,
(1.6) > owillei -l =2 Y pipyllay; — i
i,j=1 1<i<j<n

70



INEQUALITIES FOR DISCRETE--DIVERGENCE MEASURES 71

and that, for < j,
7j—1

Tj—x; = g Axy,

k=i
whereAz,, := z;.1 — x} IS the forward difference.
Applying the generalised triangle inequality we have,

(1.7) > pipjllzs — @

1<i<j<n

j—1
< > ) l1Am

1<i<j<n k=i

= Z Dipj

7j—1
E A[Ek
1<i<j<n k=i

< Z pip; (J — Z)k max [ Az

1<i<j<n B

= max |[[Ax Z pip; (j — 1)

k=1,....n—1
1<i<j<n

1 - -
=5 max Az leipj g =1l
1,j=

Using (1.4) - [(1.V) we deducg (1.9.

COROLLARY 1.2 (Dragomir, 200447]). With the above assumptions ferandz; (i = 1,...,n),
we have,

n?—1

3n  k=1,..,n—1

(1.8) <L.

F (%Z:::) —%ZF(:@)

PROOF We choosg; = * (i =1,...,n) in (1.2) and compute

n

I=>"li—jl.

ij=1
Observing that,

n

Dli=gl =D li=gl+ 3 li=gl=3 =i+ >, (-1

%
j=i+1 j=1 j=i+1

. . 1 n
S >+§j—z’(n—i)

=i —(n+1)i+ = 5

nin+1) n*—-1 41\’
+ 12— .
2 4

It follows that,

Izi(iﬁ—ﬂ) :i{f—(nﬂ)ﬁ@}

i=1 \j=1 i=1
(m—1)n(n+1)
= : ,

and inequality[(1,8) is proveda.
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The following corollary provides a counterpart of the generalised triangle inequality in

normed spaces.

COROLLARY 1.3 (Dragomir, 200447]). Let (X, |-||) be a normed space and € X,
pi >00G=1,....,n)with> " p; =1, then,

(1.9) 0< Zpl l|lx:]| — Zplac2 § _max_ HAka Z pip; |7 — 1

.....

4,j=1
and in particular,

(1.10) 0< Y il = ||> =
=1 =1

The proof is apparent from Theor¢m|1.1 on choodthgX — R, F (X) = ||z|| which is
L—Lipschitzian withL = 1 since,

=1,...,

=] - y| forallz,ye X.

2. APPLICATIONS FOR f-DIVERGENCE

The following theorem holdA[7).

THEOREM2.1 (Dragomir, 200447]). Letf : R, — R be L—Lipschitzian orR , then for
all p, g € R, we have the inequality,

Iy () - an(P)‘

(2.1) o

Pk+1

Z ¢ig; li — jl -

7,0=1

PROOF. We apply inequalit2) foF" = f andp; = & x; = P to get,

(E) - smar (2)

—1]Qk+1

DPk+1
1| Qr+1

Z%% |Z_]|

nogg=1

from where we obtair (2|1

COROLLARY 2.2 (Dragomir, 200447]). Let f : R, — R be L—Lipschitzian and nor-
malised, then for any, ¢ € R’ with P, = @,,, we have,

Pr+1

Z 0iqj i —

i,j=1

(2.2) 0<|If(p,q)| < L max

L)

=1 | Qr+1

COROLLARY 2.3 (Dragomir, 200447]). Let f : R, — R be differentiable convex, with a
bounded derivative, that i§,/’|| . :=sup |f’ (t)| < oo, then,
t>0

(2.3) 0<1I;(pq)— Quf (g )
Pk+1
<., ma s LS i

2,7=1
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Moreover, if f is normalised and®, = @,,, then,

Pk+1 Pk

dk+1 qk

(2.4) 0<1I;(p,q) <[ flloe,_max

..... n—1

1 .
@Z%’%V‘JL

4,j=1

We note that, for the convex mappiridt) := —log (¢), t > 0,

(2.5) Iy (p,q) = gqi {— log <§—ﬂ = Zz:;%‘ log (]q;) = KL(q,p)-

PROPOSITION2.4. If p,q € R’} satisfies the condition,

gk
then,
Qn
(2.7) 0< KL(q,p) ~ Qnlog { 5~
1 1 & _ '
< Ek:{?%_l ’Tk+1 — rk\ —n Z q:q; ]z —]\ .

ij=1
PROOF As f (t) = —log (t), thenjf’ (t) = —1, ¢ > 0. Clearly, f’ in the intervaljm, co) is
bounded and| f'[| . = sup |%| =L < oco. Applying the inequality3), we dedu.i).

te[m,o00)
REMARK 2.1. If we assume that, = @,,, thenm < 1 and [2.7) becomes,
1 1 < o
(2.8) 0<KL(gp) < max |rgss — 7y 0. Zlqz-qj i —jl.
1,]=

We also know that forf (¢) = tlogt, t > 0, the f-divergence isf (p,q) = KL (p,q) =
> i—1pilog (%)

The following proposition also holds.

PROPOSITION2.5. Letp, ¢ € R} satisfy the condition
(2.9) O<m<ry,<M<oo foralk=1,... ,n

We have then the inequality,

(2.10) 0< KL(q,p) — P,log <g>

< max {[log (M1)], [log (ml)}

1 o o
X k:?}%_l k1 — 7] 0. 221 a5 |i —Jjl -
1,]=
PROOF For the mapping (¢) = tlogt, t > 0, f' (t) = log (t) + 1. On the intervalm, M]
we have,

log(m)+1< f'(M)<log(M)+1, te[m,M].
Applying (2.3), we deduce (2.1.0j.
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REMARK 2.2. If we assume that, = Q,,, thenm < 1 < M and [2.1D) becomes,

(2.11) 0< KL(q,p)
< max {|log (M1)], [log (ml)|}

< max [ -l zqij il
..... >

Let f (t) = (Vi — 1)2,t > 0, thenI; gives theHellinger distance,

h* (p,q) = ZXJ_ V)

i=1
Using Corollary 2.B, we can state the following.

PROPOSITION2.6. Letp, ¢ € R} satisfy the conditior] (2}9), then we have the inequality,

(2.12) 0<h2(pq (\/_ @)2

-1 VAT -
NG

< max

X max |rk+1 — Tk] — E ¢q; 11— jl.
k=1,.... n -
7,j=1

PROOF As f (t) = (V1 2 >0, thenf’ (t) =1 — \/Lz If we consider the mapping/
restricted to the intervdin, M] C (0, 00), then we observe that,
N Lt m, M)
o Vm vM
and thus
-1 [V -]

£l < max

vmo /M

REMARK 2.3. If we assume that, = @),,, thenm < 1 < M and [2.1P) becomes,
(2.13) 0 <R’ (p,q)
1y [V 1]

vm VM

< max

X max \rkﬂ — rk] Z qiq; |1 —
k=1,.., Qn Pyt

Consider the mapping () = t*, « > 1,t > 0 and thex—order entropy of Rényb,, (p, q) .

PROPOSITION2.7. Letp, ¢ € R’} be such that,
(2.14) O<r,<M<o forallk=1,...,n,
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then,

(2.15) 0< Dy (p,q) — PrQ, "

<aM*! |T’k+1—7”k|—2%%|l

""" =1

In particular, if P, = Q,,, thenM > 1 and [2.15) becomes,
(2.16) 0< Da(p,q) — @n

<aM' max e — il o Z Gig; i — jl -

..... nij 1

The proof is apparent by Corollary 2.3 applied foft) = ¢~.
Finally, if we consider the*—distance D, - (p, ¢), obtained from the Csiszgrdivergence
for f (t) = (t — 1), ¢ > 0, we have the following.

PROPOSITION2.8. Letp,q € R fulfill the properties of[(2]9), then we have the reverse
inequality,

(2.17) 0< Dy (p.q) - Q (Pn = Qn)*
< 2max{|m —1|,|M — 1|}
X max ke — el o Zlqij i —
1,7
In particular, if P, = @, thenm <1 < M and [2.17) becomes,
(2.18) 0< Dy (p,q)

<2max{l —m,M — 1}

X max_ [reey = 7el 5 Z 495 i — Jj| -
i] 1
3. THE CASE OF [{—NORM

The following general result can be stated as WE&I| [

THEOREM3.1 (Dragomir, 200447)). Let X,Y be two normed linear spaces with the norms
|-|l and |-| respectively. IfF : X — Y is L - Lipschitzian, then for all:; € X, p; > 0 with
Yoiypi=1(i=1,...,n), we have,

F (i%%) - ipz‘F ($z>

ProoOF We follow the proof in 7).
As Fis L—Lipschitzian, we can state (see the proof of Thedrerh 1.1) that

F (Z pixi) ij :L']
=1

(3.1)

n n—1
<23 p(1-p) Y Az,
=1 k=1

(3.2) < 2L Z pip;j ||z — 4| .

1<i<j<n
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Now, observe that, for < j, we have,

j—1
x; = § Awka
k=i

whereAz;, := z;.1 — x} IS the forward difference.
As in the proof of Theorern 1].1, we have,

(3.3) > pwjllzs — i

1<i<j<n
E DiDj E Awk
1<i<j<n

< Z Dipj Z [ Azl

1<i<j<n k=1

I= > pwj

1<i<j<n

j—1
< Y )y A
k=1

1<i<j<n

Putting

we observe that,

1—2%]9]—2 > pzp]+2pl—2f+2pl

2,j=1 1<i<j<n

from which we deduce,

= %lei(l —pi)-
Using (3.2) - [(3.B) we obtain (1.2j

COROLLARY 3.2 (Dragomir, 200447]). With the above assumptions fBrandz; (i = 1,...,n

n—1
1
(3.4) n

1 1
The proof is obvious by the above theorem, choo&ng (i=1,...,n).

The following corollary provides a counterpart of the generallsed trlangle inequality.

COROLLARY 3.3 (Dragomir, 200447]). Let (X, |-||) be a normed space and € X,
pi >0(G@=1,....,n)with> "  p, =1, then,

k=1

n—1

<3 n—p) Y A
=1

k=1

(3.5) 0<> pillal -
=1

and in particular

n
D

i=1

(3.6) 0< S Jlll -
=1

n—1
<(n=1)) [l Az
k=1

The proofis by Theorefn 3.1 on choosifig X — R, F' (X) = ||z which isL—Lipschitzian

with L = 1 since
lz]l = [lyll] < llz —y|| forallz,ye X,
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4. APPLICATIONS FOR f-DIVERGENCE
The following theorem hold[/].

THEOREM4.1 (Dragomir, 200447]). Let f : R, — R be L—Lipschitzian orR ., then for
all p,q € R7,

1

(4.1) ‘ff(z%) an< )‘ anq’ ! :Z

=1

Dk+1

qk+1

PROOFR We apply inequalitl) fof' = f andp; = —n x; =2 (i=1,...,n)toget,

/(@) -z (3)| = ™

from which we obtain[(4]1)s

n—1
Pr+1

k+1

k=1

COROLLARY 4.2 (Dragomir, 200447]). Let f : R, — R be L—Lipschitzian and nor-
malised, then for any, ¢ € R, with P, = @,,, we have,

n—1
Prk+1

qk+1

.2) 0< 110 a) < =3 i (Qu -

" oi=1 k=1

COROLLARY 4.3 (Dragomir, 200447]). If f : R, — R is differentiable convex, with a
bounded derivative, then,

P,
(4.3) 0< Iy () - an(Q )
Hf/HooZ — Pk+1
i1 k 1 1 dk+1
Moreover, if f is normalised and®, = @,,, then,
(4.4) 0<1;(pq) < ”f”ooz nzl D p’“'.
AP Qn : dk+1 dk

The following proposition for the Kullback-Leibler distance holds.

PROPOSITION4.4. Letp, ¢ € R} satisfy the condition,

(4.5) O<m<r =2 forallk=1,....n
dk
then,
(4.6) 0 < KL(q,p) — Qnlog (%)
n—1

>~ aniZQZ n z ‘Tk+1_rk|-

1

T

PROOF. As f (t) = —log (t), thenf’ (t) = —1,¢ > 0, f’ in the intervalim, co) is bounded
and||f'|| . = sup |} =2 < oco. Applying the inequality3), we dedu ).

te[m,o00)
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REMARK 4.1. If we assume tha®, = @,,, thenm < 1 and [4.6) becomes,

n—1

an;Qz n q; Z’Tk+l_rk‘-

k=1

4.7) 0< KL (q,p)

We also know that foyf (¢) = tlogt, t > 0, the Csiszayf-divergence is,

f(p,q) =KL (p,q) Zp110g<>

The following proposition also holds.

PROPOSITION4.5. Letp, ¢ € R} satisfy the condition,

(4.8) O<m<rp,<M<oo forallk=1,....n
then,
P
(4.9) 0< KL(q,p)— Plog(Q)
max {[log (M1)], [log (ml)|} & -
< {llog (M0)], Jlog ( |}ZQ1$(Q7L_QZ') Thy1 — T -

B Qn

PROOF. For the mapping (t) = tlogt,t > 0, we havef’ (t) = log (t) + 1. On the interval
[m, M] we have,

i=1

i

1

logm+1< f'(t) <logM +1, te€[m,M]
and hence
| (t)] < max {[log (MI)|, [log (ml)[}, t & [m,M].

Applying (4.3), we deduceg (4.9
REMARK 4.2. If we assume that, = @, then [2.1D) becomes,
(4.10) 0 < KL(q,p)
max {[log (M1)|, |log (ml)|} <& —
< tllos QM flog ( )‘}ZQi(Qn_Qi)Z|rk+l_Tk~
" k=1

Let f (t) = (Vi — 1)2, t > 0, thenI; gives theHellinger distance

h* (p,q) = Z(\/_ Vi),

=1
Using Corollary 4.8, we may state the following proposition.

PROPOSITION4.6. Assume thap, ¢ € R} satisfy the conditior{ (4}8), then,

(4.11) 0<R2(p.gq (\/_ \/@)2

=1

a1
- vmo VM
n—1
Z(b n — i Z|rk+1_7"k-
"z’ 1 k=1
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PROOF As f (t) = (Vt—1 2 >0, thenf’'(t) =1 — \/Lz If we consider the mapping/

restricted to the intervain, M] C (0, co), then we observe that,

W—_Hgf’(t)SM7

N Ve t € [m, M]

and thus

-] VAT -1
NG

1l < max

REMARK 4.3. If we assume that, = @Q),,, thenm < 1 < M and [2.1P) becomes,
(412)  0<A*(p.q)

n n—1
SmaX{li/\ﬁ/m,%l}é;qz‘(Qn—qz‘);Vkﬂ—m .

Consider now the mapping(¢) = t*, a > 1,¢ > 0.

PROPOSITION4.7. Letp, ¢ € R"} be such that,

(4.13) O<rmy,<M<oo forallk=1,...,n,
then,
(4.14) 0< D, (p.q) — PIQy°

n n—1
aq 1
< aM IQ—E Qi(Qn_Qi)E Pk — e -
" oi=1 k=1

In particular, if P, = Q,,, thenM > 1 and [4.14) becomes,
(415) 0< Da (pa q) - Qn

n n—1
a1 1
<aM 1Q_ E ¢ (Qn — @) E Th1 — k|-
noi=1 k=1

The proof is obvious by Corollafy 4.3 applied f(t) = ¢“.
Finally, if we consider the?—distanceobtained from the Csisz&rdivergence forf (t) =
(t — 1)*, then we can state the following.
PROPOSITION4.8. Letp, ¢ € R fulfill the conditions of[(2.9), then,
1

(418)  0<De(p.g) = 5 (P =Qu)’
1 n n—1
< 2max{jm— 1, |M = 1} 5= (Qu — @) > [ress — 7l
=1 k=1
In particular, if P, = Q,,, then (4.1p) becomes,

(4.17) 0<D,e (p,q)

S
—

1 n
g2max{1—m,M—1}—ZQi(Qn—%) Thg1 — i -

=1 1

e
Il
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5. THE CASE OF [,—NORM

Finally, the following general result may be statdd]f

THEOREMS.1 (Dragomir, 200447]). Let XY, F, (p;)
have the inequality:

F (Z%%) - ZPiF (%)

be as in Theore@ 1, then we

i=1n

(5.1)

1
n n—1 P
. a1
<L ppili—ils (E I\Akap) :
k=1

ij=1
1 1 _
wherep > 1, s+L=1

PROOF We follow the proof inlf7].
As in the proof of Theorern 1].1, we have,

(5.2) F(me) Zp] ()| <2L Y pipjllay — il
=1 1<i<j<n
Also,
j—1
(5.3) > pwillz =l <Y ppy ) 1Az
1<i<j<n 1<i<j<n k=i

Using Holder’s discrete inequality, we may write for- 1, > + 2 = 1,

gumu < (Z 1); (Zm)
(j—i)s (Z ||Axk||”)
(j— i) (Zumkup)

and then, by{(5]3),

SO il —wll <> pipi (G—4) (Z ||Axk||p>
1<i<j<n 1<i<j<n

n n—1 E
1 R
-3 Z pip; | —ils (Z ||A$k||p>
k=1

ij=1

»Q\»—t

Using (5.2) we deducé (5.1).

COROLLARY 5.2 (Dragomir, 200447]). Let (X, |-||) be a normed space and € X,
pi>0@G=1...,n)withd> " p;, =1, then,

1
n—1 P
sza:z < Z pip; i — il (Z ||A$k||p>
k=1

2,7=1

(54) 0< sz ||xz|| -
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6. APPLICATIONS FOR CSISZAR f-DIVERGENCE
The following result for Csiszaf-divergence hold4/].

THEOREM®6.1 (Dragomir, 200447]). Letf : R, — R be L—Lipschitzian orR,, then for
all p, ¢ € R, we have the inequality:

Iy (pra) - an(P)‘

(6.1) o

D=

Pk+1
qk+1

I n n—1
SQ_ZQZQJ|]_Z’q<

i,7=1 k=1

wherep > 1,1 4+ 1 = 1.
PROOF We apply.) forl" = f, pi = &=, @i = - 1o get,

i(%)- n;m\

Pk+1 Pk

1
p\ P
- 9

qk+1 qk

n—1
4G . L
<oy gt (3
ij= 1 n k=1
from which we obtain[(6]1)x

COROLLARY 6.2 (Dragomir, 200447]). Let f : R, — R be L—Lipschitzian and nor-
malised, then for alp, ¢ € R"} with P, = (),,, we have,

1

n n—1 p\ P
c . gL Pk+1 Pk
(6.2) 0<|If(p, )| < == > aigili—il° — =
s, 9) nuzl i | ; Ak+1 Gk

COROLLARY 6.3 (Dragomir, 200447)). Let f : R, — R be differentiable convex with a
bounded derivative, then,

P
(6.3) 0< I (pg) - an< )
@n
1 1
11/l o —|p ’
|| || Z%% - ket
i1 iy | dk+1
Moreover, if f is normalised and®, = @,,, then,
1
f’ 11/ loo — |p ’
(6.4) 0<1Iy(p.q | ” Z gig; | — il =
i1 o | Ak+1

REMARK 6.1. Further inequalities for particular divergences as in the previous two sections
can be stated, but we omit the details.
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CHAPTER 8

Reverses of Jensen’s Inequality ang-Divergences

1. INTRODUCTION

If z;,y;, € Randw; >0 (i =1,...,n)with W, :=>"" | w; = 1 then we may consider the
CebysSev functional

(1.1) Tw(z,y) = Zwi%‘yi - Z WiT; szyz
=1 =1 =1
The following result is known in the literature as t@elss inequality
1
provided
(1.3) —o<y<r<I'<oo, —c0<di<y; <A<
fori=1,....n.

The constang is sharp in the sense that it cannot be replaced by a smaller constant.
If we assume thatoo < v < z; <I' < oo fori =1,...,n, then by the Griss inequality
for y; = x; and by the Schwarz’s discrete inequality, we have

n n n n 2%
09 Yuwla-Ywn)< S (Sun) | <jwon
i=1 j=1 i=1 j=1

In order to provide a reverse of the celebrated Jensen’s inequality for convex functions, S.S.
Dragomir obtained in 20024F] the following result:

THEOREM 1.1. Let f : [m, M] — R be a differentiable convex function @m, M) . If
z; € [m,M]andw; >0 (i=1,...,n)withW, :=>""  w; = 1, then one has the counterpart
of Jensen’s weighted discrete inequality:

(1.5) 0< sz‘f (zi) — f <Z wixi)

REMARK 1.1. We notice that the inequality between the first and the second tefm]in (1.5)
was proved in 1994 by Dragomir & lonescu, ség|[

82
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On making use of (1]4), we can state the following string of reverse inequalities

(1.6) 0< Zwl f () (Z wm)
<sz ;) i_zwif/<xi>zn:wixi

< SO0 = 1 ) Y = Y wie

=

IN

SO0 = )] | S wirt - (Z wjxj)

1 /! /
< 1D = (m)] (M = m),
provided thatf : [m, M| C R — Ris a differentiable convex function dm:, M), z; € [m, M|
andw; >0 (i=1,....,n)with W, :=>"" w; =1

REMARK 1.2. We notice that the inequality between the first, second and last term from
(1.6) was proved in the general case of positive linear functionals in 2001 by S. S. Dragomir in
[39].

2. REVERSE INEQUALITIES

The following reverse of the Jensen’s inequality holds:

THEOREM 2.1 (Dragomir, 201359)). Let f : I — R be a continuous convex function on
the interval of real numberg andm, M € R, m < M with [m, M] C I, I is the interior of/.
If z; € [m, M]andw;, >0 (i=1,...,n)withW, :=>""  w; =1, then

(2.1) 0< Z wi f (x;) (Z w2x1>
(M =370 wir) (o, wiri —m) -
< U —m Vs <2wixi;m,M>

< ( Zz:l Wy ) (Zz_l W;L m) sup \I/f (t, m, M)

N M —m te(m, M)

JL fi
( S ) (S O

< 3 (M —m) [ (M) = £ (m)]
whereV (-;m, M) : (m, M) — R is defined by

o TOD =) £ 0= fom)

U, (t
s (tm Mt f—m
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We also have the inequality

(2.2) 0< szf (x;) (Z wzxz>
(M = Sy wer) (i wis = m) (Z - M)

IN

M—-—m ’
i=1

(M —m) Uy (Zwixi;m,M>

=1

IN

VAN
»J>I»— g I O

(M —m) sup VY (t;m, M)
te(m,M)

(M —m) [fL (M) = fi (m)],
provided thatzz.:1 wix; € (m, M) .
PROOF By the convexity off we have that

(2.3) Zwif (x;) — f (Z wixi>

— M—-—m

m (M =370 wiry) + M (300 wivg —m)

- i )

_ (M — Z?:l w;z;) f (m) + (Zi—l wiz; —m) f (M)

M—m

m (M =370 wiry) + M (30 wiwi —m)\

—/ ( N ) = B.

By denoting
At ar) o= EZTADHOLZOTE) )y e,
we have

t—m)f(M)+ (M —1t)f(m)— (M—m)f(t)

(24) Af(t;m,M) =

M—-—m
_t=m) fM)+ (M —t) f(m)— (M —t+t—m) [ ()
M—m
_E=m)[f (M) - )] - (M —t)[f(t) — ] (m)]
M—-—m
= (M;j)_(tm_m)\llf(t;m,M)

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

INEQUALITIES FOR DISCRETE--DIVERGENCE MEASURES 85

foranyt € (m, M).
Therefore we have the equality

(M =370 wimy) (3o, wir; —m) - ,
(2.5) B U \a ;wixi,m,M
provided thad """ | w;z; € (m, M).

For > | w;z; = mor Y ! wz; = M the inequality [(2.1) is obvious. F-" | wz; €
(m, M), then

Uy (Zwixi;m,M) < sup Yy (t;m,M)

i=1 te (m,M)

B LUES O UEN )
te(m,M) | M —t t—m
[f (M) — f(2) ft)—f(m)
< o (PEO) 4 |SHO 0
B [f (M) — f(2) . ft)—f(m)
N te?:i%) | M-t } B te(lrrnl,fM) [ t—m }
= fL (M) — f, (m)

which by (2.3) and[(2]5) produces the desired re§ult (2.1).
Since, obviously

(M — Z?:l w;T;) (Z?:l w;T; —m) 1
M—m 4

then by [2.8) and (2]5) we deduce the second inequility (2.2). The last part isgclear.

COROLLARY 2.2. Let f : I — R be a continuous convex function on the interval of real
numbers/ andm,M € R, m < M with [m,M] C I. If x; € [m,M], then we have the
inequalities

] — ] —
(2.:6) osggf@i)—f(ﬁgxi)
_ 1N AN ER WL — n
<<M n i=1xl)(n2i=lxl m>q,f<%;xi;m,]\/[>

- M—-—m

(=45, ) (A5 = m)
< i n £ Uy (t;m, M
- M=m g 1 B M)

1< 1 < " (M) = fl(m

§<M‘52‘“> (ngi—m)f ST
1
4
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and

1 — 1 —
(2.7) 0< Eizlf(xz’) —f (Ezzlxz>
M — 23t w) (> @ — IR
( n l—lw)(nz 1!E m>ﬁjf<g;$wm7M)

M—-—m

1 1 O
SZ(M—m)\I/f (Ezzlxz,m,M>
1
< —(M—m) sup Yy(t;m, M)
4 te(m,M)
1

< 5 (M —m) [f (M) = fi (m)],
where 3" x; € (m, M) .

REMARK 2.1. Define the weighted arithmetic mean of the positiveplex = (1, ..., z,)
with the nonnegative weights = (wy, ..., w,) by

1 n
A, (w,z) = W sz‘%‘
™oi=1

whereW,, :=>""  w; > 0 and the weighted geometric mean of the santaple, by

" 1/ W
G, (w,x) = (H x?’) :
i=1

It is well know that the following arithmetic mean-geometric mean inequality holds true
A, (w,z) > G, (w,z) .

Applying the inequality between the first and third term[in|(2.6) for the convex fungtioh=

—1Int,t > 0 we have

2.8) 1< % < exp {ﬁ (M = A, (w,2)) (A, (w,z) — m)

< 1(M —m)*
exp |-————
> eXp 4 mM )

provided that) < m < x; < M < ocofori e {1,...,n}.
Also, if we apply the inequality (2] 7) for the same functipmve get that

A (w, x)
@9 'S G

M M—Ap(w,z) m Ap(w,z)—m
A (w, ) An (w, )

1 (M — m)2]

— 1 (M—m)

< exp

4 mM

The following result also holds:
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THEOREM 2.3 (Dragomir, 201359]). With the assumptions of Theorém|2.1, we have the
inequalities

(2.10) 0< sz ;) (Z wZ:Q)

< 2max _ Zi:l wimi’ Ei:l W;T; — M
M—m M —m

y [f(m)Jrf( ) f(m+M>]

2

< %maX{M—Zwixi,Zwixi —m} [f2 (M) = [, (m)] .

PrROOF First of all, we recall the following result obtained by the author5€] that pro-
vides a refinement and a reverse for the weighted Jensen’s discrete inequality:

(2.11) n min {p;} [%Zf ;) ( Zx)]

.....

.....

7777777777

" Forn = 2 we deduce from(2.11) that

9
Stf(w)+(1—t)f(y)—f(fl‘+(1—t)y)

< 2max {t,1 —t} {M -/ (zﬂ)]

foranyz,y € C'andt € [0,1].
If we use the second inequality jn (2]12) for the convex funcfion’ — R andm, M € R,
m < M with [m, M] C I, we have fort = A“AZJ%%M that

(2.13) (M — Z?:l w;x;) f (”;}t 5712?_1 wix; —m) f (M)
m (M =0 wixy) + M (Y wir; —m)
-1 ( M —m )
< 2max { M =3 wilti )iy witti — m}

M—m ’ M—m

y [f(m)Jrf( ) f(erM)}.

2
Utilizing the inequality [(2.8) and (2.13) we deduce the first inequality in {2.10).

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

88 S. S. IRAGOMIR

Since

f(m)ﬂ;f(M) —f (m—gM)
M —m
L) - f () f(E) — f(m)

4 M m+M m~+M
2

and, by the gradient inequality, we have that

and o
f = _f /
( W%M) L 11w,
then we get
Fo)+f(M) _ p (mAM 1
(2.14) 2 M_j;( 2 )éz[f’_(M)—fi(m)}-

On making use of (2.13) and (2]14) we deduce the last pdt of| (a10).

COROLLARY 2.4. With the assumptions in Corollafy 2.2, we have the inequalities

(2.15) 0< %Zf(xi) —f (%Zx)

<2max{ _%ZL%?%ZL%—m}
< - L
(2.16) « {f(m);f(M) _s <w)]

1 I 1
< §max{M— E;m“ﬁ;xl_m} LfL (M) — fi (m)] .
REMARK 2.2. Since, obviously,

M =370 wix; Yoo wim; —m <1
M—m ’ M—m -
then we obtain from the first inequality in (2]10) the simpler, however coarser inequality, namely

217) 0< szf (1) (Zw,%) <9 [f(m);f(M) _f (#)} .

This inequality was obtained in 2008 by S. Simic[i2f].

REMARK 2.3. With the assumptions in Remark]2.1 we have the following reverse of the
arithmetic mean-geometric mean inequality

A, (w,x) A(m, M) 2max{ &
(218) 'S Calw,a) (G<m, M))

whereA (m, M) is the arithmetic mean whil& (m, M) is the geometric mean of the positive
numbersn and M.

An(w ) An(w z) m}

b
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3. APPLICATIONS FOR THE HOLDER INEQUALITY
If z;,y; > 0fori € {1,...,n}, then theHolder inequalityholds true

n n l/p n 1/q
S < (zasf) (zyf) |
=1 =1 =1

wherep > 1, -+ L =1,
Assume thap > 1. If z; € Rfori € {1,...,n}, satisfies the bounds
O<m<z <M<oforie{l,..n}
andw; >0 (i=1,...,n)with W, :=>""  w; > 0, then from ) we have

Zn—l wiz‘p ZTL_I W;Z; P
31 O < 1= 1 1=
(3.1) < =97 W
Z?:l W4 243 E?:l W; 243
(21 - B (M= —m)
S M —m BP (TTL, M)
Mpfl_mpfl Zn Wiz Zn Wz
<p— | M- =1 "Y1~ i=1 Wici
~p M—m ( W, > < W, m>
1
< 17 (M —m) (MP~" —mP™ 1),

whereV,, (-;m, M) : (m, M) — R is defined by

MP — P P — mp
Wy (G, M) = == = 5 —

while

(3.2) B,(m,M):= sup ¥,(t;m,M).
te(m,M)

From (2.2) we also have the inequality

i 27 n L\ P
(3.3) 0< Dict WiZ B <Zz_1 wzzz)

W, W,
1 r i 2 1
< 1 (M —m)W¥, (%;m,M) < Zp(M —m) (MP~' —mPh).

PROPOSITION3.1 (Dragomir, 20139)). If z; > 0,4; > 0fori € {1,..,n},p > 1,141 =
1 and there exists the constantsl” > 0 and such that

N < ”;”jl <Tforie{1,..n},
then we have
(3.4) 0< Zim % _ (ZL fcy>p
B Z?:l yzq Z?:1 yz(‘l
< B, (7,T) (F . Z?zl $z‘yz‘) (Z?:l ZiYi 7)
- I'—» > i Yy D i Yyl
< pr*l - (F i fz%) <Z?1 TiYi 7)
B I'—~ Z?:l Yy Z?:l yi
1 _ _
< pC=7) (=97,
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and

(3.5) 0< 2 T _ (Z?:1 'riyi>p
DY D1 Yi

1 Zﬁ_ Z;Yi
<-T-7)V (+
4< ) P Zi:l yz‘q

whereB, (-,-) and ¥, (-; -, -) are defined above.

1
v, F) <2 (T=7) (TPt — 4771y,

PrRoOOF. The inequalities (3]4) anf (3.5) follow from (8.1) and {3.3) by choosing

Z;

q—1
Y;

2 = andw; = y;.

The details are omittedy

REMARK 3.1. We observe that for= ¢ = 2 we havel, (¢;v,I') =I'—~v = By (v,I') and
then from the first inequality in (3.4) we get the following reverse of the Cauchy-Bunyakovsky-
Schwarz inequality:

n n n 2
36) Sy e (z y)
1 =1 =1

i=

N 2
< (r i ”) (Z"—l SO v) P
a Z?:l y; Z?:l Y7 i1 '

provided that:; > 0, y; > 0fori € {1,...,n} and there exists the constantd” > 0 such that

ygﬂgfforié{l,...,n}.

)

COROLLARY 3.2 (Dragomir, 201339]). With the assumptions of Propositipn|3.1 we have
the following additive reverses of the Holder inequality

n /p s n 1/q n
@) 0§<fo) (ny) S
=1 =1 =1

< [Bp (7, F)} v (F _ 2 it xzyz) Vp (Z?:1 Tilfi 7) Hr
L I=n D i ¥y > i Vi

n

q

X E Yi
i=1

— — 1 n 1 n 1
< i (Fp L p 1) /p (F - Sy /p S _ /p
B I'—~ D1 Yi D1 Yi

n

x>yl

=1

1 _ TR “
ST e ) K (A L R W

i=1
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and

n /p / n 1/q n
(3.8) og(Z:ﬁf) <Zy3) —inyi

i=1

1 1/p \q,1/p Zz 1 LilYi
< g =) (o 1) Yoo

7 1y1

1
< = ) Sy

wherep > land + & = 1.

PROOF By multiplying in (3.4) with(3"7", ?)” we have

n n p—l n p
() - (3w
i=1 i=1 i=1
n n n p
< By, (7.1) T i1 Tili D i1 Tili q
- T — - n q n a — 7 Z Y;
v D1 Ui > i1 Vs i1
e e i TiYi i1 Tili )

<p (F—Zﬁlq><zzlq-“y > oyt

I'—~y >oic1 Y > i1 Vi ;

=1
1

< @ =) (7 =) (Z%) :

which is equivalent to

(3.9) Z P (Z yg>

n p n n
Z 2i; 1 Bp (’77 F) (F . Zi:l fz%) (Zzl XTiY; _ 7)
P I'—~ > ¥ D ¥y

n p n n
Z TV +p (F _ Zi:l xWﬁ) (Zi—l Lili 7)
i=1 Z:L:l yi Z?:l yi
P

n p n p
1 -1 -1
< (Z 1’1%) TP (O =) (TP =977 (Zyzq) -
Taking the powei /p with p > 1 and employing the following elementary inequality that state

that forp > 1 anda, 5 > 0,
(Oé—{—ﬁ)l/p S al/p +ﬂl/p
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we have from the first part of (3.9) that

n /p s 5 -2
(3.10) (Z xy) (Z y)

T 1/p " 1/p (N 1/p
< szyz { 0. )} (F L ) (—ZZ;”? - 7)
-7 Zi:l Y; Zi:l Yi
<>l
i=1

and sincel — 1 = ! we get from|(3.1p) the first inequality i.7). The rest is obvious.
The inequality|(3.8) can be proved in a similar manner, however the details are onpitted.

If z; e Rfori € {1,...,n}, satisfies the bounds
0<m<z<M<oforie{l,..n}

andw; > 0 (i=1,...,n) with W, := > w; > 0, then from [(2.1D) we also have the
inequality

Sowiz (Y wiz\'
3.11 0 < == L =
( ) - W, w.,

P P P
SQ[m ;M _(m—;—M)}

M — P 1“’221 Z%Il/wizi —m
X max Wn -

M—-—m =~ M-m

p (MP~' —mP~") max {M 2 Wit L W m} :

_1
2 W, = W,

From the inequality{ (3.11) we can state:

PrRoPOSITION3.3 (Dragomir, 201359]). With the assumptions of Proposition|3.1 we have

(3.12) 0< i1 Ti (Z?l l‘iyi)p
> Y > i1 Yi

p n
VP;FP - (’YJ2FF) Zz 1 lyz 21:1 TilYi
<2 max< [ — == =Ly
I'—~ Zi:l yi zi:1 Y;

P! ,Ypfl max {F . Zz:l 131‘311‘7 2121 LilYi 7} .
( ) Zizl y! D i Yyl

Finally, the following additive reverse of the Holder inequality can be stated as well:

l\DI»—
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COROLLARY 3.4 (Dragomir, 201359]). With the assumptions of Propositipn|3.1 we have
n p s n 1/q n
(313)  0< (Z x) (Z y?) =D T
=1 =1 =1
YP4TP (ﬂ)p 1/p
< ol/p | 2 2

['—~

Zﬁ—l xzyz) 1p (Zﬁ—l TilYi ) e -
X max r— = Y =t iy yl
{ ( 2im1 Vi D1 Yi ZZI
1 T e T e
< b/ max (F e ) , (—ZZ# - 7)
24P > i1 Yi > i1 Yi

% (prl _ 7pl)l/piyzg_
i=1

REMARK 3.2. As a simpler, however coarser inequality we have the following result:
n p s p 1/q n
(3.14) 0< (Z x) (Z y?) =z
=1 =1 =1

P4 TP v+ T\P]HP &
<our. |2 — q
< { : (2 )} >l

wherez; andy; are as above.

4. APPLICATIONS FOR f-DIVERGENCE

Consider thef-divergence

(4.1) It (p,q) == Zqu (%)

defined on the set of probability distributiopsg € P", where f is convex on(0, co). It is
assumed thaf (u) is zero and strictly convex at = 1. By appropriately defining this convex
function, various divergences are derived.

The following result holds:

PrRoOPOSITION4.1 (Dragomir, 201399]). Let f : (0,00) — R be a convex function with
the property thatf (1) = 0. Assume thap, ¢ € P" and there exists the constarits< » < 1 <
R < oo such that

4.2) rggngorz’e{l,...,n}.
Then we have the inequalities
@3) 0< 1) < B2 ap v )
te(r,R)
< (o1 n RS0
< TR-M [ (R~ £10)].
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andVU; (-;r, R) : (r, R) — R is defined by
o SR =) f) = f(r)
\I/f(t,?“,R)— R_t — .

t—r

We also have the inequality

1 f(R)(A=r)+ f(r)(R-1)
4 (R—1)(1—r)
1

< (R=n)[fL(R) = 1)

The proof follows by Theorem 2.1 by choosing = ¢;, z; = 5—, m = randM = R and
performing the required calculations. The details are omitted.
Utilising the same approach and Theoifenj 2.3 we can also state that:

(4.4) Ir(p,q) <= (R—r)

PROPOSITION4.2 (Dragomir, 201399]). With the assumptions of Proposition}4.1 we have

(4.5) Oéff(p,q)SQmaX{Z:i7%}
y {f(T)J;f(R) _f<rﬂ;R)}

< %maX{R—l,l—’r’} /L (R) = fi ()] -

The above results can be utilized to obtain various inequalities for the divergence measures
in Information Theory that are particular instances edivergence.
Consider the Kullback-Leibler divergence

& Di n
KL(p,q) = E p;log (;) , p,q € P".
i=1 t

For the convex functiorf : (0,00) — R, f (t) = —Int we have

- Pi - Pi - 4;
I (pg) = af (—) =-> g (—) => gn (—) = KL(g,p)
i=1 i i=1 i i=1 pi
If p,q € P™ such that there exists the constaits » < 1 < R < oo with
(4.6) r<P < Rforie{l,..n},
4q;
then we get from the second inequality[in {(4.3) that

(4.7) 0< KL(q,p) < (R-DA=r)

rR

from the first inequality in[(414) that

1

1
0< KL(q,p) < 1 (R—r)ln [R_ﬁr_ﬁ}

and from the first inequality iff (4.5) that
R—1 1-r A(r,R)
4.8 <KL <2 In( —"—¢

whereA (r, R) is the arithmetic mean an@ (r, R) is the geometric mean of the positive num-
bersr andR.
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For the convex functiorf : (0,00) — R, f (t) = tInt we have

Iy (p,q) == lZ::qif <Iqi> = KL (p,q).

1

If p, ¢ € P" such that there exists the constaiits » < 1 < R < oo with the property[(4]6),
then we get from the second inequality[in {(4.3) that

(R—1)(1—r)
4.9 <KL <
whereL (r, R) is the Logarithmic mean of, R, namely
R—r
L R) = InR—1Inr’

From the first inequality i (4]4) we also have:

1 R—r+1In (le"erl)
4.10 <KL < - (R-
Finally, by the first inequality in (4]5) we have
R—1 1-r G (", R™)
4.11 <KL <2 In | ———
(4.11) 0<KL(p,q) < maX{R_T,R_T}n A r, R

5. MORE REVERSE INEQUALITIES

For theLebesgue measurablenctiong : [«, 3] — R we introduce thé.ebesgue-norms

defined as
8 1/p
oy = ( [ loOF @) it g e Lyla,
forp > 1and
19]l(0,5,00 == €55 sup [g(¥)] if g € Loo [, ],
tela,f]
for p = cc.

The following result also holds:

THEOREMb5.1 (Dragomir, 201360Q]). Let® : I — R be a continuous convex function on
the interval of real numbers andm, M € R, m < M with m, M] c I, I is the interior of!.
If 2; € Tandw; > 0fori € {1,...,n} with} " , w; = 1, denotez,, := " , w;z; € I, then
we have the inequality

(51 0< iwﬂ) (2:) = @ (Zw)

o (M = 20) [\ (0] di 4 (@ —m) [y (1)]dE
- M—m '
where©g (z,,; m, M) satisfies the bounds
(5.2) Op (Ty;m, M)

Zo— "M
[%HM—_M’] P9 (6)) dt

:@q)(i'w;maM)a

<

L @)t + 2| £ 1@ @) de - [ (1) e
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(5.3) Op (Ty;m, M)
(T —m) (M — Z)

/ !/
S 12 i 00+ 1910100
1 e ,
and
(5.4) O (Tyy;m, M)
1 - = \a |5
< = | @ = m) (M = 2|5, 0,
(M = 20) (@ =) )
1 _ _ _ _ 1
< 3 (@ = m) (M = 2) + (M = Z) (Z0 = m)] " [#]] 00,

1 1 _
wherep>1,5+5_1.

PROOF By the convexity ofb we have that

(5.5) Zwi@ (i) — @ (Zw)

o M—m. _(P(jw)
(M —Z4)® (m) + (T, —m) P (M) L
= M - (z,) =B

By denoting

Ag (t:m, M) = (t—m)® (M) + (M —1t)®(m)

we have
(t—m)®(M)+ (M —1t)P(m)

(5.6) Ao (t;m, M) = A —m —® (1)
_(t=m) @ (M) + (M —t)®(m) — (M —m)P(t)
M —m
_ (t—m)® M)+ (M —t)®(m)— (M —t+t—m)(¢)
M —m
_(t=m)[®(M) =@ ()] - (M —1)[®(t) — P (m)]
M —m

for anyt € [m, M]. Also
B = Aq:. (fw,m,M)
Taking the modulus o (5.6) and, noticing that, by the convexity ofe have
A<I> (t? m, M)
(t—m)®(M)+ (M —1t)®(m) ((t—m)M+(M—t)m>
- >0
M —m M —m
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for anyt € [m, M|, then we have

, (FJMWU@—¢®H%M—ﬂ@®—¢@M
(t—m) (s)ds|+ (M —t) s)ds
- M—m
m) J;" |9’ (s)|ds + (M =) [} |/ (s)|ds
- M—m

for anyt € [m, M].

Finally, if we write the inequality{ (5]7) fot = z,, € [m, M| and utilize the inequality (5]5),
we deduce the desired res(ilt (5.1).

Now, we observe that

ft @' (s)| ds + (M —t) [ |® (s)| ds
M—m
[ max {t —m, M—t}f D' (¢)| dt

(5.8)

IN

| max { [ |0 (s)|ds, [}, |&" (5)|ds} (M —m)
[3 (M —m) + |t — =g ] [0 (1) dt

S (s) ds +

for anyt € [m, M]. This proves the inequality (5.2).
By the Holder’s inequality we have

(M =) 121}, 117,00

M
[ el
¢ (M =)@y, Tp>10+1=1

(= 1m) [ V]| ) o

/‘@@>w<{ 1
" (t = m) /10

which give that

Y@ (5)] ds — [y, 19 ()] ds|| (M —m)

and

H 1 1 _
||[m7t]7p pr> 175_{_5_17

(5.9) ft D' (s ‘f\;‘_i‘iiw )fm |D' (s)] ds
_ = m) (M = ) 19 a0 + (= 8) (= 1) (1] 06
B M —m
(t—m) (M

— t)
= R 1 e + 19 )
121 2,00 12 47,00
2

< o (M = m)max {0y 19 g } =

IN
— DN =

(M — m)

1
5 (M —m) [|[2l 117,00

[\]
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and

Gy oI @lds+ (M=) ), |19 ()] ds

' M —m
= m) =0 @y, + (=) (=) [,
- M —m

1/q
<

< o [ a0 (- )’

1/p
< I, a1 1,

[m,t],p
1

:M—m

[(t = m)" (M — 1)+ (M — )" (t —m)]" |2, 1p1,

foranyt € [m, M].
These prove the desired inequalities [5.3) (=4).

REMARK 5.1. Define the weighted arithmetic mean of the positivepler = (4, ..., x,,)
with the nonnegative weighis = (wy, ..., w,) by

1 n
A, (w,x) := W Zwixi
=1

whereW,, := >""  w; > 0 and the weighted geometric mean of the santaple, by

" /W,
G, (w,x) = (H xi”) :
i=1

It is well know that the following arithmetic mean-geometric mean inequality holds true
A, (w,z) > G, (w,z) .

On applying the inequalit;@.l) for the convex functidrit) = — Int, we have the following
reverse of the arithmetic mean-geometric mean inequality

n (W, x)

A A (’LU J]) M—A, (w,x) M Ap(w,z)—m
< no _ :
wun () Gaes)

6. APPLICATIONS FOR THE HOLDER INEQUALITY
If z;,y; > 0fori e {1,...,n}, then theHolder inequalityholds true

n n 1/p n 1/q
S < (z ) (z y) |
=1 =1 =1

(5.11) 1<

wherep > 1, >+ . = 1.
Assume thap > 1. If z; € Rfori € {1,...,n}, satisfies the bounds

O<m<z<M<ooforie{l,..n}
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andw; >0 (i =1,...,n)with W, := 3"  w; > 0, then from Theorerp 5|1 we have amongst
other the following inequality

S wiz (Y wiz\'
6.1 0 < == t =
(6.1) - w., W,

1 1 S wizi
< (MP —m?) | = =1 WiF
= m>{2+M—m’ W,

From this inequality we can state that:

PROPOSITIONG.1 (Dragomir, 201360). If z; > 0,y; > 0fori € {1,...,n},p > 1, %Jré =
1 and there exists the constantsl’ > 0 and such that

m+ M
) )

Ty .

then we have

62) o< Tt (Thmy
N Z?:l yf Z?:1 ?/g
1 1 N X T
B (W RS |
2 I'—~y Zizl Y; 2

Finally, the following additive reverse of the Holder inequality can be stated as well:
COROLLARY 6.2 (Dragomir, 2013@0]). With the assumptions of Propositipn|6.1 we have

n /p s n 1/q n
6-3) 0< (Z x) (Z y?) - iy
=1 =1 =1

1 T > vy y+T
< Pp_ pl/p - =1 "1Jdr
== [2+F—7‘Z" ;

1/p n
q

REMARK 6.1. We observe that for = ¢ = 2 we have from the first inequality if (6.2) the
following reverse of the Cauchy-Bunyakovsky-Schwarz inequality

n n n 2
6.4) Sy g (zy>
1 =1 =1

1=

2
2 o |1 L |20 iy 4T Zn 2
=(r 7){2+F—7’Z§;y3 2 v

i=1

provided thatr; > 0, y; > 0 for i € {1,...,n} and there exists the constantd” > 0 such that

ygﬂgfforié{l,...,n}.

7

7. APPLICATIONS FOR f-DIVERGENCE

Consider thef-divergence

(7.1) Iy (p,q) == Z%’f (g)

defined on the set of probability distributiopsq € P, where f is convex on(0, c0). It is
assumed thaf (u) is zero and strictly convex at = 1. By appropriately defining this convex
function, various divergences are derived.
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PROPOSITION7.1 (Dragomir, 2013@0Q]). Let f : (0,00) — R be a convex function with
the property thatf (1) = 0. Assume thap, ¢ € P" and there exists the constarits< r» < 1 <
R < oo such that

(7.2) T<—<Rf0l‘2€{1 ,n}.
4;
Then we have the inequalities
(7.3) 0<Iy(p.q) < By (r,R)
where
R—-1) f 1f ()] dt+ (1 —r) [T (¢ |dt
7.4 B = 1
(7.4) £ (r,R) =
Moreover, we have the following bounds 6 (r, R)
(7.5) By (r, R)
1- /
3 ] i ol
<
LR @+ 3| o= fH@la]]
and
(7.6) By (r, R)
1—7r)(R-1 , ,
< O D e 17 )
1 1/ mgo0 + 1 g0 1 :

< §(R—T) 5 < §(R_7") f ||[r,R},oo

and

7.7y B;(rnR)
[0 R gy + R D=
< (=) R =) 4 (R= 10 =D |l

1 1 _
wherep > Lo+,=1

IA
=y

<

AN

The proof follows by Theorem 5.1 by choosing = ¢;, x; = {;—, m =randM = R and
performing the required calculations. The details are omitted.

The above results can be utilized to obtain various inequalities for the divergence measures
in information theory that are particular instances edivergence.

Consider the Kullback-Leibler divergence

- pi n
)= pilog (E) , g P
i=1 !

For the convex functiorf : (0,00) — R, f (t) = —Int we have

:qu(fqi) Zqzln() qum( ) =KL
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If p,q € P™ such that there exists the constaits » < 1 < R < oo with

(7.8) rggngorie{l,...,n},

then we get from the inequality (7.4)

Rl—r R—r
(7.9) ogKuq,p)gm(rR_l) .

Fora > 1, let
f@t)=t*t>0.
Then

It (p,q) = Da () = Y _pPa, ",
=1

which is thea-order entropy.
If p, ¢ € P™ such that[(7J8) holds true, then By (7.4) we have

(R—l)(l—r‘”)—k(l—r)(Ra—l).

0<D0¢ 9 S
< Da (p,q) 7,

8. A REFINEMENT AND A NEW REVERSE

For a real functiory : [m, M| — R and two distinct points;, 5 € [m, M| we recall that the
divided differencef ¢ in these points is defined by

o, B; 9] ==

THEOREM 8.1 (Dragomir, 201156]). Let f : I — R be a continuous convex function on
the interval of real numbergandm, M € R, m < M with [m, M] C I, I the interior of . Let
a=(ay,...,a,), D = (p1,-...,pn) ben—tuples of real numbers with; > 0 (i € {1,...,n})
and>" pi=1.1fm<a <M, ie{l,....,n},withd> "  pia; # m, M, then

> pi|f () (Zm%) sgn (ai - ija]) ‘
i—1 j=1

< sz a;) <szaz>

< %( szaz,M fl = m> pai f );pi

(8.1)

i=1

n
a; — E pjaj
Jj=1

97 1/2

IN

%( > pias, Mi f| = |m, > pias; f ) > pial — <ijaj>
Li=1 | i=1 j=1

=1
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If the lateral derivatives’, (m) and f” (M) are finite, then we also have the inequalities

0< Z pif () (Z pzaz)

< Z
_2< ,
=1

> piai, M; f] - [m,Zpiai;fD > b
i=1 =1

(8.2)

n
a; — E pjaj
Jj=1

< 2 [ (M) — 71 ()] Do for = 2
1 : . 51 1/2
<3 [F( m)] [Zpia? - <ij@j) ]

PrRoOOF We recall that iff : I — R is a continuous convex function on the interval of real
numbersl anda € I then thedivided difference functioff, : 7 \ {a} — R,

f () = f(e)

t—«

fa (t) ==y t; f] =

is monotonic nondecreasing én, {a} .

Fora, := 37, pja; € (m, M), we consider now the sequence
. a; ) — a
f&p(2>::f( ) {(P)
a; — Qp
We will show thatf; (i) andh; := a; — a,, € {1,...,n} are synchronous

Leti,j € {1,...,n} with a;, a; # a,. Assume that; > a;, then by the monotonicity of,
we have
. ;) — a

83) fi, i) = L= T 1)

a; — ap

a,

2 f( J) f( ) fap( )

a; — ap
and
(8.4) hi > by
which shows that
(8.5) [fa, () = fa, ()] (hi = hj) > 0.

If a; < a;, then the inequalitie$ (8.3) and (B.4) reverse but the inequglity (8.5) still holds true.

Utilising the continuity property of the modulus we have

[[I/a, @) =
= [fa, (i) —

foranyi,j € {1,...,n}.

‘f‘ip
Jay (3)] (B = hj)

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018
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Multiplying with p;, p; > 0 and summing overand; from 1 to n we have

(86) Zzpzp] ‘fzzp ’fap H h _hj)
< ZZM% [fa, (0) = fa, ()] (hi = hy).

A simple calculation shows that

(8.7) —ZZPJU] [ fa, )| = | fa, ()] (hi — hy)

_ Zpi | fa, ()] i — Zpi | fa, (1] Zpihi
N Z a; — ap(ap) (@i — ay)
R Zl “ —ay ap lel “
= Z —f(ap) (ai _ C_lp)

=3 nlf @)~ £ @)l son - )
and

(8.8) %Z sz'pj [fap (1) — fa, (J)} (hi — hy)

i=1 j=1

- Zpifap (Z) h; — Zpifap (Z) Zplhl
- Z (fiﬁp)) (a; — ap)

n

SN GCE ) S

Zé z <f(a;2 : ip(%)) Zai —a)

On making use of the identities (8.7) and {8.8) we obtain fion (8.6) the first inequaljty Jn (8.1).
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Now, sincea,, := > 7, pja; € (m, M) then we have by the monotonicity ¢, (i) that

(8.9) [m, a,; f] = / (ag):fn (m) < fa, ()
fM)—f@)
< M —a, —[&,mM»f]

foranyi € {1,...,n}.
Applying now theGruss’ type inequalitpbtained by Cerone & Dragomir i1 §]

Z WY — Zwﬂi Z wYi| < % (I'—=) Z Wi [T — Z W;Tj
i=1 i=1 i=1 i=1 j=1

provided
(8.10) —0<d<y, <A<
fori =1,...,n, we have that

zpz @) (zpza)

1
S 5 ([apyM f m ap7 sz

a; — ijaj

?

which proves the second inequality jn (8.1).
The last bound i (8]1) is obvious by Cauchy-Bunyakovsky-Schwarz discrete inequality.
If the lateral derivativeg”, (m) and f” (M) are finite, then by the convexity gf we have
thegradient inequalities

e S AL
and

wherea, € (m, M) . These imply that
(@, M5 f] = [m,ay; f1 < f2(M) = [} (m)
and the proof of the third inequality ifi (§.2) is concluded.
The rest is obviouss

ReEMARK 8.1. Define the weighted arithmetic mean of the positivepler = (4, ..., x,)
with the nonnegative weights = (wy, ..., w,) by

A, (w,x) = L Zwixi

" oi=1

wherelV,, := >""  w,; > 0 and the weighted geometric mean of the sataple, by

" 1/ W
()
=1

It is well know that the following arithmetic mean-geometric mean inequality holds
Ap (w,x) > G (w, ).

n
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Applying the inequality[(8]2) for the convex functigh(t) = — In¢, ¢ > 0 we have the following
reverse of the arithmetic mean-geometric mean inequality

An (w,ZL‘)

8.11 | < An(w,2)
8.11) ¢t

3 W,|T—An (W,T
<M)An(w,a¢)—m L A (w,z—Ap (w,z)])
: (L)M_An(ww)
An(w,x)
1M —

<exp |51 (oo - Ay (w.2))]

provided that) < m < z; < M < oofori e {1,...,n}.

9. APPLICATIONS FOR THE HOLDER INEQUALITY

If z;,y; > 0fori € {1,...,n}, then theHolder inequalityholds true

n n 1/p n 1/q
S < (z ) (z y) |
=1 =1 =1

wherep > 1, + . = 1.
Assume thap > 1. If z; € Rfori € {1,...,n}, satisfies the bounds

O<m<z<M<oforie{l,..n}

andw; >0 (i =1,...,n)with W, := 3"  w; > 0, then from Theorerp 8|1 we have amongst
other the following inequality

1 ” 141 b 7'1— 141
(9.1) Wn; z = (%) ‘w@-sgn {zi - ZZ#:M} dp

< D i W% _ S wizi\”

- W, W,
LY wiz 1 [ > wz T\ =

<3 (|Zmran | - [m =g 0| ) D)
1 Z?: W;Z; ] Z:L: W; 24 ] ~

<5 (|E sy - [m 2005 0] ) Dua 9
1 :Z?: W; Z; ] i Z:L: W; Z; 7

<1 ([Eprmaner] - m 25t ]) o - m),

where% € (m, M) and

n

Dy (2) := ! > w

n . .
Zj:l w;z;
=1

Wy

Zi —

while

~ S w0 win |
buste) = | Bt - (i

The following result related to the Holder inequality holds:
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PROPOSITION9.1 (Dragomir, 2011886]). If z; > 0,y; > 0fori € {1,...,n},p > 1, %+% =
1 and there exists the constanytsl“ > 0 and such that

} )

)

then we have

9.2) — [a? B Z?:l LjYj sgn x Z?:l LjYj
= |vi >j-1Y; z Xy
< Z? L\ TF Z:'Lzl riyi \"
N ZZL 1 yf B Z?:l ?/g
1 ( Z?:l T;Yi F.(‘)p — |y Z?zl TilYi (_)p )D . ( x )
2\ Z?:l y{ i L Z?:l yi i Syt
3 (| 5mrmer| - s or)) e ()
2\ Xy | Ry i Tyt
1 _Zﬁ— TiY; ] [ ZTL— T:iYi; |
< - 1;1 7F7 ()p — |7 151 ; ()p (F - 7) )
4 < L Zi:1 yg i L Zi:l yf i
where
~ x Z@:1 TilYj
D q ( ) = yz — ]n
Syt Do Ui ZXI: i 2 Zj:l y?
and

n n 2 2
Da (15) = s 2o ot = (%
a2\ 1] — mn 9 n
! yot D Yi i1 Yyl ? Zj:l y?

PrROOF. The inequalities (9]3) follow fron@.l) by choosing

Zi:yl —y]

The details are omittedy

REMARK 9.1. We observe that for = ¢ = 2 we have from the first inequality if (9.2) the
following reverse of the Cauchy-Bunyakovsky-Schwarz inequality

2
. 7 > i1 TYj T D1 Ty
©3 S| (5 L (2 B
1 | Yi Zj:l Yj Yi Ej:l Yj
n n 2
< 2ict T _ (Zzl %%‘)
T i D1 Vi
1 1 & oo 2%y
<;O0-=—3 y? — -
2 Zz 1 yz ; Yi 2j=1 yJ2
. 27 2
T;Y;
<-(T'—7) R #
2 2 1 Yi ; ( Z] ly]
1
< —(I' -
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provided that there exists the constant§' > 0 such that

vgﬁgfforié{l,...,n}.

)

10. APPLICATIONS FOR f-DIVERGENCE

Consider thef-divergence

(10.1) Iy (p,q) = Z%’f (g)

defined on the set of probability distributiopsq € P", where f is convex on(0, co). It is
assumed thaf (u) is zero and strictly convex at= 1.

PROPOSITION10.1 (Dragomir, 201156]). Let f : (0,00) — R be a convex function with
the property thatf (1) = 0. Assume thap, ¢ € P" and there exists the constarits< » < 1 <
R < oo such that

(10.2) r<® < Rforie{1,..,n}.

Then we have

(10.3) (0.9) < = (LR f] — [ 1: 1) Dy (.0)

2
[fL(R) = f1 (1)] Do (p.a)
[fL(R) = fi. (] [Dyz (p )]
(R—r) [fL(R) = f ("],

n n 2
whereD, (p,q) = Zi:1 \pi — qil ande2 (p,q) = Z¢:1 % - 1L
PROOF From [8.2) we have

0<) af (]qi) ~- ()

(LB [ =[5 )D e

i=1

o
VAN IN IN VAN
I e N I S NN e

<

n

<SR-

=1

n

) 1/2
<5l ®-ri) (Zp—%—1> < T (R=1) [ (R) = £ ()]

(2

i.e., the desired result (10.3.
REMARK 10.1. The inequality

(10.4) I (pa) < 5 (R=7) [ (R) = £ ()]

was obtained for the discrete divergence measures in 2000 by S.S. Dragon#g]see [
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PROPOSITION10.2 (Dragomir, 201156]). With the assumptions in Propositipn 70.1 we
have

(10.5) |1 f1(sgn)—1) (0, @)| < I (p, )

< 5 (1R 1= 7150 D ()
< (LR A~ [ 1 1) Dy (po0)]
< LR = [T A) (R =7,

wherel| s son(y-1) (P, q) is the generalized-divergence for the non-necessarily convex function

|f| (sgn (-) — 1) and is defined by
B
qi

sgn (& — 1)
di

(106) [|f\(sgn( -1) p7 ZQZ

ProOF. From the inequality] (8]1) we have

alr (2) -0

< S (LR ] =L ) (R=7)
from where we get the desired res{it (10.p).

The above results can be utilized to obtain various inequalities for the divergence measures
in information theory that are particular instances adivergence.
Consider the&kullback-Leibler divergence

- Di n
q) = E piIOg(E)m,qEP -
i=1 v

For the convex functiorf : (0,00) — R, f (t) = — Int we have

= 4 — = - g; 1n —Z = g; n —Z = KL(q,p)-
>oaf () == 2am () =3 am(, (4.7)
i—1 4 i1 4 i1 Di

If p,q € P™ such that there exists the constaits » < 1 < R < oo with
(10.7) r<—<RfOI”LE{1 ,n},

ai

then we get from the first inequality ip (10.3) that

1 1
0< KL(g,p) < 5Du(pg)In (RR_T) :
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For the convex functiorf : (0,00) — R, f (t) = tlnt we have

Iy (p,q) == ngf <Iqi> = KL(p,q).

7

If p,q € P™ are such that there exists the constants » < 1 < R < oo with the property
(10.7), then we get from the first inequality [n (10.3) that

1 -
0< KL(p,q) < 5D (pg)In (R%rﬁ> :
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CHAPTER 9

Refinements of Jensen’s Inequality

1. INTRODUCTION

The Jensen inequality for convex functions plays a crucial role in the Theory of Inequalities
due to the fact that other inequalities such as that arithmetic mean-geometric mean inequality,
Hoélder and Minkowski inequalities, Ky Fan’s inequality etc. can be obtained as particular cases
of it.

Let C be a convex subset of the linear spaceand f a convex function orC. If p =
(p1,-..,pn) IS @ probability sequence ard= (zy,...,z,) € C", then

(1.1) f (Zl%%) < sz'f (74),

is well known in the literature as Jensen’s inequality.
In 1989, J. Péaric and the authofl[1Z] obtained the following refinement df (1.1):

g g $i1+"’+xik1
(1.2) / (;pm) S. Z pz'lu-pikﬂf( P - )

n xil_i_..._i_ajik
(Bt

A

1nd
¥
5

for £k > 1 andp,x as above.
If g1,...,qx > 0 with Z§:1 ¢; = 1, then the following refinement obtained in 1994 by the
author 8] also holds:

(1.3) f (Zp:c> <

o ()

< Zpif (z;) ,

=1
wherel < k£ < n andp, x are as above.

For other refinements and applications related to Ky Fan’s inequality, the arithmetic mean-
geometric mean inequality, the generalised triangle inequality etc28eE7H].

2. GENERAL RESULTS

The following result may be stated.

110
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THEOREM 2.1 (Dragomir, 201034]).

111

Let f : C — R be a convex function on the convex

subse(C of the linear spaceX, z; € C,p; > 0,7 € {1,...,n} with)_ ", p; = 1. Then

<

(2.1) f (me)

IA

(1—Pk)f<

D j—1 PjT; — P
1 —py

) +prf (xk>]

) + ot <xk>]

i1 DjT; — P
1 —px

[

k=1
< X [(1 — i) f (Zj_lfjfjpk_ pkxk) + pif (l"k:)]
< ijf ()
j=1
In particular,
1 « 1 > jo1 Tj — T,
(2.2) f (5;%) < o peuin [(n— 1) f ( —— N ) +f($k)]
< ni [(n— Y f <Zﬁi le_xk> +Zf<fk>]
k=1 k=1
S%%ggﬂkn—wf<2j{z_%>+f@w]
j=1

PROOF Foranyk € {1,...,n}, we have

n
§ :pjxj -
j=1

n

E DT — Prlr =
— —
/ i#k

which implies that

n
ijl P — Pkl

n

;pj n 1 n

Ed

ZEN iy = (L= ) Y i
2P i 2P i

J#k J#k

(2.3) —

= nl ijxjeC'
=1

. j=
2. Pj 2
Jj=1
ik

for eachk € {1,...,n}, since the right side 0.3) is a convex combination of the elements

zjeC,je{l,....n}\{k}.
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Taking the functionf on (2.3) and applying the Jensen inequality, we get successively

S py; — D
f( = Zpﬂxﬂ S—ij ()
ij o Zl '
J#k ;;k

—1pk lzpjf(wj) —pif (xk)]

foranyk € {1,...,n}, which implies

(2.4) (1—pk) f (Zj:lpjxj _pkxk> + pif (1) < ijf(%')

I — px

foreachk € {1,...,n}.
Utilising the convexity off, we also have

@5) (1-p)J (fopk_ W'“) +af ()

for eachk € {1,...,n}.
Taking the minimum ovek in (2.5), utilising the fact that

n

min o < — o < max o
ke{l,...,n} n ! ke{l,...,n}

and then taking the maximum in (2.4), we deduce the desired inequality §2.1).

After settingz; = y; — >, quyy andp; = ¢;,5 € {1,...,n}, Theorenj 2.1 becomes the
following corollary:

COROLLARY 2.2 (Dragomir, 201034)). Letf : C' — R be a convex function on the convex
subseC,0 € C,y; € X andg; > 0,5 € {1,...,nfwith} 7 ¢ =1.1fy; = > qu € C

foranyj € {1,...,n},then
26)  f(0)
+arf <yk — Z C.nw) }
=1

< mij 1— —
_ke?ll,l..r.l,n}{( ar) f [ (Zlqwz yk>

S%{Z(l_% [ (Zqzyz ) + af (%—Z%m)}
=1 1 =1 =1
<k£%ffn}{“‘q'f ! [1 (Zm o) o (-}
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In particular, if y; — %Z?ﬂ y, € Cforanyj € {1,...,n}, then

27 f(0)

1

Sﬁkeg}gn}{(n—l) [n_1< Zyz yk)
11(@_%)
( Zyz yk)

(5}
o (ni )|

(i3]

IN
SRS
i
=B

5

"

2
—N
S
|
C
—
S
|
—_

.....

[\
S|~
-
—
VR
&

|

| =

3
<
~__—

The above results can be applied for various convex functions related to celebrated inequal-
ities as mentioned in the introduction.

Application 1. If (X, ||-||) is a normed linear space apd> 1, then the functiorf : X — R,
f (z) = ||z||” is convex onX. Now, on applying Theorein 2.1 and Corolldry|2.2 fore X,
pi >0,1e{l,...,n}with)> "  p, =1, we get:

p
2.8 Tl < i Ly — ’
(2.8) i ke?llmn} [ E ]
1 n
<= (1— g
s [; pk iLj — DkTk +Zpk ||l ]
p
< kel{l}ax , [(1 —pr) 7 ijxj — DkTk|| + Dk H%Hp]
,,,,, n =1
<> pj gl
j=1
and

)

(2.9) T, { (1= p) 7P 1l + 1]

n
T — E pix
=1

n n p
< ij Tk — szfﬂl
j=1 =1
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In particular, we have the inequality:

1 1 . 1—
0 |15l <k i oS ]
7=1 7j=1
1 n n p n
1—
<m0 S ol +SSiar]
k=1 =1 k=1
T zn:x'—x p+||x I
TN oke{l,..n} = J K k
1 & ,
<=3l
j=1
and
1 n p n 1 n p
2.11 S | _ - < N
(2.11) [(n—1)""+ ]kef{rllf{?fn} Tk n;@ _; xj anl

=1

If we consider the functiot,, (t) := (1 —t)" 7t +¢, p > 1,t € [0,1), then we observe
that

Wy () =1+ (1= 1) 7 4 (p— 1) (1 —1) 7,

which shows that,, is strictly increasing off0, 1) . Therefore,

(i {@ =) PP)+ 01} =P+ (1 =) PP,

.....

p

ke{l,...,n}

n
Ty — E bz
=1

p

n n
< ij Tj— me
j=1 =1

Application 2. Letz;,p; > 0,4 € {1,...,n} with > , p; = 1. The following inequality
is well known in the literature as thaithmetic mean-geometric mearequality:

(2.13) ijxj > Hm?j.
j=1 j=1
The equality case holds in (2]113) iff = - - - = x,,.
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Applying the inequality[(2]1) for the convex functigh: (0,00) — R, f (z) = —Inz and
performing the necessary computations, we derive the following refinemént of (2.13):

: S — )
(2.14) Zpixl- >  max } ( j=1Pits — Pk k) a
i=1 "

ke{1,..., 1 —px

o [ (5 e - pe )
> H j=1PjT; 2
Pl 1 —ps

S v - ) "
. j=183"5 — PkVk Pk pi
> mlnn} ( ) cxy” Z”xZ

I — ps

3=

n n n
1 Zj:l Lj — Tk 1
- r; > max _ - xy
n}

n T ke{l,..., n—1
n—1 n
n
- P A +
> 11 o
n—1
k=1

3
—
—

Z?—l xj — o 1 n n
> min _— Sxr oy > T; .
T ke{l,...,n} n—1 i H ‘

3. APPLICATIONS FOR f-DIVERGENCES
The following refinement of the positivity property gfdivergence may be stated.

THEOREM 3.1 (Dragomir, 201034]). For anyp, q € P", we have the inequalities

(3.1) IMHQﬁimgﬁﬁ[ﬂ—q@f(iii)+qd<%ﬁ}
RS 1 — pi - Pk
> Lz:;(l—%)f(l_qk) +kz:;qkf (qk)

. 1 —pr Dk
> 1- — 120
Z  min {< %>f<1—qk) +%f<qk)} =

providedf : [0,00) — R is convex and normalized @, o) .

The proof is obvious by Theorejn 2.1 applied for the convex funcfier0, co) — R and
for the choicer; = le, i € {1,...,n} and the probabilitieg;, i € {1,...,n}.
If we consider a new divergence measig(p, q) defined forp, q € P™ by

J— 1—py
2 = 1-—
(3.2) Ry (p,q) n_lg( Qk)f(l_qk)
and call it thereversef —divergencewe observe that
(3-3) Ry (p,q) = Iy (r,t)
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with

1-— 1—p, 1-— 1—q,
r— Pro TPy ©ooo2d (n>2).
n—1 n—1 n—1 n—1
With this notation, we can state the following corollary of the above proposition.

COROLLARY 3.2. For anyp, q € P*, we have

(3.4) Ir (p,q) > Ry (p.q) > 0.

The proof is obvious by the second inequality[in [3.1) and the details are omitted.

In what follows, we point out some particular inequalities for various instances of diver-
gence measures such as: thtal variation distancey?-divergence Kullback-Leibler diver-
gence Jeffreys divergence

Thetotal variation distances defined by the convex functiofi(t) = |t — 1|, ¢ € R and
given in:

35) Vi) =3 g - \:Dpj—qu.
= 1 =1

The following improvement of the positivity inequality for the total variation distance can
be stated as follows.

PrROPOSITION3.3. For anyp, q € P", we have the inequality:
(3.6) Vip,q) >2 max |pp—aql (=0).
ke{ n}

The proof follows by the first inequality if (3.1) fot(¢) = |t — 1|, t € R.
The K. Pearson2-divergences obtained for the convex functiof(t) = (1 —t)*,t € R
and given by

n

(3.7) X* (p,q) = qu (% - ) - Z @'

j=1 J

PROPOSITION3.4. For anyp, q € P,

2
3.8 2(p,q) > max M >4 max —q)? (>0).
( ) X (p q) T ke{l,..,n} {Qk (1 — Qk) T ke{l,...n} (pk Qk> (_ )
PROOF On applying the first inequality i.1) for the functign(t) = (1 —t)*, t € R,
we get
X’ (pg) > max {(1—q) (1 Pk 1)2 + i (@ - 1>2
ke{l,....n} 1—q dk
B (e — i)’
= max e e—— .
ke{l, o} | qr (1 — qx)
Since
1 , 1
ar (1 —qr) < Z[Qk-i‘(l—q/c)] R
then )
(Px — Q) 2
MR AR >y —
ax (1 —an) — B~ )

for eachk € {1,...,n}, which proves the last part df (3.9).
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TheKullback-Leibler divergencean be obtained for the convex functign (0,0) — R,
f(t) =tInt and is defined by

~ v (P - P
(3.9) KL(p,q) ::quo—Jln (—J) :ijln (—j) )
=W qj st 4

PROPOSITION3.5. For anyp, q € P", we have:

(3.10) KL(p,q)>In| ma (1 _p’f)l_pk (p’f)pk >0
. 9 - X ' _ - :
P ke{l,....n} 1—q q;

PROOF. The first inequality is obvious by Theordm 3.1. Utilising the inequality between
thegeometric mean and the harmonic mean

, r,y >0, a€[0,1]

(1_pk)1—m.(&)m>1
I —qk qk -

foranyk € {1,...,n}, which implies the second part of (3|1Q).

we have

Another divergence measure that is of importance in Information Theory idetffieys
divergence

n

(3.11) J(p.q) ZZZ:%'(%— )lncq)_j):Z(pj_%)ln(%)’

j=1 !
which is anf-divergence forf (t) = (t — 1) Int, ¢ > 0.

PROPOSITION3.6. For anyp, q € P", we have:

(1 —pr) qk”
3.12 J(p,q) > max —pi)In | o
( ) (p,9) ke{l,..., n}{<Qk P) {(1—%)1%
2
> m (Qk pk) > 0.
ke{l,...n} | Pr + G — 2Pk

PROOF. Writing the first inequality in Theorefn 3.1 fgt(¢) = (¢t — 1) Int, we have

(=) e (5 - m ()
J(p,q) > max 1-— —1|In + — —1]In(—
(r.9) k(L. n}{( qk){(l_% 1 — g o Qe k
1—pk) (pk)}
= max — In{—— ] — — In{ —
hefly n}{(% Pr) (1_% (qk — pr) o0

= max {(Qk—Pk)ln [—ﬂ_pk)qk]},

(1 —qx) pe

proving the first inequality i (3.12).
Utilising the elementary inequality for positive numbers,
Inb—1Ina 2
>
b—a —a+b

a,b>0
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we have

= (qk - pk) : 1—ps Pk

1-—p o j2
(Qk_pk)2 .ln<1 : In <q§>

o _ 1-px _ pr

ar <1 Qk) 1—gg qk

(g — p)° _ 2 _ 2(q - i)’ >0
(1 —ar) tz: + B prt gk~ 2pkqk ’

for eachk € {1,...,n}, giving the second inequality ifi (3.12).

4. MORE GENERAL RESULTS

Let C be a convex subset in the real linear spAcand assume thgt: C' — R is a convex
function onC. If z; € C'andp; > 0,7 € {1, ...,n} with " | p; = 1, then for any nonempty
subset/ of {1,...,n} we putJ := {1,....,n} \ J (# 0) and defineP; := >°._,p; andP; :=
Py =73,c;p; = 1—3_,c,;pi- For the convex functioif and then-tuplesx := (z, ..., z,,) and
p := (p1,...,p,) as above, we can define the following functional

1 _ 1
(4.1) D(f,p,x;J) =P, f <FJ ZPJ&) + Py f Ezpﬂj
ieJ jeJ

where here and everywhere belowC {1, ...,n} with J # @ andJ # {1,...,n}.
It is worth to observe that fof = {k} ,k € {1,...,n} we have the functional

(4-2) Dy (f,p,x) :== D (f,p,x; {k})
=pif (zr) + (1 —pi) f (Zilpﬂi — pkxk)

that has been investigated in the earlier papdy. [

THEOREMA4.1 (Dragomir, 201035]). LetC' be a convex subset in the real linear space
and assume that : C' — R is a convex function o€ If x; € C andp; > 0,4 € {1, ...,n} with
>~ p; = 1 then for any nonempty subsébf {1, ...,n} we have

(4.3) > pef () = D(f.p.x:J) > f <Zpk9€k> :
k=1 k=1
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PROOF By the convexity of the functiorf we have

ZGJ

D(f,p,x;J) :ij< ZW@) + Py f ]5% _Dit;

Zf Py (szpzxz) +PJ Pijzpjxj

e

=f Z pk$k>
k=1

for any J, which proves the second inequality jn (4.3).
By the Jensen inequality we also have

S pef (@) =Y pif (@) + Y pif (x;)

ieJ jeJ

2PJf< szxz> +P1f —ijl']

zGJ ]EJ
=D (f,p,x;J)
for any J, which proves the first inequality if (4.3).

REMARK 4.1. We observe that the inequalify (4.3) can be written in an equivalent form as

4.4 N . .
(4.4) ngpkf(:Ek)_@#Jrcrl{a}f’n} (f,p.x; J)
and

4.5 min D (f,p,x;J) > o)
- i PR > 5 (Y )

These inequalities imply the following results that have been obtained earlier by the author in
[54] utilising a different method of proof slightly more complicated:

(4.6) Zpkf (zk) = penax }Dk (f,p,x)
=1 St "
and
. ) > .
(4.7) s Dy (f,p,x) = f <Zpkxk>

Moreover, since

x5 J) > D ,
o X D (f,p,x;J) (hax k (f, P, %)

and

min D , min D (f,p,x;J),
ke{l,l...,n} F (f p,x ) B @#Jc{ll ,,,,, n} <f P )

then the new inequalitief (4.4) arid (4.4) are better than the earlier results develo®dd in [
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The case of uniform distribution, namely, when= 1 for all {1, ..., n} is of interest as
well. If we consider a natural number with 1 < m < n — 1 and if we define

(4.8) D, (f,x) ( Z:@) (n_lm i :r;])

j=m+1

then we can state the following result:

COROLLARY 4.2 (Dragomir, 201035]). LetC be a convex subset in the real linear space
X and assume that : ¢ — R is a convex function od’. If z; € C, then for anym €
{1,...,n — 1} we have

(4.9) —Zf z1) > D, ( Zq;k).

In particular, we have the bounds

(4.10) > f ()
k=1

The following version of the inequality (4.3) may be useful for symmetric convex functions:

COROLLARY 4.3 (Dragomir, 201035]). LetC be a convex function with the property that
0 € C.Ify; € X suchthatfop, > 0,i € {1,....,n}with) "  p, =1wehavey;,—>" py; €
Cforanyj € {1,...,n}, then for any nonempty subséof {1, ..., n} we have

4.12) > pif <yk - Zpi%) > Pif | P; Pisziyi Zp]y]
k=1 =1 i€

]EJ

+ij PJ Zp]y] szyz > f(O)

]EJ e

REMARK 4.2. If C'is as in Corollar c ang; € X such thaty; — %ZL y; € C for any
j€{1,...,n}thenforanym € {1,...,n — 1} we have

1 — ] — m n—m [ 1 — 1 -
(4.13) E;f(yk_ﬁgyJ ng[ (E;yz‘—n_mj:mﬂyj)]
n—m . |m
" n flg< ] =m+1 __Zyl>] Z
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REMARK 4.3. It is also useful to remark that f = {k} wherek € {1,...,n} then the
particular form we can derive fror (4]12) can be written as

4.14) > pif (yﬁ - Zpiyi)
(=1 =1

> pif [(1 — Pk) (yk ~ 1 —1pk (ijyj - kak))]
+ (1 —pe) f [pk (1_;]% (ijyj _pkyk> - yk)] > f(0)

which is equivalent with
(4.15) Zpgf (yz — sz‘yi) > prf (y/c - ijyj>
=1 i=1 j=1
+(L—pp) f llg—km <ijyj - yk)] > f(0)

foranyk € {1,...,n}.

5. ALOWER BOUND FOR MEAN f-DEVIATION

Let X be a real linear space. For a convex functjon X — R with the properties that
f(0) = 0, define themeanf-deviationof ann-tuple of vectorx = (1, ..., x,) € X™ with the
probability distributionp = (p1, ..., p,) by the non-negative quantity

(5.1) Ky (p,x) = Zpif <$z - ZPMk) .
i=1 k=1

The fact thati s (p, x) is non-negative follows by Jensen’s inequality, namely

Ky (p.x) = f (sz <$z - Zpkxk)> = f(0)=0.

A natural example of such deviations can be provided by the convex funttion:= ||z||"
with » > 1 defined on a normed linear spack, ||-||) . We denote this by

n
Ti — E DT
k=1

and call it themeanr-absolute deviatiof the n-tuple of vectorsx = (x4, ..., z,,) € X™ with
the probability distributiorp = (p1, ..., pn) -
The following result that provides a lower bound for the mé¢agteviation holds:

r

(5.2) K, (p,x) := Zpi

THEOREM 5.1 (Dragomir, 2010H85]). Let f : X — [0,00) be a convex function with
f(0)=0.fx = (xq,...,x,) € X" andp = (py, ..., p,) IS & probability distribution with allp;
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nonzero, then

_ 1 1
(5.3) Ky(p,x)> # max Pif | Py —szwz‘— ——ijxj

In particular, we have

(5.4) K;(p,x)

Pk -
> 1 — —
> Jnax {( pe) f [1 e (;Zl puty $k>

The proof follows from Corollary 4]3 and Remark}4.3.
As a particular case of interest, we have the following:

+ prf (Ik - zn:pm) } (>0).

=1

COROLLARY 5.2 (Dragomir, 201035]). Let (X, ||-||) be a normed linear space. ¥ =
(1, ...,2,) € X™andp = (p, ..., p,) iS @ probability distribution with all; nonzero, then for
r > 1 we have

(5.5) K, (p,x)

>  max P;P; (PT Ly P 1 P, szxz Zpﬂ?] (>0).
icJ T ies
REMARK 5.1. By the convexity of the power functigh(¢) = ¢",» > 1 we have
PyPy (Pt + Py') = PPy + PP}
> (PyP;+ PyP;) = 2"P)P;

therefore
(5.6) PPy (P '+ Py Zp,w, ijmj
1€J ]GJ
1 _
> 2"PiP; e sz'fﬁi Zpg% =2"|\P; Zpﬂi - Py ijl"j
T ies T ies icJ jed
Since
(5.7) Py piwi—Pr Y pirj=(1—=P)Y pai—P; (Z P — Zn%)
icJ jeg icJ icJ
- szl’z PJ Zpkwkv
i€

then by [5.5){(5.]7) we deduce the coarser but perhaps more useful lower bound
en
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The case for meanabsolute deviation is incorporated in:

COROLLARY 5.3 (Dragomir, 201085])). Let (X, ||-||) be a normed linear space. ¥ =
(1, ...,2,) € X™andp = (p, ..., p,) iS @ probability distribution with allp; nonzero, then for

r > 1 we have
n T
T — Zpﬂz } .
=1

REMARK 5.2. Since the function, (t) := (1 —)"""¢" + ¢, > 1, ¢ € [0,1) is strictly
increasing o0, 1) , then

(5.9) K, (p,x) > max {[(1—pk)1_rp£+pk}

. 1— 1—r o = Dm 1_m177‘ r7
i {0 =p) R = o (L= pn)

wherep,, := min
ke

p

5.10 K, (p,x)> [pm+ (1 =pn) "o
(5.10) (P %) > [pm + (1= pm) pm}kéﬁ?’fn}

I

n
Tk — E by
=1

which is perhaps more useful for applications(see @gh).[

6. APPLICATIONS FOR f-DIVERGENCE MEASURES

We endeavour to extend the conceptfedlivergence for functions defined on a cone in a
linear space as follows.

Firstly, we recall that the subsét in a linear spac& is aconeif the following two condi-
tions are satisfied:

(1) foranyz,y € K we haver +y € K;

(¢7) foranyz € K and anya > 0 we havenz € K.

For a givenn-tuple of vectore = (zy, ..., z,) € K™ and a probability distributioy € P
with all values nonzero, we can define, for the convex funcfion K — R, the following
f-divergence otz with the distributiong

6.1) Ie.a) = af (q—) .

It is obvious that ifX = R, K = [0,00) andx = p €P" then we obtain the usual concept of
the f-divergence associated with a functipn [0, co) — R.

Now, for a givem-tuple of vector = (x4, ..., z,,) € K™, a probability distributiory € P
with all values nonzero and for any nonempty subbet {1, ..., n} we have

qs = (Qs,Q,) € P?
and
x; = (X;,X;) € K?
where, as above
XJ::Z.Q:i, and X;:= Xj;.

e

Iy (x5,97) = Qs f <%) +Qsf (%) :

The following inequality for thef-divergence of am-tuple of vectors in a linear space
holds:

It is obvious that
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THEOREMG6.1 (Dragomir, 201035]). Let f : K — R be a convex function on the cohe
Then for anyn-tuple of vector = (x4, ..., z,) € K", a probability distributionq € P™ with
all values nonzero and for any nonempty subset {1, ..., n} we have

6.2 I > I > 7
(6.2) f(Xa(I)_@#JICIl{%f,n} F(xs,a5) > 1y (x7,97)

> in I (x5, q) > f(X,
>, min (x7,a7) > f(Xy)

whereX,, := 3" ;.

The proof follows by Theorein 4.1 and the details are omitted.

We observe that, for a giventuple of vectors = (z4, ..., z,) € K", a sufficient condition
for the positivity of I, (x, q) for any probability distributiorg € P" with all values nonzero
is that f (X,,) > 0. In the scalar case and i = p €P", then a sufficient condition for the
positivity of the f-divergence/; (p, q) is thatf (1) > 0.

The case of functions of a real variable that is of interest for applications is incorporated in:

COROLLARY 6.2 (Dragomir, 201055]). Let f : [0,00) — R be a normalized convex
function. Then for anp, q € P" we have

Py 1-— PJ)}
6.3 Iy (p,q) > — |+ - >0).
(6.3) ¢ (P, q) o max [ij (QJ) (1-Qy)f (1 0, (=0)
In what follows we provide some lower bounds for a numbef-afivergences that are used
in various fields of Information Theory, Probability Theory and Statistics.
Thetotal variation distances defined by the convex functiofi(t) = |t — 1|, ¢ € R and
given in:

(6.4) V(p,q) = qu

n
pA
— - ‘—lej—qy'!‘
gj —

The following improvement of the positivity inequality for the total variation distance can
be stated as follows.

PROPOSITIONG.3. For anyp, q € P", we have the inequality:

6.5 1% > 9 P, — >0).
(6.5) (p,q) > Wrcn{al{ﬂn}l 71— Qs (=0)

The proof follows by the inequality (6.3) fof (¢t) = |t — 1|, t € R.
The K. Pearson2-divergencas obtained for the convex functioh(t) = (1 —¢)*,t € R
and given by

n 2

(6.6) X2 (p,q) = qu (% - ) => @'

j=1 J

PROPOSITIONG.4. For anyp, q € P,

, (P — Q)
(6.7) X (pg) 2 max {QJ 1-0)) }
z4, max (Pr= Q)" (20).
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PROOFE On applying the inequalit@.:%) for the functigh(t) = (1 — t)*, t € R, we get

PJ 2 PJ 2
X* (p,q) > Mrcrl{a}ﬁn}{(l—Qj)(1_QJ—1) +Qy (@—1) }

— max (PJ _ QJ)
O£} | Qr(1—Qy) [

Since . )
Qs(1-Qy) < 1 Qs+ (1—-Q)) = 7
then : ,
P;—Qy) 2
Qs(1-Qy) 2 4Py = Q)

for each/ C {1,...,n}, which proves the last part df (6.7.

TheKullback-Leibler divergencean be obtained for the convex functign (0,0) — R,
f(t) =tInt and is defined by

(6.8) Zq] p{l (pf) Zpﬂn(pj).

PROPOSITIONG.5. For anyp, q € P", we have:

1- P\ P\
(6.9) KL (p,q) >1In [Q)#JC{I .... " { (1 — QJ) . (@> }] > 0.

PrROOF. The first inequality is obvious by Corollajy 6.2. Utilising the inequality between
thegeometric mean and the harmonic mean

1

11—«
+ Y

we have forr = ,y = 7£J anda = P; that

)
1-Qy QJ -

foranyJ C {1,...,n}, which implies the second part ¢f (6.9).

oy > , z,y >0, o €[0,1]

82

Another divergence measure that is of importance in Information Theory ideffieys
divergence

w0 o (2 )e(2) S on(2)

7j=1
which is anf-divergence forf (t) = (¢t — 1) Int, t > 0.

PROPOSITIONG.6. For anyp, q € P, we have:

(1-P)Q, "™
(6.11) J(p,q) > In (Q Liet ) { [m}

Qs — Py)
P;+Q;—2P;Q,

> max
0#£JC{1,....,n}

> 0.
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PROOF On making use of the inequalitly (6.3) fér(t) = (¢t — 1) In¢, we have
J (p,q)

1—P] 1_PJ PJ PJ
s (=g ) =g e (e ) (@)

1- P, P,
= ax {(QJ — Pj)ln (1 — Q;) —(Qs—Ps)In (@)}

~ max {(@J—PJNH [%”

proving the first inequality i (6.11).

Utilising the elementary inequality for positive numbers,
Inb—1Ina 2

> )

b—a “a+b

a,b>0

we have

@y (i) -m(&)
Q0-Q)  EL_I

1-Q; Qu
(Qs— Py 2 _ 2(Qs-Py)’ >0
T Qs,(1-Qy) %—l—% Pr+Q;—2P;Q; —

for eachJ C {1,...,n}, giving the second inequality if (6.11y.
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CHAPTER 10

Inequalities in Terms of Gateaux Derivatives

1. GATEAUX DERIVATIVES

Assume thatf : X — R is aconvex functioron the real linear spac&. Since for any
vectorsz,y € X the functiong,, : R — R, g, (t) := f (x + ty) is convex it follows that the
following limits exist

. fle+ty) — f(2)
_ = 1
Vi f (@) ()= lim ;
and they are called theght(left) Gateaux derivativesf the functionf in the pointz over the
directiony.
It is obvious that for any > 0 > s we have

aay Lo

>V, f(z)(y) = inf

t>0

{f(:r +sy) — f(fﬁ)}

{f(ﬁtyt)—f(ﬂ?)}

fz+sy) = f(x)

S

> sup
s<0

foranyz,y € X and, in particular,

(1.2) V_f (u) (u—v) > f(u) = f(v) = Vif @) (@u—0)
foranyu,v € X. We call thisthe gradient inequalityor the convex functiory. It will be used

frequently in the sequel in order to obtain various results related to Jensen’s inequality.
The following properties are also of importance:

=V_f(z)(y) >

(1.3) Vif(z)(—y)=-V_f(z)(y),
and
(1.4) Vi f (@) (ay) =aVif(z)(y)

foranyz,y € X anda > 0.
The right Gateaux derivative gibadditivewhile the left one isuperadditivei.e.,

(1.5) Vif(@)(y+2) <Vif(2)(y) +Vif(2)(2)
and
(1.6) Vof@)(y+2)>V_f(2)(y) +V_f(2)(2)

foranyz,y,z € X .

Some natural examples can be provided by the use of normed spaces.

Assume that X, ||-||) is a real normed linear space. The functipn X — R, f(x) :=
i |z||” is a convex function which generatié® superiorandthe inferior semi-inner products

S 71 el 4
oty = Jm

For a comprehensive study of the properties of these mappings in the Geometry of Banach
Spaces see the monograd|

127
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For the convex functiorf, : X — R, f, (z) := ||z||” with p > 1, we have
p ||$||pi2 <?J7$>S(i) ifz#0

Vit (@) (y) = {
0 if x=0

foranyy € X.
If p =1, then we have

Viofi(r)(y) =

{ [ I T |
+ ()l ifz=0

foranyy € X.

This class of functions will be used to illustrate the inequalities obtained in the general case
of convex functions defined on an entire linear space.

The following result holds:

THEOREM 1.1 (Dragomir, 201197]). Let f : X — R be a convex function. Then for any
z,y € X andt € [0, 1] we have
@7 tA=-D)[V-fW(y—=z)=Vif(z)(y—a)]
2tf () + (1 —=1) f(y) = fz+(L—1)y)
>t(1=t)[Vifltz+(1-)y)(y—2)=V_flta+ (1-t)y)(y —2)] = 0.
PROOF. Utilising the gradient inequality (1.2) we have

(1.8) flz+ A -t)y)—f(z) = A=) Vif(z)(y—x)
and
(1.9) flz+Q=0)y)—fy) = —tV_f(y) (y—=).

If we multiply (1.8) with¢ and [1.9) withl — ¢ and add the resultant inequalities we obtain
fllz+Q=t)y)—tf(x)—1—-1)f(y)
> (1 =0)tVif(x)(y—a)—t(1 =) V_f(y) (y — )

which is clearly equivalent with the first part ¢f (I.7).
By the gradient inequality we also have

(I-=)V_flta+(1-t)y)(y—2) = fltz+(1-1t)y) — f ()
and
—tVif(tz+(1-t)y)(y—a) = fltz+ (1 -t)y) — f(y)
which by the same procedure as above yields the second partjofy1.7).

The following particular case for norms may be stated:

COROLLARY 1.2 (Dragomir, 201157]). If = andy are two vectors in the normed linear
space(X, ||-]|) such thal) ¢ [z,y] := {(1 — s) x + sy, s € [0, 1]}, then for anyp > 1 we have
the inequalities

(1.10) pt (L =) [yl (y — =, 9); — =" (y — 2, 2),]
> tz|"+ (1= lyll” = [tz + (1 =) y|”
>pt(1—t) Jte+ (1 =)yl [y — 2, te+ (1 =) y), — (y—z,tz+ (1—1)y)] >0
foranyt € [0, 1] . If p > 2 the inequality holds for any andy.
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REMARK 1.1. We observe that for= 1 in (1.10) we derive the result

(1.12) ¢t(1—1) Ky - ﬁ> - <y o Hi_ll>]

2 tzll + (1 =) lyll = [[tz + (1 = 1) y]]

> t(1—1) [<y_x’|tx+(1—t)y >s_<y_x’|tx—l—(1—t)y >] >0

[te + (1 —1) y| tr + (1 — 1) y|

while for p = 2 we have

(1.12) 2t (1 —1) [(y — z,y);, — (y — 1) ]
> tlz|? + (1= t) lyl|* — [tz + (1 — &) y||?
>2t(1—t)[(y—z,tx+ (L —t)y), — (y —z,tx + (1 —t)y),] > 0.

We notice that the inequality (1.12) holds for anyy € X while in the inequality[(1.1]1) we
must assume that y and¢z + (1 — t) y are not zero.

REMARK 1.2. If the normed space is smooth, i.e., the norm is Gateaux differentiable in
any nonzero point, then the superior and inferior semi-inner products coincide with the Lumer-
Giles semi-inner produdt, -] that generates the norm and is linear in the first variable (see for
instance49)). In this situation the inequality (1.10) becomes

(1.13) pt (1 —1t) (lyl"* [y — =, 9] = [l=|" [y — , =)

> )"+ @ =) lyll” — [tz + 1 =) y[" =0
and holds for any nonzeroandy.

Moreover, if (X, (-, -)) is an inner product space, th¢n (1.13) becomes

(1.14) pt(1—t)(y —z, yl" "y — [|«]" )

> tl]” + (L =1) lyl]” = [[tz + (1 = 1) y[” > 0.
From (1.14) we deduce the particular inequalities of interest

T

(L15) (1 0) <y—wﬁ - m> >tz + (L= 1)yl — iz + (1 — 1) ] > 0

and
(1.26)  20(1 =)y —a|* = tllzlI + (1 = ) Iy — [tz + (1 = ) y||* > 0.
Obviously, the inequality] (1.16) can be proved directly on utilising the properties of the inner
products.
2. A REFINEMENT OF JENSEN'S INEQUALITY

For a convex functiory : X — R defined on a linear spacg, perhaps one of the most
important result is the well known Jensen’s inequality

(2.1) f <sz$z> < sz‘f (z3)

which holds for anyn-tuple of vectorx = (x4, ...,z,) € X" and any probability distribution

P= (ph 7pn) e P
The following refinement of Jensen’s inequality holds:
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THEOREM 2.1 (Dragomir, 201197]). Let f : X — R be a convex function defined on a
linear spaceX. Then for anyn-tuple of vectorsx = (x4, ...,z,) € X" and any probability
distributionp = (py, ..., p,) € P™ we have the inequality

(2.2) sz ;) (ZWEZ)
SN (me) v (zm> (zp) >0

In particular, for the uniform distribution, we have
1< 1<
(2.3) " ; f(zi)—f (5 ; xz)
e (i) mw (5 (5] -
k=1

=1

1
> =
n

PROOF. Utilising the gradient inequality (1.2) we have

(2.4) f (xk) —f (ZPN@) >V, f (Z]%«%) <95k - ZP#&)

foranyk € {1,...,n}.
By the subadditivity of the function&r ., f (-) (-) in the second variable we also have

o0 v (Sn) (z)
es{e) () (5

foranyk € {1,...,n}.
Utilising the inequalities (2]4) anfl (2.5) we get

(2.6) f (1) (Z W’)
- (Z pm> —V.f (Z pzxz> (i pi:@)

foranyk € {1,...,n}.

Now, if we multiply (2.6) withp, > 0 and sum ovek from 1 to n, then we deduce the
first inequality in [[2.2). The second inequality is obvious by the subadditivity property of the
functionalV_, f (-) () in the second variabla

The following particular case that provides a refinement for the generalised triangle inequal-
ity in normed linear spaces is of interest

COROLLARY 2.2 (Dragomir, 201197]). Let (X, ||-||) be a normed linear space. Then for
anyp > 1, for anyn-tuple of vectorx = (xy,...,z,) € X™ and any probability distribution
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p=(p1,...,pn) € PPwith )" | p;x; # 0 we have the inequality

p

2.7 Y pillal” -
=1

p—2
>p

> 0.

n n n n 2
Zpixi Zpk <$k,ZPj1‘j> - Zpﬁﬁi
=1 k=1 j=1 s i=1

If p > 2 the inequality holds for any-tuple of vectors and probability distribution.

In particular, we have the norm inequalities

2.8) > pillwill = || pixs
=1 =1

n
E Dix;
i=1

]20

D PiTi >
P\ Ty 7 =n
[Z < “ T Pl
and

T

2.9) > pillal® -
=1

>2 Zpk <$k,zpil’z> —
k=1 i—1 .

We notice that the first inequality ift (2.9) is equivalent with

n n 2 n n
I ED <zp>
=1 =1 k=1 =1 s

which provides the result

2
1 n 2 n
(2.10) 5 ;piHﬁciH + ;piwi

2

for anyn-tuple of vectors and probability distribution.

REMARK 2.1. If in the inequality[(2]7) we consider the uniform distribution, then we get

n p
>
=1
p—2 n
<$k, l’z> -
k=1 i=1 s
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3
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>
i=1
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3. A REVERSE OF JENSEN'S INEQUALITY
The following result is of interest as well:

THEOREM 3.1 (Dragomir, 201197]). Let f : X — R be a convex function defined on a
linear spaceX. Then for anyn-tuple of vectorsx = (x4, ...,z,) € X" and any probability
distributionp = (p1, ..., p,) € P™ we have the inequality

(3.1) Zpkv f (@) (@) Zpkv f () (szxz)
>Zpl ;) <Zp@:cl>.

In particular, for the uniform distribution, we have

(32)—[§fok Ty) gixk (%E ZEZ>]
1 « 1 «
EEE f(mz)—f<ﬁg iUz>

1=1
PrROOF. Utilising the gradient inequalit)m].Z) we can state that

foranyk € {1,...,n}.
By the superadditivity of the function& _ f (-) (-) in the second variable we also have

(3.4) V_f(xg) (z) = V_f (z1) (me,) > V_f(zg) (xk—2p1x2>

foranyk € {1,....,n}.
Therefore, by[(3]3) andl (3.4) we get

(3.5) V_f(xg) () = V_f (x) (szx2> > f () <2p1x2>

foranyk € {1,...,n}.
Finally, by multiplying [3.5) withp, > 0 and summing ovek from 1 to n we deduce the
desired inequality (3] 1)

REMARK 3.1. If the functionf is defined on the Euclidian spa&® and is differentiable
and convex, then fronj (3.1) we get the inequality

(3.6) Zpk V[ (r), k) <Zpkvf Tk) szwz>
> Zpl :L"L <Zp’bx7/>

where, as usual, far, = (z,...,2}),Vf (zx) = (ag(x“";’“), ooy 2lz) ) . This inequality was
obtained firstly by Dragomir & Goh in 1996, se&].
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For one dimension we get the inequality

(3.7) Zpkxkf k) szszpkf k)
>sz (@) <me>

that was discovered in 1994 by Dragomir and Ionescu,&?}e [
The following reverse of the generalised triangle inequality holds:

COROLLARY 3.2 (Dragomir, 201197]). Let (X, ||-||) be a normed linear space. Then for
anyp > 1, for anyn-tuple of vectorx = (x4, ...,z,,) € X"\ {(0,...,0)} and any probability
distributionp = (p1, ..., p,) € P™ we have the inequality

(3.8) p [Zpk k][ — Zpk [N i <Zpﬂi,$k> ]
k=1 k=1 i=1 ;

n
> pillw]” -
=1

In particular, we have the norm inequalities

(3.9) Zpk ekl — Zpk sz‘xz‘, T
k=1 k=1 i=1 |l ;
> pillal -
i=1

n
E Dil%;
i=1

forz, #0,k € {1,...,n} and

(3.10) 2 | > pillael® =D pr <ijxjafrk>
k=1 k=1 Jj=1 i

n n 2
> Zpi lzs))* — Zpixi ;
i=1 i=1

for anyz,.
We observe that the inequalify (3]10) is equivalent with

n n 2 n n
S opillwll? + Y opw| =2 <ij$j,$k>
i=1 i=1 k=1 j=1 ;

which provides the interesting result

n 2
E Di%;
i=1

1 |— )
(3.11) 5 ;Z?ZH%H +

> Zpk <ij$j, $k>
k=1 j=1 i

(Z Pipk (T, iEk)l)
k=1 j=1
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holding for anyn-tuple of vectors and probability distribution.
REMARK 3.2. If in the inequality[(3/8) we consider the uniform distribution, then we get

n 1 n 3 n
(312) p | D llwell” = =D llaell” 2<ij,xk>
k=1 k=1 j=1

)
p

n
> lzl =t
=1

n
>
i=1

Forp € [1, 2) all vectorsz;, should not be zero.

4. BOUNDS FOR THE MEAN f-DEVIATION

Let X be a real linear space. For a convex functjon X — R with the property that
f(0) > 0 we define themean f-deviationof ann-tuple of vectorg/= (y1, ..., y,) € X" with
the probability distributiorp = (p1, ..., p,) € P" by the non-negative quantity

(4.1) Ki) (p,y) = K; (p,y) =) _nif (y - Zm%) :
i=1 k=1

The fact that s (p, y) is non-negative follows by Jensen’s inequality, namely

Ki(py) > f (sz <yi - ZPk%)) = f(0) > 0.

Of course the concept can be extended for any function defined twowever if the func-
tion is not convex or if it is convex buf (0) < 0, then we are not sure about the positivity of
the quantityKs (p,y) .

A natural example of such deviations can be provided by the convex funttign:= ||y||"
with » > 1 defined on a normed linear spackg, ||-||) . We denote this by

Yi — Z PrYk
k=1

and call it themeanr-absolute deviatiof the n-tuple of vectorsy= (y1, ..., y,) € X" with
the probability distributiorp = (p1, ..., p,) -

Utilising the result from$4] we can state then the following result providing a non-trivial
lower bound for the meayi-deviation:

(4.2) K, (p,y) == sz

THEOREM4.1. Letf : X — [0, 00) be a convex function witfi(0) = 0. If y= (1, ..., yn) €
X" andp = (p, ..., pn) iS @ probability distribution with all; nonzero, then

(4.3) K;(p)y)

The case for mearabsolute deviation is incorporated in

COROLLARY 4.2. Let (X, ||-|]|) be a normed linear space. #= (yi,...,y,) € X" and
p = (p1, ---, pn) is @ probability distribution with allp; nonzero, then for > 1 we have

Yk — Zplyl } :
1=1
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REMARK 4.1. Since the function, (t) := (1 —t)"""¢" + ¢, > 1, ¢ € [0,1) is strictly
increasing ono, 1) , then

. 1 o 1—7" r — m 1 _ m 1—7" T 7
ecmin (=) T A ey = Pt (L= )
wherep,, := . {nin }pk. We then obtain the following simpler inequality:
e{l,....,n
n p
(4.5) K. (py) 2 [pm+ 1 =pn) ™" ] pnax = > |
""" " =1

which is perhaps more useful for applications.
We have the following double inequality for the mefimean deviation:

THEOREM 4.3 (Dragomir, 201197]). Let f : X — [0,00) be a convex function with
f(0)=0.Ify= (y1,...,yn) € X™andp = (p, ..., p,) iS a probability distribution with allp;
nonzero, then

(4.6) Ky_io0) (PY) = Kf() (P,y) = Ky, fo)0) (P, y) > 0.
PROOF. If we use the inequality (22) for; = y; — >, pryx We get

> nif (yi - me) -/ (Zpi (yi - me;))
=1 k=1 =1 k=1
> ijv+f <ZPZ (?Jz - ZPk%)) <yj - ZPk%)
j=1 i=1 k=1 k=1

oo ) (e )

which is equivalent with the second part [of (4.6).
Now, by utilising the inequality] (3]1) for the same choicerpive get

ijv—f (yj - ZPk@M) <yj - ZPk%)
j=1 k=1 k=1
- pV_f (yj - me) (Z pi <y¢ - me))
k=1 k=1 =1 k=1
> pif (yz- - me) —f (Zpi (yz- - me)) )
i=1 k=1 i=1 k=1

which in its turn is equivalent with the first inequality {n (4.@).

We observe that as examples of convex functions defined on the entire normed linear space
(X, |I-]) that are convex and vanisheslinve can consider the functions

fa)=g(lzl), v e X

whereg : [0, 00) — [0, c0) is @ monotonic nondecreasing convex function witld) = 0.
For this kind of functions we have by direct computation that

Vi f(0) (u) = g, (0) [Jul| foranyu € X
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and
V_f(u) (u) =g~ ([[ull) [[u]| foranyu € X.

We then have the following norm inequalities that are of interest:

COROLLARY 4.4 (Dragomir, 201187]). Let (X, ||-||) be a normed linear space. {f :
[0,00) — [0,00) is @ monotonic nondecreasing convex function with) = 0, then for any
y= (y1, ..., yn) € X" andp = (py, ..., p,) @ probability distribution, we have

(4.7) sz'gi ( Yi — Zpkyk ) Yi — Zpkyk
=1 k=1 k=1
= Zpig (
=1

n

Yi — Z DkYk

k=1

Yi — Z PrYk

k=1

) > g, (0) Zpi

5. BOUNDS FOR f-DIVERGENCE MEASURES

We endeavour to extend this concept for functions defined on a cone in a linear space as
follows (see also35]).

Firstly, we recall that the subsét in a linear spac& is aconeif the following two condi-
tions are satisfied:

(i) foranyz,y € K we haver +y € K

(¢7) foranyz € K and anya > 0 we havenz € K.

For a givenn-tuple of vectorz = (zy, ..., z,) € K™ and a probability distributioy € P
with all values nonzero, we can define, for the convex funcfion K — R, the following
f-divergence otz with the distributiong

(5.1) Iy (zq) =Y af (q—) .

It is obvious that ifX = R, K = [0,00) andx = p €P” then we obtain the usual concept of
the f-divergence associated with a functifn [0, co) — R.
Now, for a givem-tuple of vector = (x4, ..., z,) € K™, a probability distributiory € P

with all values nonzero and for any nonempty subsef {1, ...,n} we have

as = (Qs,Q,) € P?
and

Xy = (XJ,XJ) € K?
where, as above

Xy = Z$i, and XJ = Xj.
1€J

It is obvious that

Iy (x5,97) = Qsf <%) +Qsf <%) :

The following inequality for thef-divergence of an-tuple of vectors in a linear space holds
[55]:
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THEOREMDb.1. Let f : K — R be a convex function on the coié Then for anyn-tuple
of vectorsx = (x4, ..., x,) € K", a probability distributionq € P with all values nonzero and
for any nonempty subsétof {1, ..., n} we have

5.2 I > I >

(5.2) F(x,q) > e (x7,a7) > Iy (x5,47)
> i I > f (X,
=i r(xpar) = f(Xa)

whereX,, := > " | ;.

We observe that, for a giventuple of vectors = (21, ..., z,) € K™, a sufficient condition
for the positivity of I, (x, q) for any probability distributiory € P with all values nonzero
is that f (X,,) > 0. In the scalar case and i = p €P", then a sufficient condition for the
positivity of the f-divergencel; (p, q) is thatf (1) > 0.

The case of functions of a real variable that is of interest for applications is incorporated in
[55]:

COROLLARY 5.2. Let f : [0,00) — R be a normalized convex function. Then for any

p,q € P" we have
max o [QJf (ﬁ) +(1=Qs)f (1_PJ)] (>0).

5.3 I; (p,q) >
(5.3) f(lDQ)_MC{1 _____ 0, =0,

In what follows, by the use of the results in Theorien] 2.1 and Theprem 3.1 we can provide
an upper and a lower bound for the positive differefeex, q) — f (X,,) .

THEOREMA.3 (Dragomir, 201197]). Let f : K — R be a convex function on the cohe
Then for anyn-tuple of vectorx = (x4, ...,x,) € K™ and a probability distributiong € P"
with all values nonzero we have

(5.4) Iv_soy) (%,9) = Iv_poyxa) (@) 2 Ip (x,q) — f(Xn)
> IVJrf(Xn)(') (X7 CI) - v+f (Xn) (Xn> > 0.
The case of functions of a real variable that is useful for applications is as follows:

COROLLARY 5.4. Let f : [0,00) — R be a normalized convex function. Then for any
p,q € P" we have

(5.5) Ipr ¢y (Poa) = Iy (Pya) = Iy (p,q) = 0,
or, equivalently,
(5.6) Iy Oi-1 (psa) > Iy (p,q) > 0.

The above corollary is useful to provide an upper bound in terms of the variational distance
for the f-divergencel, (p, q) of normalized convex functions whose derivatives are bounded
above and below.

PROPOSITIONS.5. Let f : [0,00) — R be a normalized convex function apdq € P". If
there exists the constantsandI” with

—co <y < fh <%) <T'<ooforalke{l,..,n},
k
then we have the inequality
1
(5.7) 0<Ii(pa) =5 (T =7)V(p.a),

whereV (p,q) = >, 4 |2 — 1‘ =i P — il

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

138 S. S. IRAGOMIR

PrROOF By the inequality[(5.6) we have successively that

0<I(p,a) < Iy (yj)-1 (P, q)
_Z __1 pi _m
7 qi 2
Z' A
— q; 2
§§F 72(1@——1‘

which proves the desired resylt (5. ).

COROLLARY 5.6. Let f : [0,00) — R be a normalized convex function apdq € P". If
there exist the constantsand R with

0<r<&<R<ooforallke{1,...,n},

qk

then we have the inequality

(5.8) 0<I;(p,a) <= [f (R)—f (r)]V(p.q).

The K. Pearson2-divergencas obtained for the convex functioh(t) = (1 —¢)*,t € R
and given by

Finally, the following proposition giving another upper bound in terms ofithdivergence can
be stated:

PROPOSITIONS.7. Let f : [0,00) — R be a normalized convex function apdq € P". If
there exists the constafit< A < oo with

) -0
(5.9 N < Aforall k € {1,...n},

bi _
qi

then we have the inequality
(5.10) 0<Ir(p,q) <AX* (p,q).

In particular, if f” (-) satisfies the local Lipschitz condition
(5.11) | /2 (z) = fL(1)| < Alz —1] foranyz € (0, 00)

then [5.10) holds true for any, q € P".
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PrRoOOF We have from[(5]6) that

N2 q
_ . <§_ - 1) [f’ (3) - f (D]
| )

and the inequality] (5.10) is obtainesl.

REMARK 5.1. It is obvious that if one chooses in the above inequalities particular normal-
ized convex functions that generates the Kullback-Leibler, Jeffreys, Hellinger or other diver-
gence measures or discrepancies, that one can obtain some results of interest. However the
details are not provided here.
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CHAPTER 11

Inequalities of Slater’s Type

1. INTRODUCTION

Suppose that is an interval of real numbers with interii)randf : I — R is a convex
function on/. Thenf is continuous omand has finite left and right derivatives at each point of
i. Moreover, ifz,y el andz < y, thenf’ (z) < f, (z) < f' (y) < f} (y) which shows that
both f” and f| are nondecreasing function nit is also known that a convex function must
be differentiable except for at most countably many points.

For a convex functiorf : I — R, the subdifferential off denoted byof is the set of all

functionsy : I — [—o0, 0o such thatp (I) c Rand

f(z)>f(a)+ (xr—a)p(a) foranyz,a € I.
It is also well known that iff is convex on/, thendf is nonempty,f’, f\ € df and if
v € df, then .
fL(z) <@(x) < fi(z) foranyz € |.
In particular,y is a nondecreasing function.

I f is differentiable and convex dnthendf = {f'}.
The following result is well known in the literature e Slater inequality:

THEOREM 1.1 (Slater, 1981/123). If f : I — R is a nonincreasing (nondecreasing)
convex functiony; € I,p, > Owith P, := 3", p; > 0and} ", pip (z;) # 0, wherep € 0f,
then

1 ¢ Yoy Ditip ()
(w.) B omf )< 1 (55 .

P, ; () Zi:l pip ()

As pointed out in48, p. 208], the monotonicity assumption for the derivativean be
replaced with the condition
21:1 bip (1’1)

which is more general and can hold for suitable point$ and for not necessarily monotonic
functions.

el,

The main aim of the present paper is to extend Slater’s inequality for convex functions
defined on general linear spaces. A reverse of the Slater’s inequality is also obtained. Natural

applications for norm inequalities arfddivergence measures are provided as well.

2. SLATER’SINEQUALITY FOR FUNCTIONS DEFINED ON LINEAR SPACES

Assume thatf : X — R is aconvex functioron the real linear spac&. Since for any
vectorsz,y € X the functiong, , : R — R, g, (t) := f (z + ty) is convex it follows that the
following limits exist

Vi f (@) (y) == lim fle+ty) - f(x)

t—0+(—) t

140
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and they are called theght(left) Gateaux derivativesf the functionf in the pointz over the
directiony.
It is obvious that for any > 0 > s we have

oy Lt S0

>V, f(x)(y) =inf

t>0

[f(x +sy) — f(l“)}

{f(fﬁﬂyt)—f(m)}

flz+sy) = f ()

S

> sup =V_f(z)(y) >

s<0
foranyz,y € X and, in particular,

(2.2) Vof(u)(u=v) = f(u) = f(v) 2 Vif(v)(u—0)

foranyu,v € X. We call thisthe gradient inequalityor the convex functiory. It will be used

frequently in the sequel in order to obtain various results related toSlater’s inequality.
The following properties are also of importance:

(2.3) Vif(z)(—y)=-V_f(z)(y),
and
(2.4) Vi f (@) (ay) = aVif(z)(y)

foranyz,y € X anda > 0.
The right Gateaux derivative gibadditivewhile the left one isuperadditivei.e.,

(2.5) Vif(@)(y+2) <Vif(2)(y)+Vif(2)(z)
and
(2.6) V_f@)(y+2)>V_f(z)(y)+V_f(2)(z)

foranyz,y,z € X .

Some natural examples can be provided by the use of normed spaces.

Assume that X, ||-||) is a real normed linear space. The functibn X — R, f(x) :=
2 |z||” is a convex function which generatié® superiorandthe inferior semi-inner products

N 1 el
L= ] i
Wy =, t
For a comprehensive study of the properties of these mappings in the Geometry of Banach
Spaces see the monogradi§][
For the convex functiorf, : X — R, f, () := ||z||” with p > 1, we have

‘p_Q <1/7$>s(7;) if z # 0,

pllz|
Vit (@) (y) =
0 if =0

foranyy € X.
If p =1, then we have

™ (. )y i #0,

Viofi(z)(y) = {
+ (=) llyll  ifz=0

foranyy € X.
For a given convex functiorf : X — R and a givem-tuple of vectorx = (zy,...,x,) €
X" we consider the sets

(2.7 Slay—y (f,x) :={ve X | Vi) f(z;)(v—a;)>0forallie{l,..,n}}
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and
(2.8) Slay - (f,x,p) = {U €X| Zpiv+(—)f (i) (v —2i) > 0 }
i=1

wherep = (p1, ..., p,) € P is a given probability distribution.

SinceV . f (z) (0) = 0foranyz € X, thenwe observe that, ..., z,} C Sla, () (f,x,p),
therefore the setSla, ) (f,x, p) are not empty for eacli, x andp as above.

The following properties of these sets hold:

LEMMA 2.1 (Dragomir, 201238]). For a given convex functiofi : X — R, a givenn-
tuple of vectorx = (z1,...,x,) € X" and a given probability distributiop = (py, ..., p,) €
P™ we have

(i) Sla_(f,x) C Sla, (f,x)andSla_ (f,x,p) C Slay (f,%x,p);

(i) Sla_ (f,x) C Sla_ (f,x,p) andSla, (f,x) C Slay (f,x,p)

forall p =(p1, ..., pn) € P";
(iii) The setsSla_ (f,x) andSla_ (f,x, p) are convex.

PROOF The properties (i) and (i) follow from the definition and the fact tWatf (x) (y) >

V_f (z)(y) foranyz,y.
(iii) Let us only prove thatSla_ (f,x) is convex.

If we assume that,,y. € Sla_ (f,x) anda, 5 € [0, 1] with « + § = 1, then by the
superadditivity and positive homogeneity of the Gateaux derivafivg (-) (-) in the second
variable we have

V_f (@) (ayr + By2 — ) = V_f (i) [a(y — i) + B (y2 — 73)]
> aV_f(x)(y —2) + BV _f (i) (Y2 — ) 20

foralli € {1,...,n}, which shows thatvy,; + Gy, € Sla_ (f,x).
The proof for the convexity ofla_ (f,x, p) is similar and the details are omittegl.

For the convex functiorf, : X — R, f, (z) := ||z||” with p > 1, defined on the normed
linear spacé X, ||-||) and for then-tuple of vector = (x4, ..., z,,) € X"\ {(0,...,0)} we have,
by the well known property of the semi inner products

(y+az,z) ;) = (y,0), +o |z||” foranyz,y € X anda € R,
that
Slay ) ([[”,x) = Slas ([|-]| , %)
— {v € X | (v,2;), > ||| forall j {1, n}}

which, as can be seen, does not depend Wfe observe that, by the continuity of the semi-inner
products in the first variable th&fa. ) (||-|| , x) is closed in X, ||-||) . Also, we should remarks
thatifv € Slay ) (||-||,x) then for anyy > 1 we also have thatv € Sla (||| ,x).

The larger classes, which are dependent on the probability distriqutiof™ are described

by
Slayy (|I”, %, p) == {U € X | ol v ay) oy = D> s Il } -
j=1 j=1

If the normed space is smooth, i.e., the norm is Gateaux differentiable in any nonzero point,
then the superior and inferior semi-inner products coincide with the Lumer-Giles semi-inner
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product|-, -] that generates the norm and is linear in the first variable (see for insié&@jyelph
this situation

Sla (||, x) = {ve X | [v,a;] > |lz;|” forall j € {1,...,n}}
and

Sla (|-|”,x, p) = { e XY pilall v, z] = > p; ij,‘p} .
j=1 i=1

If (X, (-,-)) is aninner product space théii (||-||” , x, p) can be described by

Sla (|7, %, p) = { €X| <v,ij Ha:jup—%j> > v, iju”}
=1 =1

and if the family{g:j}j:1 ., Is orthogonal, then obviously, by the Pythagoras theorem, we have

,,,,,

that the sund ", x; belongs toSla (||-||, x) and therefore t&la (|-, x, p) for anyp > 1
and any probability distributiop = (p1, ..., p,) € P™.

We can state now the following results that provides a generalization of Slater’s inequality
as well as a counterpart for it.

THEOREM 2.2 (Dragomir, 201258]). Let f : X — R be a convex function on the real
linear spaceX, x = (z1,...,x,) € X" an n-tuple of vectors ang = (p1,...,p,) € P* a
probability distribution. Then for any € Sla, (f,x, p) we have the inequalities

(29) V—f (U) (’U) - szv—f (U xz > f sz Iz =

PROOF If we write the gradient inequality far € Sla. (f,x, p) andz;, then we have that

(2.10) Vof)(v—m) > f(v) = f(z:) >Vif(m)(v—a)

foranyi € {1,....,n}.
By multiplying (2.10) withp;, > 0 and summing ovei from 1 to n we get

211) > pV o f@)—a)>f(v sz (:) >ZpN+f () (v — 7).
=1

Now, sincev € Sia, (f,x,p), then the right hand side 11) is nonnegative, which proves
the second inequality ifi (3.9).
By the superadditivity of the Gateaux derivative f (-) () in the second variable we have

V_f) () =V_f)(z)=V_f)(v-m),

which, by multiplying withp; > 0 and summing over from 1 to n, produces the inequality
(2.12) Vof ) () =Y piVof ) (@) =D piV_f(v) (v—).
=1 i=1

Utilising (2.17) and[(2.12) we deduce the desired re§uli (a.9).

REMARK 2.1. The above result has the following form for normed linear spaces. Let
(X, |I-||) be a normed linear space,= (x,...,x,) € X" ann-tuple of vectors fromX and
p =(p1,-..,pn) € P" a probability distribution. Then for any vectorc X with the property

(2.13) > ol e, =Y llagll, p =1,
=1 =1
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we have the inequalities

(2.14) p [ Iol” =i sl v, ), | = ol = pj llagll” > 0.

j=1
Rearranging the first inequality in (2]14) we also have that

(2.15) (0= D"+ pillal” =Y pjllas P72 (v, 25),
=1 =1
If the space is smooth, then the conditipn (2.13) becomes
(2.16) D pillal P ) 2 Y sl p 21,
=1 j=1

implying the inequality

(2.17) p (ol = s sl [U,xj]] > Jlol” = > ps sl = 0.
j=1 j=1

Notice also that the first inequality ip (2]17) is equivalent with

(2.18) (p— D loll” + D _wj Izl = p Y py sl [0, 2]

(z Y il > o) -

j=1
The following corollary is of interest:
COROLLARY 2.3 (Dragomir, 201238]). Let f : X — R be a convex function on the

real linear spaceX, x = (z1,...,x,) € X™ ann-tuple of vectors angp = (py, ...,p,) € P"* a
probability distribution. If

(2.19) > VS (@) () > (<)0

=1

and there exists a vectaere X with

(2.20) D iV (@) (s) = ()1
then
(2.21) V_ f(Zng+f ;) () s ) <ijv+f (z;) (z) )

- ZPiV—f (ZPNJ (z5) () s) ()
>f<2pjv+f ;) (2;) s ) Zpl ) >

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

INEQUALITIES FOR DISCRETE--DIVERGENCE MEASURES 145

PrROOF Assume thad ", p;V.f (z;) (z;) > 0and} .  p;Vif(z;)(s) > 1 and define
vi=3 0 0 VS (x5) (z;) s. We claim that € Slay (f,x,p)-

By the subadditivity and positive homogeneity of the mappingf (-) (-) in the second
variable we have

sz‘v+f (@) (v — ;)

i=1

v

szv—I—f xz szv-‘rf xl) (‘TI>

= szerf xz (ZPJVJrf x] $] > ZpZVJrf xl i
= ijv+f () () ng (1) (5) - me /@

= > nVef @) @) [me () (5) - 1] >0,

as claimed. Applying Theorefn 2.2 for thisve get the desired result.
If > piVaf (z) (z;) <0and) ), p;V_f (z;) (s) < 1then for

wi= SV f (2) (2)) s

we also have that

ipiw(xi) (w -,
> Zplv+f ;) (Zp]VJ (;) (z;) s ) szerf (@) ()
= ;piv+f(a:i) <<—z::pjv+f(xj) (:cj)> (—s)) - Zpiv+f(xi) ()
- _z:pjmf(xj)(asj) Zplmf ;) szmf (w:) ()

= (=D _pVif (x)) (x)) (1 +Zin+f($i) (_S)>

j=1 i=1

= (-3 nVes @) () (1 ~ S Vo () <s>> >0

j=1 i=1

where, for the last equality we have used the property (2.3). TherefareSia. (f,x,p) and
by Theorenj 2]2 we get the desired resplt.

It is natural to consider the case of normed spaces.
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REMARK 2.2. Let(X, ||-||) be a normed linear space,= (x1, ..., z,) € X™ ann-tuple of
vectors fromX andp = (p, ..., p,) € P" a probability distribution. Then for any vecterc X
with the property that

(2.22) prz il [P72 (s, ), > 1,

we have the inequalities
n p—1 n n
-1
P’ |ls|” (ij ||ﬂfj||p> (p Isl1 D> o ll " = ps <xj,s>z->

j=1 j=1 j=1

n p n

> pP sl (ij H%‘Hp> =Y pjllz)” > 0.
j=1 i=1

The case of smooth spaces can be easily derived from the above, however the details are left
to the interested reader.

3. THE CASE OF FINITE DIMENSIONAL LINEAR SPACES

Consider now the finite dimensional linear space= R™ and assume thdt is an open
convex subset dR”. Assume also that the functigh: C' — R is differentiable and convex on
C. Obviously, ifz = (z!,...,2™) € C then for anyy = (y', ...,y™) € R™ we have

Vi) () = 3 et

k=1

For the convex functiorf : C' — R and a givem-tuple of vectorsx = (x4, ..., z,) € C™ with

z; = (z},...,2™) withi € {1,...,n} , we consider the sets
af A ) k
1 e Z l .
(3.1) Sla(f,x, {UGC] E oV

Z gx.’“’ zi") :cf forall: e {1,---,71}}

and

(3.2) Sla(f,x,p,C) .:{UGC|ZZ of (@ ax','c' )-vk

=1 k=1

wherep = (p1, ..., p,) € P is a given probability distribution.

As in the previous section the seféa (f, x,C') andSla (f, x, p,C) are convex and closed
subsets of cl@”), the closure ofC. Also {x,...,z,} C Sla(f,x,C) C Sla(f,x,p,C) for
anyp = (p1, ..., pn) € P™ a probability distribution.

PrROPOSITION3.1. Let f : C' — R be a convex function on the open convex(sén the
finite dimensional linear spadR™, (x4, ..., x,) € C™ ann-tuple of vectors andp;, ..., p,) €
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P" a probability distribution. Then for any = (v!,...,v") € Sla(f,x,p,C) we have the
inequalities

L Of (v, u™) of (z},...,z™™)
k=1 ‘

> f (vl,...,v") — Zpif (:cll, ,x;”) > 0.

=1

The unidimensional case, i.en, = 1 is of interest for applications. We will state this case
with the general assumption that: 7 — R is a convex function on aapeninterval /. For a
givenn-tuple of vectorx = (x4, ..., z,) € I"™ we have

Slayy (f,x1):={vel|fi(z) (v—a)>0forallie{l,..n}}

and

Slayy (f,x,p,1I) = {v el Zpifjr(_) (;) - (v—1;) >0 } ,
i=1

where(py,...,p,) € P" is a probability distribution. These sets inherit the general properties
pointed out in Lemmp 2]1. Moreover, if we make the assumptiondtiat p; f (2;) # 0 then
for > pifi (z;) > 0 we have

Z?zl pzﬂr (1’1) Z; }

Slay (f,x,p,1 :{UEI v > ~ -
+{ ) | >ic pifl ()

while for ", p; . (z;) < 0 we have

v = {v ellv< Liza Pif} (@) 2 }

2 e il ()

Also, if we assume that) (z;) > 0forall: € {1,....,n} and>_" | p;f (z;) > 0then

V.= 2%1 pif;/(xi) Ty el
Zi:l pifk ()

due to the fact that; € I and! is a convex set.

PROPOSITION3.2. Let f : I — R be a convex function on an open intervalFor a given
n-tuple of vectors = (x4, ..., x,) € I™ and(py, ..., p,) € P™ a probability distribution we have

(3.4) fL(v) (U - ZPz%) > f(v) = Zpif (zi) >0

foranyv € Sla, (f,x,p,I).
In particular, if we assume thgt_;"_, p; f, (x;) # 0 and

D i it () @

I
Spifs (@)

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

148 S. S. IRAGOMIR

then

/ Z?:l pif—/l— ('IZ) xl) Zz 1 pzf+ xz X
3-5 A2
e 7 (e [ S i f] ) Z”]

Zz 1pzf+ xz z>
Zf< Zz L pifh (@) sz %) 2

Moreover, if f/ (z;) > 0foralli € {1,...,n}and}_" | p;f. (;) > 0 then [3.5) holds true
as well.

REMARK 3.1. We remark that the first inequality n (B.5) provides a reverse inequality for
the classical result due to Slater.
4. SOME APPLICATIONS FOR f-DIVERGENCES

It is obvious that the above definition df (p,q) can be extended to any functioh :
[0,00) — R however the positivity condition will not generally hold for normalized functions

andp,q € R} with>~"  p; = >0, ¢
For a normalized convex functioh: [0, co) — R and two probability distributionp, q €
P we define the set

(4.2) Slay (f,p,q) = {v €[0,00) X_af’ (%) . (U Pz) >0 }

4d;
i—1 a; qi

Now, observe that

is equivalent with

(4.2) é%f H(2)> >t ()

=1

If >0 afh ( ) > 0, then (4.2) is equivalent with
Sy (2)
St ()

v >

therefore in this case

[0, 00) it S pifl () <0
[Z—T’—ﬁ()oo) if > pif (5—) >0

St (5)
If > afh < ) < 0, then [4.2) is equivalent with
Sy (2)
S aft (%)

(4.3) Slay (f,p,q) =

v <
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therefore

Zz 1pzf+(q) . n g D
[O’ m] it > i pif’ (Z) <0

0 it Sinf (3) > 0

Utilising the extended-divergences notation, we can state the following result:

(4.4) Slay (f,p,q) =

THEOREM4.1 (Dragomir, 201238]). Letf : [0, 00) — R be a normalized convex function
andp, q € P" two probability distributions. 1t € Sla, (f, p,q) then we have

(4.5) fL)(v—-1) = f(v) = I (p.q) = 0.

In particular, if we assume thdigu+ (p,q) # 0and

Iy () (P @)
Iy, (p,q) € [0.00)
then
o0 @A)\ | 100 (P a)
6 + _
(40) f_< Iy (p,q) )[ Iy, (p,q) 1]
Iy () (Pya)
> [ <m> —I; (p,q) > 0.

Moreover, iff, ({;—) >(0forallie{1,..,n} andIf/+ (p,q) > 0then ) holds true as well.
The proof follows immediately from Propositipn 8.2 and the details are omitted.

The K. Pearson2-divergences obtained for the convex functiof(t) = (1 —)*,t € R
and given by

(4.7) xg(p,q)::;qj(z—j— ) ZZM:Z&_L

j=1 9 j=1

TheKullback-Leibler divergencean be obtained for the convex functign (0, 0) — R,
f(t) =tInt and is defined by

(4.8) KL(p,q) ::iqj Pin ( ) ijln(p]>.

4;

If we consider the convex functiofi: (0,00) — R, f (t) = —Int, then we observe that

(4.9) ff<p,q>:=gqif(%) Zqzln() quln( >=KL<q,p>.
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For the functionf () = — In ¢ we have obviously have that

(4.10) Sla (—In,p,q) := {v € [0,00)| — Zn:qi (%)_ . (v — %) >0 }

i=1 v

={ve0,00)fv)y +=-1<0

i=1 I

1
=0, ———|.
{ x*(a,p) + 1]
Utilising the first part of the Theoremn 4.1 we can state the following

PROPOSITION4.2. Letp, q € P" two probability distributions. Iy € [O, m} then

we have

1 —
(4.11) ©> ~In(v) - KL(q,p) > 0.
(%
i _ 1
In particular, forv = FrapTi e get
(4.12) X°(a,p) > In[x*(a,p) +1] — KL(q,p) > 0.

If we consider now the functioyi : (0,00) — R, f () =tlnt, thenf’(¢) =Int+ 1 and
(4.13)  Sla((-)In(-),p,q)

- {UE [0, 00)| éq (m(%) +1) : (U—%) zo}
- {UE [o,oo)|vi:q,- (m (Z—) +1) —gpi- <ln (%) +1> 20}

={ve0,00)v(l - KL(q,p)) 21+ KL(p,q)}.
We observe that ib, g € P™ two probability distributions such that< KL (q,p) < 1, then

Sta(()In () . p.a) = {”KL (p.9) )

1-KL(q,p)’
If KL(q,p) > 1thenSla((-)In(-),p,q)=0.
By the use of Theorein 4.1 we can state now the following
PROPOSITION4.3. Letp, q € P" two probability distributions such thét < KL (q,p) <

LIfve [%ﬁgg;, oo> then we have

(4.14) (nv+1)(v—1) >vin(v) — KL (p,q) > 0.

1+KL(p,q)
T-KL(qp) we get

o (o[E8] ) (25788

o 1+ KL(p,q) {1+KL(P701)
~1-KL(q,p) |1-KL(q,p)

Similar results can be obtained for other divergence measures of interest sucletf¢ye
divergence, Hellinger discriminatioetc..However the details are left to the interested reader.

In particular, forv =

} — KL(p,q) > 0.
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CHAPTER 12

Approximation of f-Divergence Via Ostrowski Type Inequalities

1. SOME PRELIMINARY RESULTS

The difference between two probability measupeg on a setd = {1 <i<n}is
commonly measured in a variety of ways. Denotefy;; the associated point probabilities for
the eventy; € A. To avoid triviality we assume that + ¢; > 0 for eachi. Thevariational
distance(¢;—distance) anthformation divergencéKullback—Leibler divergence) between the
distributionsp andq are defined respectively by

Vip,g) = Ipi—ail,
=1

4i

Another measure, which proves a useful benchmark in our analysis, is the chi—-squared diver-
gence ofp, ¢, which is defined by

- Di
D(p,q) == Zpi In—.
i=1

n

"L p? a2
Dy2(p,q) ::Z%_lzzu_
i=1 1

i=1 i

The last two measures are unfortunately infinite;if> 0 butg; = 0 for somei. This
complication is obviated in thegiangular discriminationbetweerp andg, which is defined as
in [127] by

A generalization of this measure, parameterized by a natural numkser
- ’pi — Qi’%
Av(p7 Q) = P v )
; (pi + %)2 !
which we refer to asriangular discrimination of ordew (see[L27]). Another common choice
is theHellinger discrimination

1 & )
p.q) =5 (Vo= V&)
=1
For applications it is important to know how these divergences compare with one another.
The basic relations betweén A andh? are

%VQ(Z% 7) < Alp,q) < V(p,q)

and
2h%(p,q) < A(p, q) < 4h*(p,q)

151
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(see LeCam99] and Dacunha—Castell@T]). From these we may deduce that

1 1
gVQ(p, q) <h*(p.q) < 5V (p.9).

The coefficients in these inequalities are best possublg127]).
The first half of this result has been improved by Kr&][ who showed that

éVQ(p, q) < k*(p,q) (1 - %hQ(p, Q)) :

We note also the important inequality

D(p,q) > —2In (1 — h*(p,q))
(see Dacunha—Castell24]). It follows from this that

D(p,q) > 2h*(p, q).

Again the coefficient 2 is best—possible (s&27)).

The key to unity in this diversity is that all the discrepancy measures considered above
are particular instances of Csiszirdivergences. Iff : [0,00) — R is convex, theCsiszar
f-divergencebetweerp andq is defined by

(1.1) ]f(p, q) = Z%‘f (pi/ @)

(see Csiszai22]-[24]). Thus the family( f;)s>; of functions with
fo(w) = |u —1)°(uw + 1)'°

gives rise to variational distance when= 1, triangular discrimination whem = 2 and tri-
angular discrimination of order whens = 2v (see [L27]). The choicef(u) = 3(v/u — 1)?
gives rise to Hellinger discrimination anlu) = «Inw to Kullback-Leibler divergence. The
chi—squared divergence is given ifu) = (u — 1),

For all of the above choice&1) = 0, so that/;(p, p) = 0. The convexity off then ensures
that/;(p, ¢) is nonnegative.

In Section 2 we derive, by the use of Ostrowski’s integral inequality for absolutely con-
tinuous mappings with essentially bounded first derivative, an approximation for the Csiszar
f—divergence in terms of an integral mean. With many concrete examples this provides very
simple approximations. Section 3 considers some of the examples noted above and Section 4
the case when each paiy, ¢; are very close. Finally, in Section 5, we look at applications to
mutual information.

It needs to be stressed that as these estimates lose most of the detailed information involved
in the valuew;, ¢;, the approximations, while very simple, can also be very crude.

2. AN INEQUALITY FOR CSISZAR f—DIVERGENCE

In some applications it is convenient to make use of definition| (1.1) for functfons
[0,00) — R which are continuous but not necessarily convex. An illustrative example is given
in Section 3. Accordingly our main result, Theorem 1 below, does not assume convexity.

We assume in what follows that there exist real numbefg with

0<r<p/g <R<o0

foralli € {1,...,n}. Note thatifr > 1, thenp;, > ¢, for eachi, which givesl = . p; >
> ;¢ = 1, acontradiction. Hence < 1. A similar argument give® > 1.
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Further suppose that the restrictionfofo the compact intervadt, R] is absolutely continu-
ous. We derive an approximation to the Csisgadivergence in terms of the integral mean of
f over[r, R]. We shall show in Theorem 1 below thapiaindg are close in the sense that-r
is small, then the integral mean

L / t)dt
s [ 1

approximates the Csiszg#divergence to first order.
We make use of Ostrowski’s integral inequality, which states the following. 'B&ddr a
short proof and some applications to numerical integration and special means.

THEOREM2.1. Assume thaj : [a,b] — R is absolutely continuous withi € L..[a, b], that
is, that|g'|| _ := ess sup |¢'(t)] < oo.
o t€[a,b]

Then ,
2
1 1 r — afb ,
g<x)_b—a/g(t)dt = 1+< — ) (b_a)”g Hoo

forall x € [a, b].
A further key result is due to Diaz and Metcalf (sd€9, p. 61]).

THEOREM 2.2. Suppose,(# 0) and b, (k = 1,...,n) are real numbers satisfyingn <

bk/ak < M. Then
Zb2+mMZak (M + m) Zakbk

k=1
Equality holds if and onIy |f for each eltherbk may, Or by, = May,.

We shall make use of a slight extension of this.

Suppose the conditions of the Diaz—Metcalf result hold@nd 0 for £k = 1, ...,n. Then

Z tkzbk + mM Z tkak M +m Z tkakbk

k=1

Equality holds if and onIy if for each eltherbk = may, Or by, = May,.
We have fork = 1,2, ..., n that

(bk/CI,k — m)(M — bk/ak)tkaz 2 0.
The desired result follows on summation over

THEOREM 2.3 (Dragomir et al., 200060]). Assume thaff : [r, R] — R is absolutely
continuous onr, R] and f* € Ly.[r, R]. Then

(2.1) It(p.q) —

et freno (551

=0,

A\
|
Sy
|
=
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PrROOF By Ostrowski’s integral inequality, we have

A
f() _r/f fat) < zﬁ(ﬁ) (R=n)]

for eachi € {1,...,n}.
We may multiply byg;, sum the resultant inequalities and use the generalized triangle in-
equality to obtain

Iip.a) - 5 [ foe

!

f

(e 9]

/

(R=7)]|

f

oo

1 1 = Di R—|—7“>2
1 (R—T)2;q (qi 2

Since

n 2 n 2 2
pi R+r Dj R+r
S (B S (1)
n 2 2
D R+r
<N Py —1
S ore (T )

R+1r 2
:sz(p,q)—i—( 5 —1> ,
this yields the first inequality iy (2.1).

For the second, sét. = /px/qx @andayx, = \/qx/pr (k = 1,. n) Thenak/bk = pr/qr €
[r, R] (k € {1 ,n}). On applylng Proposmon 1 fofrk = D (k: =1,. , we get

or equivalently

Zpk+rR<R+r

qk
Thus
Dy2(p,q) <r+R—rR—-1=(1-r)(R—-1)
and so
1 1 1 1
-+ ——1D - —2)?| < =
4+(R—T)2|: XQ(p7Q)+4(R+T ):|—2

and the theorem is proved.

COROLLARY 2.4 (Dragomir et al., 20006g)]). Let f satisfy the conditions of Theorém[2.3.
If e > 0and

0<R-—r<2¢

/
s
o0
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then

R
1
I — t)dt| <e.
e RICLIEL
Theorem 1 can be reformulated to emphasize the approximation aspect.
Let f : [0,2] — R be absolutely continuous with € L..[0,2]. If € (0,1) andp(n), q(n)
are such that

e

foralli € {1,...,n}, then

1+n

Mwmwmzi/fwﬁ+mm%m

and the remaindeR(p, ¢, n) satisfies

Rrtpaonll < % |14 2500 G at)| |/

This follows by Theorerh 2|3 with the choicé&s= 1+ nandr =1 —n (n € (0, 1)).

<SleL

3. PARTICULAR CASES
For Kullback—Leibler distance, we talfé¢u) = uInu. With this choice we havéf'|| =
In(eR) and
R
/f(t)dt = }L [R*In R* — r*Inr® — (R* — r?)]

r

2 .2
:R rln

4

2 .2
_ I T[],

where the identric meah(a, b) for positive arguments is given by

a ifb=a
I(a,b) = l<£)1/(b—a) b+ a,

e \ a%

The conclusion of Theorem 1 reads
R+r
D)~ T 1 (72,17

N S ]

(R—r7)In(eR).

(3.1)

(R—r)In(eR)

<

N | —
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If we take the concave maf: (0, 00) — R given by f(u) = Inu, then we have
Ii(p.q) = Y as ln% =—D(q,p).
k=1 !

With this choice|| || = 1/r and the identric mean reappears through

R —

<

! / F(#)dt = [I(r, R)].

Theorem 1 provides

&2 P~
< i+ (RiT)Q [sz(p,q) - (R;r — 1)2 (g - 1)

<1(§_1).
—2\r

For Hellinger discriminatiorf (u) = (y/u — 1)° /2, so

/ _\/a_l 1" _i
for u € (0,00) and
vR—1

£, = s 1 =1 =

Also

and inequality[(2]1) becomes

9 R+r 2 R+vVrR+r 1
h*(p,q) — 1 —§T Ti+§]
1 1 R+r 2 VR -1
1

For variational distance/;(u) = |u — 1|, which is absolutely continuous dn R|. We have

£ (u) = { -1 ifue(rl)

1 ifue(l,R),
so that
|7 = s 17 @1=1.
oo te(r,R|
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Further
1

/(1 — u)du + f(u _ 1)du]

T

_ 1 [(r_1)2 (3_1)2}

2 * 2

Theorem 1 provides

V(p,q) —

R—r

<

1
Our final example relates to triangular discrimination, which arises With = (u —
1)?/(u + 1). We have

4du / 4
f(u):u+1—u—+1, fu) = CEE
for u € [0, 00), so that
(R—1)(R+1)

— sup |f(w)| =|f(R)| =

Hf ‘ o8 u€(r,R| (R + 1)2

Also

R
1 1\ M/(B-)
R_r/f(u)du—R;T+ln<R+ ) -3

and Theorem 1 provides
R+ R+ 1\*#™"
+ In -3
2 r+1

1 1 R+ 2
S[1+(R_T)2{Dx2(pm+( 5 —1>}

_LE-1)(R=1)(R+3)

=2 (R+1)2

A(p,q) —

(R—7)(R—1)(R+3)
(R+1)2

4. SOME NUMERICAL EXAMPLES

One situation of practical interest is whereandg; are close, so that we haye = p;(¢),
¢; = ¢;(¢) and
pi(e)
gi(e)

(4.1) —1‘§€5€(O,1)

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

158 S. S. IRAGOMIR

foralli € {1,...,n}. With R = ¢ + 1 andr = 1 — ¢, we obtain from[(3]1) that

‘D(p(e),q(e)) (4R 5)2)}‘
<5 1+ ZDebE e et + )
<elnle(l+¢)].

Consequently ifp(¢), ¢(¢) are in the sense of (4.1), we can approximate the Kullback-
Leibler distanceD(p(¢), ¢(¢)) by (1/2)In [I ((1 +¢)”, (1 — £)?)] and the error of the approx-
imation is less than

E(e) :=elnle(1 + ¢)].
From (3.2), we derive

D06~ | 7= || < 1oz [1+ S Delble.ae)

IN

fore € (0,1).

Consequently fop(e), ¢(¢) satisfying [(4.1), we can approximate the Kullback—Leibler dis-
tance D(p(¢),q(¢)) by In[I7'(1 — ¢,1 + ¢)] and the error of the approximation is less than
e/(1—¢)fore e (0,1).

5. APPLICATION TO MUTUAL INFORMATION

We consider mutual information, which is a measure of the amount of information that one
random variable provides about another. It is the reduction of uncertainty about one variable
due to knowledge of the other (see, for exam24])|

Consider two discrete—valued random variabteandY with a joint probability mass func-
tiont(x, y) and marginal probability mass functiopisr) (x € X) andq(y) (y € )). The mutual
information is the relative entropy between the joint distribution and the product distribution,
that is,

Iwm=22wmmr@”}Dwmwm@x

ey p()q(y)

where as beforé(-, -) denotes Kullback—Leibler distance.
We assume that

t(z,y)
p(x)q(y)

Much as withr, R we haves <1 < S.
We also may consider mutual information in a chi-squared sense, that is,

oy Pry)
heXV)= D e

(5.1) s <

< S forall (z,y) € X x ).

Inequality [3.1) yields the following proposition.
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If ¢, p andq satisfy [5.1), then
SO (1 (2 5)] ‘

i‘i‘ﬁ [IXZ (X§Y)+ (S;S_l) ]] (S—S)ID[SS]

< %(s _ §)In(es).

‘](X;Y) -

<

The conditiont(z,y) = p(z)p(y) for all (z,y) € X x Y means that the random variables
X andY are independent. We may refer to them as “quasi—independent” if

t(z,y) ’
—11<é§  (5e(0,1
p(x)q(y) - Gebn)
forall (x,y) € X x ). When this occurs, we can approximate the mutual informatioft )
by

%{(1—1—5) In(1+9) ;5(1_5) In(1—9) _11 (6 € (0.1))

with an error less thai'(9) for ¢ € (0,1).

6. PRELIMINARIES

The Csiszarf—divergence between= (py,...,p,) andq = (¢, . .., q,) is defined by the

functional .
) = ZQif(pi/Qi)-
i=1

Two important instances, which we shall inv::)ke shortly, are the variational distapce) and
the chi—squared divergendg,z(p, ¢), for which

flu) = |u—1]"
with m = 1, 2 respectively. We address the situation in which there exist constaRtwith
(6.1) O<r<l<R<ooandr <p;/¢s <Rfori=1,...,n
LEMMA 6.1. If (6.1)) is satisfied, then

2(R-1)(1—=r) R-—r
Vip,q) < 7, <——

The first inequality is an equality if and only if for eacleitherp;/q; = r or p;/¢; = R. The
second inequality is an equality if and onlyrAf+ r = 2.

We start with the following proposition which provides an Ostrowski—type inequality for
mappings of bounded variation. This has been established by the author in the p&fjrint [
We give a simple proof.

PROPOSITION6.2 (Dragomir, 199934]). Suppose : [a,b] — R is of bounded variation
on|[r, R]. Then for allx € [a, ],
{b —a
<
- 2

b
where\/(g) denotes the total variation gfon [a, b]. The constant /2 is best—possible.

b

o a+bH\:/ < -0\,

a

/ g(t)dt — g()(b — a)

a

(6.2)

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

160 S. S. IRAGOMIR

PROOF Using the integration by parts formula for a Riemann-Stieltjes integral, we have

thatf (t—a)dg(t andf (t — b)dg(t) exist and that

xT T

/ (t — a)dg(t) = g(a)(x — a) - / g(t)dt

a a

and
b b
/ (t — b)dg(t) = g)(b— ) — / g(t)dt

forall z € [a, b].
Addition provides

b T b

9()(b— a) - / g(t)dt = / (t — a)dg(t) + / (t — b)dg (1)

a a x

forall x € [a, b].

Now if p,¢g : [a,b] — R with p continuous and of bounded variation, they? p(t)dg(t)
exists and

Hence

IA
—
~
|
Q
SN—
QL
Nal
VS
~
SN—

< sup ]t—a!\/ + sup \t—b\\/

tela,x]
x b
(x—a \/ +(b—=x \/(g)
z b
< max{z —a,b -} [\/(9) + \/(9)]
b—a a+b[]\"
and the firstinequality ir} (6] 2) is proved. The second follows, since (a + b) /2| < (b—a)/2.

Suppose thaf (6] 2) holds with a constant 0, that is,
b

/ g(t)dt — g(x)(b— a)

a

(6.3)

< |co-a+

| \i/<g>
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for all z € [a, b], and defing); : [a,b] — R by

gm):{ 1 ifz=(a+0b)/2

0 otherwise.

Theng, is of bounded variation of, b] and

Putg = ¢y andz = (a + b)/2in (6.3). Then we get < 2¢, which shows that = 1/2 is
best—possiblex

PROPOSITIONG.3. If g : [a,b] — R is of bounded variation, then for all;, x5 € [a, b],

2

[ ot ="5 > gla)| <

=1

(6.4)

a—l—b‘

\/(9)-

a

Ty —

2

[b—a 1
_|_

a

PrROOF. This follows by puttingr = x; in Propositior] 6.2, summing oveéand then using
the triangle inequalitys

LEMMA 6.4. Suppos¢ : [r, R] — R is differentiable, so thaf’ is of bounded variation on
[r,R]. Ifr <1< Randx € [r, R], then

65) ) - )= T3 [f) + @] <=1V

PROOF. Forz > 1,wesety = f', z; = a = 1 andz, = b = z in (6.4) to derive

050~ [P0+ @) < - DV 60V

r

Similarly if z < 1, we sety = f', #; = a = z andz, = b = 1 in (6.4) to derive

0~ o) - 5 [0+ s @) < (- D V() < (1 - V()

r

The desired result follows in both casaqs.

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

162 S. S. IRAGOMIR

7. BOUNDS IN TERMS OF TOTAL VARIATION

THEOREM 7.1 (Dragomir et al., 200168)). If f : [r, R] — R is of bounded variation and
(6.7) applies, then

R
(1) e BLL
11 < r+ R g
< §+R—r; Pi— 5 \/(f)
R
S{%+Rirwm@+rzR—]}VU)

r

PROOF. The choiceg = f,z =p;/¢; (i=1,....,n),a =r,b= Rin (6.2) give
R
2y < |Z o
f(q) t_{2+R_T 5 H\/(f)

4qi
foralli € {1,...,n}.
If we multiply by ¢; and sum ovet, we obtainvia the generalized triangle inequality that

n R
pi T+ R
-4 4 2 r
whence we have the first mequallty in (7.1).
The second follows from
i=1 qi i=1 2
r+ R
=Vi(p,q) + 5 —4
and the third from
r+ R 1’ < R—7r
2 - 2

The final inequality follows by Lemn{a 8.4
The following corollary emphasizes better the approximation aspect of the theorem.

COROLLARY 7.2. Let f : [0,2] — R be a mapping of bounded variation.zjfe (0,1) and
p(n) andq(n) are probability distributions satisfying

pi(n)

qi(n) !

<nq forallie {1,...,n},
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then
1+n

1
Iytpn).atn) = oo [ @)t + Byo.am)
1-n
and the reminder ternk?, satisfies

N —

|Rs(p,q,m)| <

[1 + Ly, q<n>>} V).

Ui

(7.2)

which arises for: = (a + b)/2.
Suppose

Similarly define
u—1 ,

filu) = f(1) + f ().

THEOREM 7.3 (Dragomir et al., 200168]). Supposef : [, R] — R is differentiable and
so f' is of bounded variation. If (6/1) applies, then

1 B rR-1%
(7.3) [s(p,q) — Ip-(p,q)| < §V(Pa q) \/(f) < 0 \/(f )
B RrR-1[

(7.4) 11¢(p.q) — I11(p,q)| < V(p, Q)\/(f) <3 \/(f )-

PROOF. Taking [7.2) withg = ', a = 1, andb = z € [r, R] gives

£ @) - < Ty < By

for all z € [r, R]. The first inequality in[(7]3) follows by putting = p;/q;, multiplying by ¢;,
summing ovet = 1,...,n and using the generalized triangle inequality. The second inequality
is given by Lemma 6]1.

The proof of [7.#) follows similarly from (6|5

Both parts may be viewed in terms of approximation. Thusjfol (7.3) we have the following.

COROLLARY 7.4. Supposef : [0,2] — R has its first derivative of bounded variation. If
n € (0,1) andp(n), ¢(n) are probability distributions satisfying,

pi(n)
(1)

— 1‘ <nq forallie {1,...,n},

then
I1(p(n), a(n) = L= ((p(n), a(n)) + R¢(p, q,n)
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and the reminder?; is such that

Rypran)] < 5V am) V() < T\ (),

8. EXAMPLES

Suppose[(6]1) holds anfl: [r, R] — R is given by f(u) = ulnu, so thatl(p, q) is the
Kullback—Leibler distance

D(p,q) := sz‘ In(pi/qi)-

We have
R
/f(t)dt = i [R21nR2 —2Ins? — (RQ _ 7,2)]
' RQ —7”2

In[I(R*r%)],

wherel(a, b) is the identric mean of two positive numbers and is given by

otherwise.

a ifb=a
I(a,b) = { 1 (bb)l/(b—a)

Also
b

\f/<f>: /

a

f (t)‘ dt = / In(et)| dt =: A\(r, R).

If 0 <7 <1/e, then

1/e R
Ar,R) = [ [—1In(et)]dt + | In(et)dt
[ e |
1 r 1 i
= —— [ In(et)d(et) + — [ In(et)d(et).
e
Since
B
/ln$ dr =Inl(«a, ) fora, s >0,
we have )
1 1/e
Ar, R) = —é In [I (r, 6_1)} - éln [[(e_l,R)} =In [—[}(i e’?))} )

If on the other hand /e < r < 1, then
R

A(r, R) = / In(et)dt = éln](r, R) =In[I(r, R)]"".

r
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Thus [7.1) gives
R+r
‘D(p,q)— 1 In [[(RQ,TQ)})
1 1 O r+ R
St R | e
1 1 r+ R
<Jd 4 _ - M
_{2 7o {V(Z%Q)ﬂL‘ 5 1”}A(T,R)
1
< |1+ 5o Vi) A
< AR
Also
N Pi+ G
ff*(pﬂ)—zzl(pz qz)ln( 50 )
and

Hence by[(7.B) we have

‘D(I% q) — Zn:(pi —g)n (pi + qz)

i=1 2q;

R—r
<

(InR—1Inr)
(R—r)*

4L(r,R)’

whereL(a, b) is the logarithmic mean which for positive argument$ is given by

a ifb=a
Lfa,b) := { —b-a_ otherwise.

Therefore we have the inequality

n

D(p,q) = > (i —a)In (Z%)

=1

: R_TV(p,q)ﬁ%

Finally supposef : [r,R] — R is given by f(u) = |u— 1|, soI;(p,q) becomes the
variational distance

V(p.a) == Ipi —al.
=1
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We have
L 17
R_T/f(t)dt:R—/\U—Hdu
[y L0
=5 /(1u)du+Rr/(u1)du]
1 _(r—1)2 (R—1)>
CR-7r| 2 2 ]
_ 1 [@®-r? (r+R 12
_R—r_ 4 ( 9 _)
and
R 1 R
Vi =\VH+V(=1-r+R—1=R—7
By@)wehaver ' '
1 |(R=r)? (r+R 2
V(p’Q)_R—T 1 (2 _1)]
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CHAPTER 13

Approximation of f-Divergence Via Midpoint and Trapezoid Inequalities

1. INTRODUCTION

By A = {a;|1 <i<n} we denote am-set, the alphabet. Distributions ovér always
assumed to be probability distributions are typically denoteg,byand the associated point
probabilities are denoted by, ¢;.

Variational distancé!, -distance) anthformation divergencéullback-Leibler divergence)
are defined as usual (see for exam2#)

i=1

& Di
(1.2) D(p,q) = > pilog o

i=1 ¢

Here, log denotes natural logarithm.
As in [127], we definetriangular discriminationbetweerp andq by

’pz_%
1.3 )
a.3) ; -

A variant of this measure, depending on a natural numbes a parameter, are called
triangular discrimination of ordew [127], will also be considered.
It is defined by the equation

- Ipi — Qi’2v
(1.4) Av(pg) =) T
ZZ:; (pi + Qz‘)z !
For v = 1, we are back td (1}3), i.e\; = A.
All measures of discrepancy considered above are particular instances of Gsibzgngences.
Recall, cf. Csiszard?2], [23], [[24] that for a convex functiorf : [0,00) — R the Csiszérf-
divergencébetweerp andgq is defined by

(1.5) It(p,q) = Z a.f (g—) -

The family of function(f;).>; with fs(u) = |u—1|° (u + 1)'* gives rise to variational
distancel/ (s = 1), triangular discriminatiom\(s = 2) and triangular discrimination of order
v, A, (s = 2v) [127).

167
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Among the most popular choices we mentijpfu) = 1(,/u — 1)? which gives rise to the
Hellinger discriminationh?:

(1.6) B = 23 (Vi V).

=1

For f(u) = ulogu, we obtain also the Kullback-Leibler divergenbép, q).
The basic relations betweén A andh? are the following (see alsd.27])

1

(1.7) 5V (p0) < Alp.g) <V(pg)

(cf. (11) in 127)),

(1.8) 2h%(p,q) < A(p,q) < 4h*(p, q)

(cf. LeCamB9] and Dacunha-Castell27]), and, lastly, the relation
1 1

(1.9) 3V (p.a) < 12(p,a) < SV(pg)

(follows from the two first).
The occurring coefficient are best possible (&21]).
Kraft [92] improved part of this by pointing out that

(1.10) éVz’(p, q) < h*(p,q) (1 - %hQ(p, Q)) :
In Dacunha-Castell&@[7] we find the important inequality

(1.11) D(p,q) > —2log (1 - k*(p,q)),

in particular

(1.12) D(p,q) > 2h*(p, q).

This is the best possible as the inequalityp, q) > ch? cannot hold for any < 2 ([127]).
In the recent papeBh], by the use of Ostrowski’s integral inequality for absolutely contin-
uous functions, we proved the following approximation result:

14

(1.13) I1(p,q) /f Vit + Ry(p,q.c), =€ (0,1)

where the remaindek;(p, ¢, ) satisfies the estimate
1
e apewal<]f]

(1.14) R¢(p,q,€) 5
F

IA

Se‘

and provided
() f is absolutely continuous off), 2] whose derivativef € L0, 2]

ess sup |f’(t)

te(0,2]
(i) p andq satisfy the condition
(1.15) Pi_ql <cforallie {1,...,n}.
di

Application for particular divergence measures (variational distance, information divergence,
triangular discrimination, Hellinger discrimination etc..) were also given.
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In the present chapter we point out other approximations for the Csfsdiergence of
orderO(g?) andO(e?) by the use of some mid-point inequalities. Application for particular
divergence measure are also given.

2. AN INEQUALITY FOR CsSISZAR f-DIVERGENCE

Assume thaf : [0,00) — R is a continuous mapping (not necessarily convex) and consider
the Csiszar -divergence betweemandg as considered above

It(p,q) = Z%’f <§—> :

We assume in what follows that there exists the real numhesso that) < r» < r; := f;— <
R < ooforalli € {1,...,n}. Obviouslyl < r < R.

Using this basically assumption and supposing fhaistricted to the compact intenjal R]
has the first derivative (the second derivative) absolutely continuoug'aifd’) € L.[r, R],
then we are able to point out two approximation results of the Csjsziwrergence as follows.

If p, ¢ are close in the following sense:

&—1‘ <n, >0 (y-small

di

then we have

2q;

It(p,q) = f(1) + Z(pi —a)f (w) ,

and the accuracy is of ordéx(n?) respectivelyO(n?).
To be more precise, we state the first result.

THEOREM 2.1 (Dragomir et al., 20016F]). Assume that the mapping: [0,00) — R is
so thatf" : [r, R] — R is absolutely continuous o, ] and f* € L. [r, R], i.e., ||| =
ess sup |f'(t)| < co. Then we have the inequality:

te[r,R)
(2.1) I(p,q) — (1) =Y (i — ) f (pi;;,%) ‘
i=1 !
1 1y
<< |7 pewa <1 |7 ®m-va-n
1y,
<6 |17l R
where
n 2 n N2
Delpg) =S P 1= (Pi — @)

i=1 1t i=1 4

is the Chi-Square divergence afq.

PROOF Firstly, let us recall Ostrowski’s integral inequality for absolutely continuous func-
tionsg : [a,b] — R whose derivativeg’ € L.[a, ]

Y
o0

(2.2) g(x) — bia/g(t)dt < }ﬁ (2‘_“@7”’) (b—a) Hg'(

forall z € [a, b].
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For a simple proof of this, se&T] where some applications in numerical integration and
for special means are given.
It is_ ob_vious t_hat the best inequality you can have(2.2) isaffor <2 obtaining the
mid-point inequality

b
(2.3) g(CH—b) /g }1 (b— a)?

Choose in[2BYy = f',a=1,b =z € [r, R] (note that- < 1 < R) to get

’

9

o0

@4 ) -1 - -0 (55
< g7

forall z € [r, R].
If we putz = £ € [r, R] in ), then we obtain

qf <&> —qf(1) = (pi — Qi)f, (pi : q’)'

i 2q;

2
S 1 (pz - Qz) G
4 q;
foralli € {1,...,n}.

Summing[(2.p), ovei from 1 to » and using the generalized triangle inequality, we get

Q@&%aﬂU_EX%_%M(Qi&>

i=1 24i

V4 - (pi_qi>2
D

(2.5)

"

f

o)

(2.6)

qi

and the first inequality irf (2}1) is proved.
We prove now that ( see als6d])

Dy2(p,q) < (R—1)(1 — 7).
For this purpose, we use the following well known result due to Diaz and Metcalf (see for
example[lL0S p. 61]):

Lett, >0 (k=1,...,n)with Y ¢, = 1. If ax(# 0) andb;, (k = 1, ...,n) are real numbers

_ k=1
and if
b
(2.7) m< = <M
Qg
fork =1,...,n;then
(2.8) Z teb?2 +mM Z tha? < (M +m Z traibp.

k=1
Equality holds in@) |f and only if for each, 1 < k < n eitherb, = may, orb, = May.

Define
bk: @,&k: %,kzl,...,n
\/ qk \/Pk
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Then

ar Pk
—=—=r,e€nR
b @ r A
forall k € {1, ...,n}. Applying the inequality[(2]8) fot, = p;, (k = 1,...,n), we get

n 2 n 2 n

Pk 4k Pk 4k
E Pr\ 4/ —|-ng D (M—) <(r+R E Py — 4] —
—1 k( Qk) 1 ; Pk ( >k:1 ‘ 4k Dk

which is equivalent to
I
—+rR<r+R
ey 1k
and the inequality| (2]6) is proved.
The last inequality| (2]1) is obvious by the elementary fact

1
Oéﬂ < Z(a—i_ﬁ)Q? Oé?ﬁ €ER
inchoosingn=R—-1,6=1—r.1
COROLLARY 2.2 (Dragomir et al., 20056F]). Let f be as in Theoreifn 2.1. 4> 0 and

(2.9) 0§R—r§4-‘/ﬁ

then

<e

Ii(p,q) — F(1) = > (i —a)f <pi + qi>

i=1 24i

The above theorem has the following corollary which emphasizes better the approximation
aspect of the problem for distributignandq which are close in a certain sense.

COROLLARY 2.3 (Dragomir et al., 20016[]). Let f : [0,2] — R be so that the derivative
f :1]0,2] — Ris absolutely continuous antl € L..[0,2]. If n € (0,1) andp(n), q(n) are so
that

(2.10) 583 - 1‘ < forallie {1,...n},
then
@11) 1y, a0) = 1)+ S0 — s’ (P 4y
i=1 ¢
and the remainderR;(p, ¢, n) satisfies the estimate
Re.0.) < ||| Dot atn) < 5|

If we have more information about the generating functfofor example, if we know that
the second derivativg” is absolutely continuous o, R] and f* € L..[r, R], then we can
state the following theorem as well.
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THEOREM 2.4 (Dragomir et al., 20016H)). If f : [a,b] — R be a mapping such that

[ € Lu[r, R], then we have the following:

(2.12) I (p.g) = () =D (pi—a)f (pi;(;,%) |
i=1 !
1 /
S ﬂ‘ OOD|X|3<p7q>
e (R—r)?
where

D|X|3 p.q Z |pz z

is the absolute Chi-Cube divergencepof.

PrRoOOF We know the following mid-point inequality arising in Numerical Integration

b

(2.13) g<“‘2”7) (b—a)—/g(t)dt i(b—a) |

a

"

9

o0

providedg” € L.[a,b].
Using the same argument as in Theofem 2.1, we can state that

’ ]. +x ].
2.14 —f(1)—(z—1 < —
214) ) -1 - - v (0| < 54
forall x € [r, R] (we knowr < 1 < R).
Now, choosingr = pl € [r, R] and doing as in the proof of Theor.z 1, we deduce the

first inequality in @)
To prove the second part ¢f (2]12), we take into account that

&—1’ <R-—r forallie {1,..,n}.

4i

Consequently,

D|X\5 p,q Z q;

and the theorem is then proveg.

——1

S(R—T)SZ%:(R—

COROLLARY 2.5 (Dragomir et al., 20016F]). Let f be as in Theorein 2.4. 4t> 0 and
(2.15) 0<R—r<2 ¢/ >

then

I¢ (p. q

3
/\\
=
&S|+
b
~_

=1

Also, the following approximation result holds.
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"

COROLLARY 2.6 (Dragomir et al., 20016F]). Letf : [0,2] — R be so thatf € L..[0, 2]
. Ifnp € (0,1) andp(n), q(n) are so that[(2.10) holds, then we have the representm(z.ll)
and the remainder;(p, ¢, ) satisfies the estimate:

3

1 1
|Rs(p,q,m)| < = s

3. SOME PARTICULAR INEQUALITIES

1. Consider the mapping: (0,00) — R, f(u) = uwlnu. Then we have

(3.1) Ii(p.q) = D(p.q) = > _p;In"" (Kulback-Leibler distance)

i=1 g

3.2) Zn:(pi —g)f <%> = Zn:(pi — ) [111 <p122 %) + 11

i=1 i=1 '
_ . Di + G
= Z(Pz —¢)In (2—%) :
i=1
As f"(u) = 1, we have

(3.3)

= sup
w€(r,R]

Consequently, by (2/1), we can state the inequality:

D(p,q) — i (pi —g¢;)In (%)

=1

(3.4)

1 1 1
< — < —(R-1)(1—-7)< —(R—1)
< 4TDX2(p, q) < 4T(R Nl—=r)< 167“(R T)

2. Consider the mapping: (0,00) — R, f(u) = Inu. Then we have

(3.5) sz ln— = —D(q,p),

(3.6) > (pi—a)f <pl+qz> Z 24

As f"(u) = —%, we have

1" 1
S
Consequently, by (2] 1), we can state the inequality

qi 7
D(q,p) —2Zqz( +qz)

< D) < 3R - D0 -1 < o (F-1)

(3.7) |1

(3.8)
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3. Consider the mapping: (0,00) — R, f(u) = 3 (/u — 1)*. Then we have

1o o\ . o
(3.9) I(p.q) = 3 E i ( % — 1) = h?*(p,q), (Hellinger discrimination)
i=1 ‘

n

(3.10) S mi—a)f (M)

i=1 24i
\/ p2‘1iq 1

=D i—a)—F—

i=1 2 p—;;,ql
_ Xn: (p: — i) VDi + G —\/2¢;

P T 2vpi + ai
1 - VD @ (Vi + @ — V24)
1S AT

i1

As f"(u) = b7, u € (0,00), then

(3.11) ”f " ‘ !

[ (u) = s

= sup
0 u€(r,R|

Using the inequality[ (2]1), we may state the inequality

IR Pi — 4q;
(3.12) (p,q) 2;pi+qi [\/p ‘HI(\/Z? +q q>}|
1 1 1 9
S 16T2/3DX2(p’ Q) S 16T2/3 (R - 1)(1 - T) S 64T2/3 (R - r) :

4. Consider the mapping: (0,00) — R, f(u) = u®, a > 1,u € [0,00). Then

(3.13) It(p.q) = Y _plg} ™ = Ralp,q), (Renyia-order distance)
=1

(3.14) Z (i —a) f (pi y qi) =) (ri-a)a (%) 7

2q; i1

n

o pita\"
=g i—a) (/)

i_1 qi

and asf” (u) = a(a — 1)u*"2, we have

"

(3.15) ‘ f

B [ ala—1)R*? if 2<a< oo
—5a(T7R)_{ ala—1)r*2 if l<a<?2

o0
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Using (2.1), we may state the inequality

(3.16) Ralpd) ~ 5o 3 =) (2 1)
< 10alr. F)Ds(p.0)
< 1 ala— DR Z(R-1)(1—-7r) if 2<a<oo
517 ala—Dre2(R—1)(1—1) if l<a<2

Using Theorerf 2]4, we may point out other bounds which may be more useful in application.
5. If we reconsider the mapping : (0,00) — R, f(u) = ulnu. Then " (u) = —2

u27

1£]l. = % and then, b2) we can state the inequality
" Di + ¢
(3.17) D(p,q) 2; (pi — @) In ( 20 >
1
_24 2D‘X|3(p7 )—24 2<R_ )

6. In the case wherf(u) = Inu, we have obviouslyf” (u) =
1/"]|.. = 3% and then by[(2.12), we can state the inequality

373’
G — pi 1 1 /R 5
) —2Y g ——D, s(p,q) < =1 .
D(q,p) E Gi ( +ql)‘ 26,3 D (P @) < 36( )

7. Wheny : (0,00) — 1, f( )= 1(yu—1)",wehavef (u)=—L -u=3 uc[r,Rand
then|| f” 1. Consequently, by (2.12) we can state that

55, u € [r,R] and then

(3.18)

OO:G r5/3
e Mo = [ it ’( i + ¢ 2z>]
(3.19) (4,p) 2 2 pz—i-q Vi a (Vo — V2
< 1 — D < R 5
< T P 0 0) < s (R=1)7

8. Finally, if f : (0,00) — R, f(u) = u®, o > 1 we havef (u) = a(a — 1)(a — 2)u"* and
ala —1)(a—2)R*3 if 3<a<

then
‘ / o = Ta(r, ) = { ala—1)(a—=2)r*3 if 1<a<3.
Consequently, using (2.[12), we may state

"

n

a—1
Q i
Ra(pa q) - 9a—1 Z (pz - %) (% + ]'>

i=1

(3.20)

(7 R) D) 3(p; q)

1 o ala—1)(a—2)R3(R—7r)® if 3<a<oo
ala—1)(a—=2)r*2(R-7r)* if 1 <a<3.

4. APPLICATION FOR MUTUAL INFORMATION

We consider mutual information, which is a measure of the amount of information that one
random variable contains about another random variable. It is the reduction of uncertainty of
one variable due to the knowledge of the other.
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DEFINITION 4.1. Consider two random variablés andY with a joint probability mass
functiont(x,y) and marginal probability mass functigniz), z € X andq(y), y € Y. The
mutual information is the relative entropy between the joint distribution and the product distri-
bution, i.e.,

(4.1) => ) tay log[ (. y) ] = D(t(z,y), p(x)q(y))

vy (z)p(y)

whereD(.,.) is the Kullback-Leibler distance.

We assume in what follows that

(4.2) s < Hx,y) < S(z,y) forall (z,y) € X x Y.

Itis obvious thats <1 < S.
We also define the mutual information on Chi-Square sum

t*(z,y)
3 J(X:Y) = oy
@3 W= 2, o

Using the inequality{ (3]4), we can state the following proposition.

PROPOSITION4.1 (Dragomir et al., 20016K]). Under the above assumption, we have the
inequality

HXGY) = X (tag) = plot)in [ L2

(zy)EXXY 2p(7)p(y)

1 1 1
< —I(X:V)< —(S—1(1—3s) < —(S—5)%
< SLa(X5Y) S (S =1 =8) < 7=(S =)
A similar result can be stated if we apply the inequality|(3.8). We omit the details.

5. BASIC THEOREMS
Racall the lyengar inequalitil[L1], which states the following.

THEOREM 5.1 (lyengar inequality) Supposeg; : [a,b] — R is absolutely continuous on
[a,b) andg’ : [a,b] — R is essentially bounded, that ig, € L..[a,b]. Then
b

/' (1)t~ 5(b— )lg(a) + g(0)

1 1

<= |g|| (b—a)*—=I[g(b) — gla)*.

191 1T |
Suppose that there exist distinct real number® with

(5.1) 0<r<p/g <R<ooforallie{l,..,n}

We assume{ (5]1) throughout without further comment and keep the assumptien thate
distinct, which is easily seen to entail that. 1 < R. Supposef' : [r, R] — R is given by

i) = F0)+ =L ).

We shall also make use of Proposition 1/6%], which provides the following.
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PROPOSITIONS.2. Suppose thaf (5.1) is satisfied with R and thatm > 1. Then
B2 [t m- ) < (7).

Dy m <
(P, 9) < —5— 5

The first inequality is an equality if and only;if ¢ form a boundary pair with respect toand
R, that is, for each eitherp;/q; = r or p;/q; = R. The second inequality is an equality if and
only if R +r = 2, that is,r and R are equidistant from unity.

We now proceed to our first basic result. We shall make ugfg ofr, R] — R given by

THEOREM 5.3 (Dragomir et al.,20016[7]). Supposef : [r, R] — R with f* absolutely
continuous onr, ] and f* € L. [r, R]. Then

1 1
(5.2) ¢, q) — 111 (p, q)| < 1 ‘ Pl Do, q) — W]fo(p7 q)
1 1
<< |7 pewa <1 |7 m-Da-n
L[ .
<=7 @-r2

PROOF. We choose, = 1, b = = andg = /" in Theoren] 5.1 to obtain
h / 1 / /
[ wd- -0 [0+ 7 @)
1

]. 1
< Z
_4\f

) 1
= 0P = e o),

or equivalently
) - 1) = 3£ 0 = 1) - 3 @)~ )

<3l

21
M T

[e.9]

forall x € [r, R].

If we choosexr = p;/q;, multiply by ¢; and sum ovet from 1 to n, we derive the first
inequality in [5.2)via the extended triangle inequality. The second inequality is immediate,
sincefy and so alsdy, is nonnegative. The remaining inequalities are given by Propo§itipn 5.2
with m = 2. 1

COROLLARY 5.4. Suppose the assumptions of Thedrem 5.3 hotd>I0 and

O0<R—r<d-\/e/[l["

\1¢(p,q) — I (p.q)| <e.

The following corollary emphasizes the approximation aspect of Theforgm 5.3 for distribu-
tionsp andq which are close.

then
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COROLLARY 5.5. Let f : [0,2] — R be such thayf’ : [0,2] — R is absolutely continuous
andf" € L.[0,2]. If n € (0,1) andp(n), q(n) satisfy

pi(n) . i
(5.3) () 1‘ <n forallie{1,..,n},
then
(5.4) Iy (p(n), q(n)) = I+ (p(n),q(n)) + Rs(p,q,n)

and the remainderR;(p, ¢, n) satisfies

n.

o0

]_ "
PROOF Choose' =1 —17, R =1 +nin Theoren 531

Our other basic theorem makes use of the trapezoid inequality

55) [o®at =500 lot@) + 90 < 35 06— 0" ¢

a

o0

from numerical integration, which holds provided € L.[a, b).

THEOREMS5.6 (Dragomir et al.,2008[). If f : [, R] — R with f” absolutely continuous
on[r, Rl and f" € Ly[r, R], then

66 1w~ o) <3 || Do)
" R— _
<o L T -
1 )
S% / OO(R—T)3~

The constants on the right are best—possible.

PrROOF. The firstinequality is derived from (5.5) along the same lines as the first inequality
in Theorenj 5.3. The remaing inequalities follow from Propositiof 5.2 witk: 3.

For f(u) = |u — 11> we havel;(p,q) = Dj,;3(p,q). Also fi(u) = (3/2)f(u), so as is
linear in f we have

1
\Is(p,q) — 151 (p,q)| = §D|x|3(p, q).

Since||f”|| = 6, the first inequality in[(5]6) is thus an equality for this choicef@ind the cor-
responding constant is best—possible. That the following constants are best—possible is inherited
from Propositiof 5121

COROLLARY 5.7. Let f be as in Theoreiin 5.6. ¢f> 0 and

0<R—7r<2- {12/ ",

s (p,q) — 111 (p,q)| <e.

Also, the following approximation result holds.

then
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"

COROLLARY 5.8. Let f : [0,2] — R with f* absolutely continuous of), 2] and " €
L+[0,2]. If n € (0,1) andp(n), ¢(n) are such that{(5]3) holds, then we have the representation
(5.4) and the remaindeR; (p, ¢, ) satisfies

1 "
Ri(p,q.n)| < —‘ 5
1By el < 45 || £ ]| 7
REMARK 5.1. The last bound in Theorgm b.6 is tighter than that of Theprem 5.3 if

61|/

TOO > R — 707

1 Nl

while the reverse is true if

6 "

e,

1 Nl

As we shall see, both possibilities can arise in practice. In the examples we consider, Theorem
gives the better bound whepiR is large and Theorefn §.3 when it is small.

6. ONE— AND TWO —POINT DISTRIBUTIONS

Suppose we wish to obtain the error bound involved in estimatjig, ¢) by I,(p, ¢) for
some functiory. Since
Ii(p,q) — Iy(p, @) = I1—4(p, q),

we wish to findsup |7, (p, ¢)|, whereh = f — g and the supremum is taken over a#point
probability distribution pairgp, ¢) satisfying [5.1). In this section we approach this question
directly and establish some basic results. We shall find it convenient for clarity and succinctness
to adopt the notatiod;, ,,(p, ¢) and to writeu; := p;/q; fori € {1,2,...,n} in this and the
following section.

PROPOSITIONG6.1 (Dragomir et al.,20016[7]). Letn > 1 and assume, ¢ are n—point
distributions all of whose components are nonzero.
(a) There exist—point distributiongy?, ¢V, wherek takes one of the values 1 or 2 apd, ¢
depend orp andg, such that

/Y € {uy,..  uyfori=1,... .k

and
[h,k(panU) > Inn(p,q).

(b) There exisk—point distributionsp”, ¢”, wherek takes one of the values 1 or 2 aptl, ¢~
depend orp andg, such that

prlak € {uy, ..t fori=1,.. k

and
[h,k(pL, q") < Iy n(p, q).

PrRoOF. Consider the first half of the enunciation. If there adastinct values: 1y, u), . . ., u(j)
(1 < j < n), then for each such we may sum the associated valuesbtaing”, ¢, ..., ¢\"
Likewise we derive)’’ associated withi, (1 < ¢ < 5). We have at once that” /¢! = u ),
and thap) = (..., pi") and¢® = (¢i”,...,¢") are j—point probability distributions

for which I,, ;(p\, ¢V has the same value &g, (p, q).
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To derive the desired result (a) by mathematical induction, we need to showsthat guch
that3 < m < j then there existm — t)—point probability distributiong(™?, ¢ (with ¢
equal to 1 or 2) depending o™ andq™ with

pgmft) qém—t) = u(y (1 < / <m-— t)
and
[h,m7t<p(m7t)7 q(mit)) Z [h,j (P(m)> q(m))

We may without loss of generality assume that there are at least three distinct ¥alfms
otherwise there is nothing to prove.

To achieve the induction, we shall show that such a reduction frefpoint support to
(m — t)—point support can be brought about by replacing the last three componeiits bf
two suitably chosen components and a zero or one suitably chosen component and two zeros,
with a corresponding replacementgfi®), the zeros being in the same position or positions.

For notational convenience, pult := u(,—2), V2 = U@n—1), V3 1= Ugy). With relabelling if
necessary, we may assume< v, < vs. Likewise we pu'(pfnm_)2 = p1, pfg?l = P, ) = Ps3

andq™, = o1, ¢, = 04, ¢ = 53, so thatp, /o; = v; fori = 1,2, 3. Define

U3 — U2
A= ——=

U3—U1’

sothat) < \;1 — X\ < 1andvy = Av; + (1 — \)vs. We address in turn three possible cases.
() If h(ve) < AR(v1) + (1 — A)h(v3), then

Zaih(vi) < Z oih(v;),

i=1,3

whered) = o, + Aoy ando} = o3 + (1 — N)oy. Note thaty > o, = 3., 305 Ifwe define
o = o, fori = 1,3, thenp. /o, = v; (i = 1,3) and
3
Z pr = Z o0 + o[ Avr + (1 — A)vs) ZCT{UZ Zpi.
1=1,3 1=1,3 =1
This shows that the reduction can be effected in this casetwith.
(ii) Next we suppose
(6.1) h(vy) > Ah(v1) + (1 — A)h(vs)
with
6.2) o1/ < 03/(1 - N).
Put
1—A
oh =09+ 01/, 04:=03— o1
Theno’, > 0 and by (6.2} > 0. Furthery",_, ; o} = 37, o:. Also by [6.1),
1—A
Z ah(v;) > %[Ah(vl) + (1 — N)h(vs)] + o2h(ve) + {03 — 01] h(vs)

i=2,3

= Z O'Zh<'U,L>
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If we definep, = o}v; for i = 2, 3, thenp, /o’ = v; (i = 2,3) and much as above

3
Z P; = Zpr
i=1

i=2,3
If (6.2) holds with equality, then’;, = 0 and the reduction holds with= 2. Otherwise it holds

witht = 1.
(i) Finally we have the possibility thaf (§.1) holds with

(63) O'1/)\>O'3/(1—)\).
We may argue as in (ii), this time starting with
!/ )\ / 1
01 =01— mag, Oy =09+ 11— )\03.

Thend, o, are positive and

LD

i=1,2 i=13
By (3.1),

g
> oih(v) = Z 0ih(v:) + T [h(v2) = Ah(vy)]

3
> Z O'Zh)?)z)
i=1

If pl = olv; fori = 1,2, thenp, /o, = v; (i = 1,2) and

3 3
Z p; = Z O';Ui = Z oiv; + 10_-3)\ [UQ — )\’Ul] = ZO’ﬂ)i = Zpl
=1 =1

i=1,2 i=1,2 i=1,2

Thus we have a reduction with= 1.
This completes the proof of part (a). Part (b) follows by applying part (a) to the function
—h. 1

Supposeh is bounded orjr, R|. By letting p;, ¢; tend to zero for different choices of
successively while keeping/q, € [r, R] for all ¢ € {1,2,...,n}, we can obtain one— and
two—point distributions satisfying (5.1) as limiting casesnefpoint distributions. With this
convention, the following result is natural.

PROPOSITIONG.2 (Dragomir et al.,20016[7/]). Supposé: is continuous and bounded on
[r, R]. ThenI,,, achieves its supremum and infimum oxepoint distributions, ¢ satisfying
(5.7). These are realised by one— or two—point distributions.

PROOF. The first part is immediate. The second followia Propositior] 6.]1, by relating
extremum-—achieving distributions 1 evaluated at one— or two—point distributions at which
I}, is dominating (in the supremum case) or dominated (in the infimum cmse).

COROLLARY 6.3. The supremum and infimum bf subject to[(5.]L) take one of the forms

(6.4) gh(u) + (1 — q)h (11__q;) . h(1),

whereu € [r, R].
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PROOF. The first form in[(6.4) is immediate, sinceyif ¢ = u, then
l-p 1-—qu
l—q 1-¢°
The second is trivial, since/q = 1 whenp andq are one—point distributiong.

The ideas of this section provide the means for obtaining tight bound, pim terms of
r, R. This we pursue in the following section. In practice the calculations can be quite intri-
cate even when has a relatively simple functional form, although they are suited to efficient
numerical implementation, such as by bifurcation search.

Finite—point distributions have a special role in extremal theory. For a general discussion,
the reader is referred t93J].

7. EVALUATING EXTREMA

We now draw together the ideas of the preceding section to codify the treatment of some
broad classes of function For notational convenience we introduce

y—1 11—z
F =
(z,9) - —h(z) + = —h(y),
which gives the value aof;, for two—point distributiong, ¢ with support at: = z, y. We assume
throughout thaf (5]1) applies and thaty € [r, R].

THEOREM7.1 (Dragomir et al.,20016[7]). Suppose, Ry satisfyr <rr <1< Rr < R
and the line joining(rr, h(rr)) to (R, h(Rr)) lies strictly above the graph df(u) for u €
[T, R] \ {T’T, RT} Then

sup In(p,q) = F(rr, Ry).

PROOF Putv; = rp, v3 = Ry and suppose if possible= vy, € (ry, Rr) is in the support
of one— or two—point distributionsy, g, for which I, realises its supremum. By assumption

h(Ug) < /\h(Ul) + (1 — )\)h(vg)

in the notation of Propositio@.l (a) case (i). The argument of case (i) shows;thatq)
experiences a strict increasepyf, ¢o are modified by a suitable redistribution of probability
mass fromw, to v; andvs, a contradiction to the extremality @§(po, ¢o). Thus the support of
po andgy, must have empty intersection withy, Ry ). There is nothing more to provesif = r
and Ry = R. In any case, we see that sintes (r7, Rr), po and gy must have two—point
support.

If Ry < R, suppose if possible, and g, have a point of suppont, € (Ry, R]. Then
(Rr, h(Ry)) lies above the chord joiningr, h(rr)) to (ro, h(ry)), SO we may derive a con-
tradiction by the construction of case (ii) or case (iii) of Proposifion 6.1 (a). Sin@d g
must have a point of support greater than unity, that point must therefare=bg8;. A similar
argument show that the support point less than unity must be-at. 1

By taking—~h in place off in the preceding theorem, we derive the following corresponding
theorem for infima.

THEOREM7.2 (Dragomir et al.,20016[/]). Supposes, Rs satisfyr <rsg <1< Rg < R
and the line joining(rgs, h(rs)) to (Rs, h(Rs)) lies strictly below the graph of(u) for u €
[7“, R] \ {7”5, RS} Then

inf Iy(p,q) = F(rs, Rs).
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Whenever the above theorems are applicable, we may dexivel ;(p, ¢)| from

sup |1¢(p, q)| = max [sup I¢(p,q), —inf Iz(p,q)].

Some modification to Theorem 7.1 is necessanyit< 1 < Ry is violated. This has not
been found to occur in the examples we have looked at but could be dealt withamhraot
basis. For this reason we have not seen fit to strive for further generality in Theollem 7.1 at the
cost of complicating it. The same comment applies to The@rem 7.2.

8. EXAMPLES

For the mapping’ : (0,00) — R given by f(u) = ulnu, I;(p,q) becomes the Kulback-

Leibler distance .
= Zpi In(u;).
=1

We have
It(p,q) = %Z {ln <q > + 11 (pi — ¢)
i=1 ¢
1 — i 1
=5 > (i —a)ln (‘%) = 5[D(p, q) + D(q,p)],
i=1 !
Z Gi fo(u;) = Z gi [In (uz)]2
i=1 =1
and
‘ f| = s )f )) =1/r
u€[r,R|
Consequently Theorem %.3 prowdes
(8.1) 0 <[D(p,q) — D(q,p)|

1 r n ; 2
< —D.s _ — E i 1n ]_
=~ 27,, X (p,Q) 2 i:1q |: (qz>:|

1 1 1
< —D, <—(R-1(1-r)<—(R—r)?
< 3 De(pa) < o (R-1)(1 1) < (R-7)
which measures the asymmetry of the Kullback—Leibler distance.
A simple calculation gives
|1

so that Theorern 5].6 gives the bounds
1
D|X|3(p, q) <

OS‘DQ%Q)_D(QP) = G2 = 482

The last bound here can be seen to be strictly better than thatjn (8.1) /7.
Tight bounds for | D(p, ¢) — D(q, p)| involving onlyr, R can be derived using the ideas of
the previous section. We have

" — 1 /r2 ’

o0

(R—1)>

() = "= i~ (u— 1],

so that
u—1

2u?

{lnu—i— 1} andh’ (u) =
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Thush'(u) > 0 for u > 1. By the elementary inequality

1
—+lnu>1for0O<u<1,
u

we have that' (u) > 0 holds for0 < u < 1 as well and sa is strictly increasing for all: < 0.
Also h is strictly concave fof) < u < 1 and strictly convex for > 1.

This falls within the scope of Theorers[7.1 7.2 Ifs the demonstrably unique value
of u less than unity at which the tangent to the graph pésses througfR, 4(R)), then we may
chooser; = max(r,ry). If R, is the demonstrably unique valuew§reater than unity at which
the tangent to the graph éfpasses througfr, 2.(r)), then we may choosBr = min(R, R, ).

Now consider the mapping: (0,00) — R given by f(u) = Inu. We have

= iqi In (w;) = —D(q, p),

n n n 2
/ qz qZ
Zf (wi) (pi — @;) = Z - (pi—q)=1- Z — = —D,2(q,p),
i=1 i=1 Pi i=1 Di
& ? - Qi(Qi —pz‘)2
Z%‘fo(uz Z% (——1) ZZ—Q
i=1 Pi i=1 Dj
f =1
Consequently, by (52), we have
1
(8.2) 0< ‘D(q,p) + §Dx2(q,p)‘
1 ql i z
§ 4_ pa - 4 Z
< L Dalpg) < 1<R—1><1— )< —(R—r)?
= g2\ = V=2t

A simple calculation shows thdtf”|| _ = 2/r%, so that by Theorefn 5.6

1 1 1 R 3
0= |D(¢.p) + ng2(q,p)] < 53 0ne (0 0) < 45 <— —~ 1) .

The last bound here can be seen to be better than tHat jn (8.2) i®/4.
Again we may obtain a tight bound fob(q, p) — %sz (¢, p)| in terms ofr, R alone by use
of Theorem$§ 7]1 arld 7.2. We have

h(u) =Inu —

so that

/ 2u — 1 1 1-—
B (u) = = —— andh’(u) = ——.
u
Thush is decreasing fod < u < 1/2 and increasing for. > 1/2. Further it is strictly convex
for 0 < v < 1 and strictly concave for > 1, and so is quasiconvex. We may definreand Ry
exactly as in the previous example.
Finally supposgf : (0,00) — Ris given by f(u) = & (vu —1)*. Thenl;(p, q) becomes
the Hellinger discrimination
1 n
2 ._ 2
B (pq) =5 ) a4 (Vi —1)°.

i=1
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We have
= (P o= LS (g VE
S (B) =52
D asfole) = 3 (B~ V)
i=1 i=1 1"
and
7], = s |7 ] = g
00 u€[r,R| 4r3/2

Consequently Theorejn %.3 provides

h*(p,q) — ;l > (- pi) \/%

=1

n

1 4
< WDXQ(]Q’ q) —r*? Z = (Vpi — V@)

o1 Pi

1 1

< WDXQ(]D’ q) < W(R_ D1 —r)
1 2

< 64T3/2(R—r) :

Also, asf” (u) = —3u~"/?, we have| || _ = sup |f"(u)| = &r—5/2 and Theore6
u€[r,R|

gives
1 & @ 1 1
hQ(I% Q) T Zl (Qi —Pz’) E < WDIXI?)(I% Q) < W
The largest bound here is better than the largest provided by Theéorem 5.3 providgds.
The use of Theorenijs 7.1 and]7.2 to obtain an absolute upper bound for the left—hand side
of the first inequality in[(83) is more complicated than in the previous examples. We have

(8.3) (R—1)%

() = (\/Z%
Hence
b (u) = (\/;L_g—/;) [2v/u+ 1] andh” (u) = % [2+ 3u'? + 3u — 6u*?] .

Thush is strictly increasing for, > 0. It is strictly concave fof < u < 1, strictly convex for
1 < u < up and strictly concave fot > wug, whereu, is the unique zero exceeding unity of the
cubic polynomial + 3z + 322 — 62°.

There exist a unique pair of points;, h(r1)), (R, h(R1)) with r, < 1 < R; at which
the graph ofh,. has a common tangent which lies above the graph for all 0 except at the
two osculating points. If < r; < R; < R, we may taker = r; and R = R;. Suppose
r; < r. Then there exists a unique= R, > 1 such that the tangent to the grapl &t, h(Rz))
passes througlr, h(r)) and lies above the graph for< u < R,. We may choose; = r,
Ry = min(Ry, R).

If the join of (r, h(r)) to (R, h(R)) lies below the graph for < v < R, or is tangential
to the graph at an intermediate point, we may take= r, Rs = R. Otherwise,(r, h(r)) lies
on the tangent to the graph at a unique p@int h(r2)) with 1 < ry < wuy and this tangent
meets the graph again @, 4(r3)) with r; > R. Similarly (R, h(R)) lies on the tangent to the
graph at a unique poiritR,, h(Ry)) with 1 < Ry < ug and this tangent meets the graph again
at(Rs, h(R3)) with R3 < r. At least one of, R, is not unity. Ifry # 1, we may takerg = r,
Rr =rs. If Ry # 1, we may take's = Ry, Rs = R.
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CHAPTER 14

Deviation of a Function From the Chord and Applications for
f-Divergence

1. INTRODUCTION

Consider a functiorf : [¢,b] — R and assume that it is bounded fanb] . The chord that
connects its end pointd = (a, f (a)) andB = (b, f (b)) has the equation

Ay b = R, dp () = s [F () (b~ )+ f () (+ — )]

We introduce the error in approximating the value of the funcfigt) by d; (¢) with ¢ € [a, 0]
by @, (t) ,i.e., Dy (t) is defined by:

b —

(1.1) Oy (1) = g () + e ()= (1),

The main aim of this paper is to provide sharp upper bounds for the absolute value of the
differenced® (¢) in each point € [a, b] and under various assumptions on the functfar its
derivative f'.

Applications for thef-divergence functional

1.2) Iy (pa) ==Y _af (2—) ;

wherep = (p1,...,pn), a9 = (q,-..,q,) are positive sequences, that was introduces by
Csiszar, as a generalised measure of information, a “distance function” on the set of proba-
bility distributionsP™ are also provided.

2. PRELIMINARY RESULTS

The following simple result, which provides a sharp upper bound for the case of bounded
functions, has been stated B]] as an intermediate result needed to obtain a Griss type in-
equality.

THEOREM 2.1 (Dragomir, 200853)). If f : [a,b] — R is a bounded function with-co <
m < f(t) < M < oo foranyt € [a, ], then
(2.1) |Df ()] < M —m.

The multiplicative constaritin front of A/ — m cannot be replaced by a smaller quantity.

PROOF. For the sake of completeness, we present a short proof.

Sincef isbounded,wehave (b —t) < (b—1t) f(a) < (b—t)M,m(t—a) < (t —a) f(b) <
(t—a)Mand—(b—a)M < —(b—a) f (t) < — (b— a) m, which gives, by addition and di-
vision with b — a that
(b—t)f(a)+({t—a)f(b)

b—a
for eacht € [a, 1], i.e., the desired inequality (2.1) holds.

— (M —m) <

—f(t) <M —m,

186
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Now, assume that there exists a constant 0 such that®, (¢)| < C (M — m) for any f
as in the statement of the theorem. Thentfer “T*b, we should have

(2.2) 'M—f(‘%b)‘scw—m)-

If f:[a,b] = R, f(t) =|t— 42| thenf(a) = f(b) = 52, f(%2) =0, M = &2 and
m = 0 and the inequality (2|2) becomég* < C' - %>¢ which implies thatC' > 1. i

The case of convex functions has been considereBdhih order to prove another Griss
type inequality. The sharpness of the constant has not been analyzed in the earlier paper.

THEOREM 2.2 (Dragomir, 200782)). If f : [a,b] — R is a convex function ofu, b] , then

23 o0<a, )< 0D el <to—a o) - £ ()

b—a

1 =

for anyt € [a,b].
If the lateral derivativesf” (b) and f! (a) are finite, then the second inequality and the
constant; are sharp.

PrROOF For the sake of completeness, we present a complete prdof pf (2.3) below.
Sincef is convex, then

t—a b—t (b—t)a+(t—a)b

b_a'f(b)+m'f(a)2f b—a =f(t)

foranyt € [a,b],i.e.,® (t) > 0 for anyt € [a,b].

If either f* (b) or f (a) are infinite, then the last part f (2.3) is obvious.

Suppose that’ (b) andf! (a) are finite. Then, by the convexity ¢gfwe havef (¢t)—f (b) >
/7 (b) (t — b) for anyt € (a,b) . If we multiply this inequality witht — a > 0, we deduce

(2.4) t—a)ft)=(t—a)fO) = fLO)Et-b)(t—a), tE(ab).
Similarly, we get
(2.5) b=t f ()= (—=1)f(a) = fi(a)(t—a)(b—1), t€(aD).

Adding (2.4) to[(2.5) and dividing by — a, we deduce

t—a)f)+b—-1)f(a b—t)(t—a) ,
for anyt € (a,b) , which proves the second inequality fioe (a,b) .
If t = a ort = b, the inequality also holds.
Now, assume thaft (2.3) holds with and E greater than zero, i.e.,

v () <0 U D gy @) < B G- a) [120) - £ ()

for anyt € [a,b] . If we chooset = “t2, then we get
b b
26) HOTE _p(558) < 3000 [ ) - 11 0]
< E(b—a)[f(b) = fi(
Considerf : [a,b] — R, f(t) = |t — “E| . Thenf is convex,f (a) = f (b) = 52, f (%) =
0, f (b) =1, f} (a) = —1 and by [2.6) we deduce
b—a
2

1
§§D(b—a)§2E(b—a),
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which implies thatD > 1 andE > 1. g

3. THE CASE WHEN f IS OF BOUNDED VARIATION

We start with the following representation result:

LEMMA 3.1 (Dragomir, 200893)). If f : [a,b] — R is bounded offa, b] andQ : [a, b]* —
R is defined by

t—b ifa<s<t
(3.2) Q (t,s) :=

t—a if t<s<b,
then we have the representation
1 b
(32) B ) = [ Q). te o),
where the integral in[(3]2) is taken in the sense of Riemann-Stieltjes.

PROOE We have:

/abQ(t,S)df(S)Z/ (t—b)df(s)+/tb(t_a)df(s>

t
a

-0 [aa-o [ae

(t=0)[f (1) = f(a)] + (t—a) [f(b) = f(t)]
(b—a)®; (1)

and the identity is proveds
The following estimation result holds.
THEOREM 3.2 (Dragomir, 200833)). If f : [a,b] — R is of bounded variation, then

33) 0,01 < (=) -\Z/(f) +(=2) -\i/(f)

¢

a+b
=
b—a

1
=

INAGE

3 =

() + (V)]

. 1 1 __"q.
|fp>172—7—|—5—17

[G=2)"+ (=2)]

IA

EAAGEH AL EAGIE

The first inequality in3) is sharp. The const@wts best possible in the first and third
branches.

PROOF We use the fact that fgr : [«, 5] — R continuous and : [«, 3] — R of bounded
variation the Riemann-Stieltjes integrﬁj p(t) dv (t) exists and

8 B
/ p<t>dv<t>] < s 0]V ()
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Then, by the identity (3]2), we have
-0 [wesa-a [ae
(e [
sbia[w—wﬁuﬂ+@—aﬂ?ui,

a t

1
D () < ——
@) (0] < —

<

tdf(s) + (t —a)

|

and the first inequality irf (3} 3) is proved.
Now, by the Holder inequality, we have

s (ot a [V () +V ()]

t b » il t q b
b=\ (H+t-a)\ () < K”—ﬂ-+@—a>V[(Y<ﬂ) +(Yﬁf

)
t ifp>1,p—|—%:1;

(b—t+t—a)max{

m<w

H—<G"
\_/

—

\

which produces the last part ¢f (B.3).
Fort = 3 (a+b), (3.3) becomes

‘f (a+b> f(a)+f(b)‘ s%\/(f).

Assume that there exists a constadnt- 0 such that
a+b a)+ f (b b
(3.4) (5 f()Zf()‘SA\/(f)

If in this inequality we choos¢g : [a,b] — R, f(t) = |t
A (b — a), which implies thatd > 1. g

, then we deducé— <

COROLLARY 3.3. If f : [a,b] — R is L;—Lipschitzian onfa, t| and L,—Lipschitzian on
[t7 b] , L1, Ly > 0, then

b—t)(t— 1
(3.5) 2, < P (s < Loy (14 1)
for anyt € [a,b].
In particular, if f is L—Lipschitzian ona, b, then

(3.6) @ (1)] < Q(b_b?(;_@Lg%

The constantg, 2 and ; are best possible.

(b—a) L.

The proof is obvious by Theorem 8.2 on taking into account that/anlipschitzian func-
tion is of bounded variation ari(;l” (f) < (b — a) L. The sharpness of the constants follows by
choosing the functiorf : [a, 8] — R, f (t) = |t — “2| which is Lipschitzian with, = 1.

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

190 S. S. IRAGOMIR

COROLLARY 3.4. If f : [a,b] — R is monotonic nondecreasing ¢m b| , then

67 o< (o) O - r@l+ () U0 - o)
[+ |5 r e - @)

2
b—a

B =

[1F(8) = f (@) + [f (b) — f(£)]")e
if p>1, %—l—%:l;

(=) + (=2)]

IN

[ (8) = f (@) + | £ (1) — L2200,

N |+

\

The first inequality and the consta%‘uin the first branch of the second inequality are sharp.

The inequality is obvious fronj (3.3). For= 22, we get in (3.7)

38) 7(50) - L O <L - s,

2

In ), the constarg is sharp since for the monotonic nondecreasing funcfiofu, b] — R
{ 0 if te [a,‘%b};

1 if te (%20,

ft) =
we obtain in both sides of (3.8) the same quanjity

4. THE CASE WHEN f IS ABSOLUTELY CONTINUOUS

Now, if f : [a,b] — R is absolutely continuous, thefis differentiable almost everywhere

andf f'(s)ds = f(b) — f (a), where the integral is taken in the Lebesgue sense, and we can
state the foIIowmg representation result.

LEMMA 4.1.If f : [a,b] — R is absolutely continuous, then

1 b
(@.) O ()= [ Qo) S (s, te o],
where the integral is in the Lebesgue sense @rtths been defined if (3.1).

The proof is similar to the proof of Lemna 3.1 and the details are omitted.
We define the Lebesgye-norms as follows:

ess sup |g(t)] if s= o0,
t€la,f]
HgH[a,m,s

(S 19 1 dt) it s € [1,00).

The following estimation holds:
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THEOREM4.2 (Dragomir, 200833)). If f is absolutely continuous, then

b—t t—a
(m) ) ||f/|| (a,t],1 + (b_ a) ) ||f/||[t,b],1

b”“aﬂﬂmt if f"€ Lo [a,0]

IN

(4.2)  [2f(1)]

IN

(botiti=a)? Hf’Hatp if f'€Lylab], p>1,2+1=1
D f oo T S € Lo [a, 0]

(ta(bt ||f’||[tb] if f/ELa[a,b],a>1,é+%=1
where the second part should be seen as all four possible combinations.

PROOF. The first inequality holds from the representation|(4.1) on taking the modulus and
applying its properties.
By the integral Holder inequality, we have

(t —a)ess sup |f' (s)] if f'€ L |a,b

t s€la,t]
JRIECIECES . (1 ras) e Lo,

1=

m»—

p>1, +— 1
and
(b—t)ess sup |f' (s)] if f'€ L |a,b
b s€t,b]
L@ <8 6 (0 epas) e yle,

p>1, + ==1
which provides the second part pf (4.3).

REMARK 4.1. Some particular inequalities of interest are as followg’ ¥ L., [a, b] , then

b— —a
@3) 2, ) < P [y Hf/u[tb o)
b— —a
< 2O e < 2 0= ) 1 e

for anyt € [a, b] . The first inequality in[(4]3) and the constadtand} are best possible.
If f' € Ly[a,b],p> 1, + 1 =1,then

(=t [ b\ Ly
@ay sl < | PSSO (20 i, (520 ||f’||[t,b],p]

a

1

[(b—t)(t—a)la [ [b—t\? AYE
e (=) +(2_a)] 1 N

=

IN

for anyt € [a,b].
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In particular, forp = ¢ = 2, we have

b— —a b— —a
@s) o</ >Nb_fb~uf’ma,ﬂ,2+ Z_—a-uf'u[tm]

(b—1)(t —a)
< T —a f H[a,b],z

for anyt € [a,b].

5. THE CASE WHEN f’ IS OF BOUNDED VARIATION
The following representation of the errér can be stated:

LEMMA 5.1 (Dragomir, 200843]). If f : [a,b] — R is absolutely continuous ofa, ]
and such that the derivativg’ is Riemann integrable ofw, b], then we have the following
representation in terms of the Riemann-Stieltjes integral:

b
(5.1) @(t):ﬁ/ K(ts)df (s), telab,

where the kernek : [, b)° — R is given by

K (t,s) -—{ (b—t)(s—a) if a<s<t

(5.2) = .
(t—a)(b—s) if t<s<b.

PROOF Sincef’ is Riemann integrable di, 0] , it follows that the Riemann-Stieltjes inte-
grals [! (s — a) df' (s) andftb (b — s)df’ (s) exist for eacht € [a,b] . Now, integrating by parts
in the Riemann-Stieltjes integral, we have:

/Ktsdf (b—t)/t(s—a)df() (t—a)/b(b—s)df’(S)

:(b—t{s—a ‘ —/f ds] t—a{b—s |t /f ds]
=b=0)[t-a) f ) - flaN]+(t—a)[-b—1) f(t)+ f(@)]
= (t—a)[f(b)—f(t)]—(b—t)[f(t)—f( )] = (b—a)®(t)
for anyt € [a, b] , which provides the desired representat{on|(5a1).
REMARK 5.1. If we defineA; : (a,b) — R,
f)—f@) f@)—f(a)
b—t t—a
then by the above identity (5.1), we have the representation

Ag(t) =

9

(5.3) Af(t)—m/a K(t,s)df’(s)—/a R(t,s)df (s), te(ab),

where the new kernek : (a,b)* — R is defined by

=oifa<s <t
R(t,s) :=

b;_j if t<s<.

o
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We notice that, forf (s) := [ g (z) dz, the last equality in[(5]3) produces the following
identity:

1 b
4 L _
(5.4) e g(z)de = —

/atg(Z)dZZ/abR(tS)dg(S),

which has been obtained by P. Ceronelf]][(see eq. (2.12)).
Notice that, in [(5.4), the functiop can be Riemann integrable and not only absolutely
continuous as assumed 3.

THEOREM5.2 (Dragomir, 200853]). Assume thaf : [a,b] — R is absolutely continuous
on|a,b]. If f"is of bounded variation ofu, b] , then

(5.5) @, ) < LZDOZD g o

b—a (b_a)\/(f/)7

A

where\/’ (f') denotes the total variation ¢f on|a, 0.
The inequalities are sharp and the constéris best possible.

PROOF It is well known that, ifp : [a, 5] — R is continuous and : [«, 5] — R is of
bounded variation, then the Riemann-Stieltjes integifq:b (s)dv (s) exists and

8 B
[ rerm)| < s ey o).

Now, utilising the representatiop ($.1) and the above property, we have

68 100 =2 |0-0 [ c-ad @ - [ -9
gbia[(b—t)/a(s—a)df’(s) +(t—a) /t (t—s)df’(s)}
gbia l(b_t)\/(f/>sseﬁ%]<s_a>+(t_a)\/(f/>sselﬁ](t_5)]
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a0 t b ) (b—D 0
=R ViV | = SRy

The last part 05) is obvious by the fact tifat- a) (b —t) < 1 (b — a)’,t € la,b].
For the sharpness of the inequalities[in(5.5), assume that there Exists 0 such that

2,01 <F- PPN (<o) ()

with f as in the assumption of the theorem. Thentfer “*” , we get

(5.7) i@iiﬁ-f(“”ﬂlew—vansGw—@vU>

2 4

Consider the functiorf : [a,b] — R, f (t) = |t — “*b} This function is absolutely continuous,
fr(t) =sgn(t—42), ¢t €la,b] \{“*b} and\/’ (f') = 2. Thus, (5.] E) becomes

b—a 1

> =3

which implies thatF" > 1 andG > +. &

F(b—a)<2G(b—a),

6. THE CASE WHEN f’ 1S LIPSCHITZIAN

The case when the derivative is a Lipschitzian function provides better accuracy in approx-
imating the functionf by the straight linel; as follows:

THEOREM6.1 (Dragomir, 200853]). Assume thaf : [a,b] — R is absolutely continuous
onla,b]. If fis K;—Lipschitzian ona, t] and K»,—Lipschitzian ont, b] (¢ € [a, b]) , then

(6.1) e (R RS A
S%(b—a)[(Kl—Kg)t+K2b—K1a], tE[CL,b].

In particular, if f’ is K—Lipschitzian ona, b , then
(6.2) [y (1) < 5 (b—t)(t—a)K<8(b—a) K, té€lab].
The constantg and 3 are best possible.

PrROOF We utilize the fact that for ar.—Lipschitzian function,p : [o, 3] — R and a
Riemann integrable function : [«, 5] — R, the Riemann-Stieltjes mtegrgﬂﬁ s)dv (s)

exists and
p 3
/ p(s)dv(s) SL/ Ip ()| ds.

Then we have

6.3) / (s — a) df' (s) gKl-/ (s—a)ds:%Kl (t— a)?
and
(6.4) /t (t—s)df' (s) ng./t (t—s)ds:%KZ(b—t)Q.
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Now, on making use of the inequalify ($.6) we have,[by](6.3) (6.4), that
1 [1 ) 1 )
< — | Z(p= — . Z(t — — .
|Ps(t)] < P 2(b t)(t—a) K1+2(t a)(b—1)"- K

1 (t—a)(b—1t)
which produces the first inequality in (6.1). The other inequalities are obvious.
To prove the sharpness of the constant$ in (6.2), let us assume that theré, éxist 0 so

that

(6.5) Dy ()| <H(b—1)(t—a)L< K (b—a)’L
for anyt € [a, b] and f an L—Lipschitzian function ora, b] . Fort = %2 we get from ) that
(6.6) iﬁé;ﬂﬁ—f<ﬂ§g giﬂL@-@QSLK@—@?
Considerf : [a,b] = R, f(t) =1 (t - C‘*b) . Thenf’(t) = t — ¢t is Lipschitzian with the
constantl, = 1 and [6.6) becomes

Sb—af < H(b-af <K (b-a),

which implies that// > J and K > . g
7. THE CASE WHEN f’/ 1S ABSOLUTELY CONTINUOUS

The following representation result also holds.

LEMMA 7.1.If f : [a,b] — R is differentiable and the derivativg is absolutely continu-
ous, then

b
(7.1) @@:fz/mmwmm

for anyt € [a, b], where the integral in(7]1) is considered in the Lebesgue sense.

The proof is similar to the one in Lemrpab.1 on integrating by parts in the Lebesgue integral
fab K (t,s) f” (s) ds. The details are omitted.

THEOREM7.2 (Dragomir, 200853]). If f is as in Lemm@ 7|1, then

b—1t)(t—a

(7:2) @ ()] < % K (), telab],
where

1" 0,1

a)l/e .

(73) K(t)=1{ G Hf”llat fp>1, 1411,

1 " f” G// Lp [a7b];

3t =) 1" lgoo I "€ Loola,b];

Hf””[tb]l
1/8 _
+ ((Z;é 1/8 ||f”||[t b,ox if a>1, é + % =1,
f" € Ly la,bl;

3 (0=t o0 T "€ Lo[a,b];
and the definition of{ should be seen as all 9 possible combinations.
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PROOF We have, by[(5]6) that

e Lt

for anyt € [a,b].
Utilising Holder’s inequality, we have

[ s-ares

S. S. IRAGOMIR

/tb (t—s) " (5) ds

+ (t—a)

|

¢
(7.5) / (s —a) f"(s)ds
[ sup s—af|f” )| ds;
s€(a,t]
/.
< (f (s—aqu> <f If" (s |pds> |fp>1,%—|—%:1,
f" € Lyla,b];
ess sup |f"(s)] f(: (s —a)ds if "€ Ly la,bl;
\ Se[avt]
( (L‘ = @) [f" a1
a)ttl/a .
_ q+1 )4 Hf”“[at]p it p>1, %—'—%:1’
B f" € Lyla,bl;
1 .
| 5 (- )" " o001 " € Loola bl
and, similarly,
(O =) 1.0
b (=) t1/8 : B
(7.6) / b—s) 1" (s)ds| < { G5 1 e T a>1 245 =1,
t 1" € Ly a,bl;
1 :
[ 5 C= D71 g0 T "€ Loo [a,0],

for anyt € [a,b].

Finally, on making use of (74) + (7.6), we deduce the desired inequality @.2).

REMARK 7.1. The inequalities ir (7.2) have some instances of interest that are useful in
applications. For example, in terms of the sup-norm we have:

a0 o<y D
<5 =0 a) 1 e

) 1" Na,.00

=) 0

€ a,b],

wheref” € L, [a,b]. The constang is best possible in both inequalities. The functjoft) =

s (t— aTH))Z produces an equality i.7) for= 2t
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If we assume that = p, 3 = ¢ in (7.2), then we also have:

(b_t)(t_a) 1/q 1" 1/q "
(7.8)  [®r ()] < PRSI (t = @)1 Mg+ O =D 1S Ny
(b—1t)(t—a)

"
=t a1 ey tE L8

forp > 1, % + § =1, f" € L, a,b], since, by Holder’s inequality, we have
(t = @) 1 Mg+ © =01 Ny
< [ = o= 07 Mgy + 1]

= (0= )" "1 |01 -
In the case that = ¢ = 2, we get the following inequality for the Euclidean noq“|r)‘i”||[a’b]72 :

a9 o)< L2 L [y VT )
< LNy bl

It is an open question whether or not the cons@ﬁis best possible i.9).
Finally, from (7.2) we also have:

(b—1)(
(7.10) 2, () < Py gy < - ) 1
for anyt € [a,b].

8. APPLICATIONS FOR WEIGHTED MEANS

For a functionf : [a,b] — R, x = (x1,...,x,) € [a,b]" andp = (p1, ..., p,) & probability

sequence, i.ep; > 0,7 € {1,...,n}and> ", p; = 1, we define the mean:
(8.1) My (p;x) ==Y pif (w:).
=1

If f(t)=t,t€a,b],then

M (p7 - szxzv

which is thearithmetic mearof x with the weightsp.
The main aim of the present section is to provide sharp bounds for the error in approximating
M (p; x) in terms of the simpler quantity

8.2) Fla)- mARX) gy AP e

The following proposition contains some results of this type.
PROPOSITIONS8.1 (Dragomir, 200843]). Let f : [a,b] — R be a bounded function on

la,b], x = (z1,...,2,) € [a,b]" and p a probability sequence. Define the error functional
& (pix) by:

b—A(p;x A(p;x)—a
(8.3) Er (Pix) :f(a)'%—l-f(b)-%—/\/lf(p;x).
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(i) If —oco <m < f(t) < M < o for anyt € [a, ], then
(8.4) € (p;x)| < M —m.

The inequality is sharp.
(i) If f:[a,b] — R is of bounded variation ofu, 0], then

+sz ]\b/(f)-

The constani is best possible i (85).
@iy If f:[a, 0] > R is L—Lipschitzian ona, b], then

a+b

(8.5) 1&r (Pyx

2L 1
< _ x) gl < = )
_b—a[b A(p;x)][A(p;x) @]_2L(b a)
All the inequalities in[(8J6) are sharp.

PROOF. Let us prove only the inequality (8.6). The other inequalities follow likewise. Ap-
plying the inequality[(3)6) fot = z;,i € {1,...,n}, we have

f(a)(b—xizi‘g(b)(zi_a) < 2L ) (@i—a),

“b—a
forany: € {1,...,n}. Multiplying (8.7) with p;, summing ovei from 1 to » and utilising the
generalised triangle inequalily);’ | |os| > |7, 4|, we deduce the first inequality ip (8.6).
Further, we use the followinGebysSev inequality:

(8.8) Zpiazﬂi < Zpi@i Zpiﬁza
=1 =1 i=1
provided thap; > 0, > 7", p; = 1 and(,),_15; , (3;),_1; areasynchronous,e.,
(a; — ) (B; — B;) <0 foranyi,je{1,...,n}.
Then we have fron (8]8)
sz z —CL <sz )sz(xz_
=1

b A ()] (A (pix) — ]

and the second inequality in (8.6) is proved. The last part is obvious.
The sharpness of the inequality follows from the case 1. The details are omittegs

(8.7) f i) =

If f:]a,b] — Ris aconvex function, then the following result is known in the literature as
the (discrete).ah-Ribaric inequality

B9 Y onS )< (@b A+ S ()[4 ix) - al}.

For a generalisation to positive linear functional that incorporates both the original Lah&Ribari
integral inequality and the discrete version of it due to Beesack atdrie€g], see [L13 p.
98].
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In terms of the error functiond; (p; x), we then havef (p;x) > 0, when f is convex
andp, x are as above. Now, on utilising Theorgm|2.2, we can state the following reverse of the
Lah-Ribart inequality [8.9).

PROPOSITION8.2 (Dragomir, 200843]). If f : [a,b] — R is convex ona,b] and the
lateral derivativesf’ (b), f (a) are finite, then

(8.10) (0 <) & (psx) < £ (b[)) - f @ > pi(b—wm) (wi —a)

< EOLD )4 i)~

< 1—a) [/ (1)~ F} ()]

The inequalities are sharp ar&jis best possible.

The following results in terms of the derivative of a functipican be stated as well.

PRoOPOSITION8.3 (Dragomir, 200853]). Assume thaf : [a,b] — R is absolutely contin-
uous onja, b| .

(i) If f"is of bounded variation ofu, b], then

B g ()] <\ () D =) (5~ 0

b

V () [A ;%) = a] [b— A (p;x)] <

a

All inequalities in (8.11L) are sharp. The constanis best possible.
(i) If f"is K—Lipschitzian ora,b] (K > 0), then

1
<
“b—a

>~ =

(b—a)\/ ().

812 1& < 3K Y pilb—w) (- )
< SR b= A [A(px) —a] < 5 (b—a) K.

The constantg and ; are best possible.

The proof is obvious by Theorem %.2 and Theofen 6.1 and the details are omitted.
The above results can be useful in providing various inequalities between means. For in-
stance, if we denote bg (p,x) the geometric mearf[;__, 2, then for the convex function

=11

f(t)=—Int,wehavefoll <m <z; <M < o0,i€ {l,...,n}that:
M- A(px) A(pix)—m G (p;x)
Sf (p’ X) prg ln G (p) X) — ln |:m M—m . M M—m :| prg ln { M—A(px) Ao ,
m~ M-m . M M-m

Vi =m(2).

m

f is L—Lipschitzian with the constantt = || f'|| ., ,y = = and

"(M) — " (m 1 M M—m
[ (M) = f"(m) \/

()=t
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Also, f"is K —Lipschitzian with the constamt” = || /|| . a1 = = 1.
Applying Proposition 8]1, we get
0< ln{ G (p;x) ] <

M—A(p;x) A(p;x)—m
m M-m . /\4 M—m

while from Proposition§ 8]2 8.3 we get
G (p;x)

M—A(p;x) A(p;x)—m
m T M i g :|

Ogln{

2
< mi _ 4
_mm{m(M—m) mM’ 2m2} sz wi) (@i —m)

_ 2 1 1
Smm{m(M—m)’mM’sz}'[M_A<p;X)} A i) =

Smm{M_m (M —m)? (M—m)Q}‘

om  AmM 7 8m?

REMARK 8.1. All the results in this section can be stated for positive linear functionals
defined on linear spaces of functions. Applications for Lebesgue integrals in the general setting
of measurable spaces can be provided as well. However, for the sake of brevity, we do not state
them here.

9. APPLICATIONS FOR f-DIVERGENCES

Now, for0 < r < 1 < R < oo we consider the expression

1

—— [(R=1)f () + (1= 1) f (R)

and are interested to compare it with thelivergence s (p, q) which can be extended for larger
classes than convex functions with the same definition and the same conventions as in the case
of convex functions outlined at the begining of the book.

PROPOSITIONS.1 (Dragomir, 200833]). Let f : [, R| — R be a bounded function on the
interval [r, Rj with0 < r < 1 < R < co. Assume thap, q € P™ are such that

pi

9.1) r < " < Rforeachi € {1,...,n}
and define the error functional Z
S (.7, B) = = [(R=1) f (1) + (1= 1) [ (R)] ~ I (p.).
(i) If —co <m < f(t) < M < o for anyt € [r, R], then
(9.2) 07 (P, @i, R)| < M —m.

The inequality is sharp.
(i) If f:[r, R] — R is of bounded variation ofr, R], then

1 1
§+R—TZ

The constani is best possible i (85).

(9.3) 07 (p,air, R)| <
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(iii) If f:[r, R] — R is L—Lipschitzian onr, R], then

(9.0 57 (b, )| < o [(R=1) (1= 1)~ (1. )]

2L 1
<m(3—1)(1—T)S§L(R—T)7

where the K. Pearsor?-divergence is obtained from the general case for the convex
functionf (t) = (1 —t)?, t € R and given by the equivalent expressions:

n 2 n 2 n 2
Dj Pj — 4 P;

e YD R et St
j=1 J j=1 J j=1

PrRoOOF. The proof follows in a similar manner with the one from Propositioh 8.1 on choos-
inga =r,b=R,p; = q; andz; = ’;— with 7 € {1, ...,n} and the details are omitteqd.

In the case of convex functions we have

PROPOSITION9.2 (Dragomir, 200853)). If f : [r, R] — R is convex onr, R] and the
lateral derivativesf’ (R), f! (r) are finite, then

08 095 @ank) < EETLO g 0]
BV XY

R—r
gim_muum—ﬁvﬂ,

provided thatp, q € P™ are such that[(9]1) holds.
The inequalities are sharp an}zlis best possible.

We notice that the result from Proposition|9.2 has been firstly obtained by the author in the
paper B€].
Finally, we can state:

PROPOSITIONS.3 (Dragomir, 200853]). Assume thaf : [r, R] — R is absolutely contin-
uous onr, k] and thatp, q € P are such that[(9]1) holds.

(i) If f"is of bounded variation ofr, R| , then

R
O7) 1 pan R < =\ () [(R= 1)1~ ~ (p.0)
1 ' R 1 R
< —ER-D-nN\ ()< B-NV ().

All inequalities in ) are sharp. The const%nis best possible.
(i) If f"is K—Lipschitzian onr, R] (K > 0), then

9.9 87 (0, R)| < 5K [(R=1) (1= 1) = * (p.0)]
S%K(R—l)(l—r)S%(R—r)zK.

The constantg and 3 are best possible.
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CHAPTER 15

Approximation of Kullback-Leibler Distance

1. SOME INEQUALITIES FOR THE L OGARITHMIC MAPPING

The following theorem is well known in the literature as Taylor’s formula or Taylor’s theo-
rem with the integral remainder.

THEOREM1.1. Let I C R be a closed intervalg € I and letn be a positive integer. If
f: I — R is such thatf" is absolutely continuous of then for each: € I

(1.1) f(x)=T,(f;a,2) + Ry (f;a,2)
whereT,, (f;a,z) is Taylor’s polynomial, i.e.,
T, (fa,2) == iMf(k) (a)
A — k! ’

(Note thatf© .= f and0! := 1), and the remainder is given by

R, (f;a,2) := %/x (. —t)" fOHD (1) dt.

A simple proof of this theorem can be achieved by mathematical induction using the inte-
gration by parts formula.

The following corollary concerning the estimation of the remainder is useful when we want
to approximate real functions by their Taylor expansions.

COROLLARY 1.2. With the above assumptions, we have the estimation

(1.2) R (fax|< \fﬂ“ ydt'
or
TL-l-l x %
(13) (i) < S [ e o af
" (nB+1)7

wherea > 1and ;. + 4 = 1, and the estimation:
|9§' . |n+1

T Al

(1.4) IR, (f;a,z)| < , t € [a,z] or [z,a]}

respectively.
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PROOF The inequalitieg1.2)) and(/1.4) are obvious.
Using Holder’s integral inequality, we have that

/ C(w— " e () dt\ <

|x — a|"ﬁ+1
N nﬁ +1

a‘/xuw—ﬂwd46
[ieraf

The following result for the logarithmic mapping holds.

f(n-H) (t) |a dt‘

and the inequalityl.3)) is also proveds

COROLLARY 1.3. Leta, b > 0, then we have the equality:

b—a () p-af s
(1.5) lnb—lna—T—}-;T:(—l) /a e dt.
PROOF Consider the mapping : (0,00) — R, f (x) = Inz, then,
~1)" ' (n—1)!
f(”)(:z:):( )" (n ),n21,x>0,
x?’b
n 1Y (g — )
T, ( ;a,x):lna+z( ) k:a("fx a),a>0
k=1

and

R, (f? a, SL’) - (_1> /a 1 dt.
Now, using(.1) , we have the equality,

Iy s
Inz=1Ina+ Z + (1) dt,

tn—i—l

m—@k w [F@—1)"
mx—ma+§: = (=1) dt, x,a>0.

tn+1

Choosing in the last equallty_ b, we get(L.5) . n
The following inequality for logarithms holds.

COROLLARY 1.4. For all a,b > 0, we have the inequality:

b —a
(1.6) |Inb— D' e-af
(|- al |b”—a l.
na"b" Y
1 1
< |b7a|n+3 |b(n+1)a71_a(n+1)a71| a . 1 1 n 1 1
= [(n+1)a_1]é(nﬁ+1)% p(ntl)a—1g(n+l)a—1 ) ) o 8 )
|b—a|" ! 1 Al
L n+1 [min{a,b}]

The equality holds if and only if = b.
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PROOF. We use Corollar{t.2 for mappingf : (0,c0) — R, f(z) = Inz for which we

have,
b b _ _ b
dt t n+1-—1
) ()] dt = !/ =nl | —
/a|f ()| n atn+1 n _n+1_1a
B nl[1 I n!l " —a"
Cnlar | n atbr
Also,

b b « n+1)a—1 n+1l)a—1
nt1) 0 [ o [0 dt (n!) plrhat — )
/ [FY @) dt = (n) / D) FplniDa-1 . gntha-1
i Lt m+la—-1 b “a
and
max { ‘f('n+l) (t)

, t € [a,b] ort € [bal}

1
= max{n!— t € la,b] ort e [b,a}}

tn+1 )

1 1 n+1
—n! =n!|—— .
min {a" 1 bnF1} min {a, b}
The equality in(1.6|) holds via the representatigh.5|), the details are omitteg

REMARK 1.1. By the concavity property ofi (-) we have

b —
Inb—1Ina < a
a
and then, if we choose = 1 in (1.6)), we get the following counterpart result.
b—
0< ¢_ Inb+1Ina
a
(b—a)®.
ab
—a 144 20-1_ 201 &
S ke |1‘b T 1|1, Od>1,é+%:1,
(2a—1)a (B+1)Pa’" b’ @
(b—a)® 1
2 min?{a,b} "

The equality holds in both inequalities simultaneously if and ondy= b.

REMARK 1.2. If we chooser = 2 in (1.6]) , we get,

2
b—a b—a
Inb—1Ina — + ( 5 )
a 2a
(b—a)®  atb.
a2b? 2
|b—a| B b3a—1_a3a71 a
S 1 | 1 1 ‘ 10 o > 17 é_'_
(Ba—1)a (28+1)Ba® " a b3~

(b—a)®  __1
3 min®{a,b}"

The equality holds in both inequalities simultaneously if and onty- b.
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2. INEQUALITIES FOR RELATIVE ENTROPY

Let X andY be two random variables having the probabilityg;, i € {1,...,m}, then we
have the following representation of relative entro6§][

THEOREM 2.1 (Dragomir & Glugevic, 2001 B3]). With the above assumptions &fand
Y, we have,

(2.1) Dkr(p.gq Z k_ql

or

~ k_l (Pi - Qi)k
(2.2) Dxr(p.q Zzpz i

k=1 =1

PROOF Chooser = p;, b= q;,1 € {1, ...,m}in (1.5) to get,

k
4 —pi i)
2.3) Ing —Inp; — §
(2.3) Ing—1Inp + kpz

n @ qi — t "
p

Multiply (2.3) by p; and sum ovet to obtain,

(2.4) _DKL b,q Z

=1

However,

Z(q—

therefore, by(2.4) we get(?2.1)) .

To prove the second equality, chodse p;, a = ¢;, i € {1,...,m} in (1.5]) to get,

(25) lnpi —In q; — + Z kf]ﬁ - Qz)
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Multiply by p; and sum ovei to get,

(=D (pi — ;)"
Dk (p,q sz Z P
=1 i

" m Di )
4)Zﬁ(/‘7ﬁrﬁ)
i=1 a
from which we deducé2.2)) . g

Using Corollary[I.4, we can give the following result containing an approximation of the
relative entropy63].

THEOREM2.2 (Dragomir & Glugevic, 2001 B3]). With the above assumption ov&rand
Y, we have,

Dkr (p,q ZZ k

k=2 i=1

((1ym laopilaron],
n =1 n—1_n
p; q;

11 T 221 yZi ‘Qi - Pi\%%
[(n+1)a—1]a (nB+1)P )

< M — q§n+l)a—17p§n+l)a—1‘ «
~ % ;

(n+l)a—1 (n+1l)a—1
i p;

n%l Z:il pilai — 101‘|nJrl
:|n+1

?

1
\ x [min{pu(h}

1)]{71 (pi - %)k
Dkr (p,q E Di E [
=1 1

PROOF Proof of the first inequality is obwous by Corollgry [L.4, choosing: p;, b = ¢,
multiplying by ¢; and summing over € {1,...,m} . Proof for second inequality is obvious by
Corollary[1.4, choosing = p;, a = ¢;, multiplying by ¢; and summing over € {1,...,m}. §

COROLLARY 2.3 (Dragomir & Glugevic, 2001 B3]). Under the assumptions of Theorem
[2.2 forn = 1, we have,

(2.6) Dk (p,q) < M

where

and
< M.

m (gi—pi)® .
Zi:l qi - X2 (Q7p) )
1
2a—1 2a—1|a
O 1 m 1+ q; —D; .
M, = 1 T Zi:l Di |QZ pz| B X I , T ;,i ;
(2a—1)a (B+1)58 a °p;

m 2
5 2ima Pi (G = Pi)” X s

and
(27) 0 S DX2 <Q7p> - -DKL (p7 Q) S M17
where o > 1and +% =1.
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REMARK 2.1. The first inequality ir§2.6)) is equivalent to (see als@§)):

D1 (p,q) < Dy2(q,p) — 1.

We introduce the notationt/, 5 for the second term in/; and apply Holder’s inequality.
We can then write,

1
m 2a—1 200—1| &
641 q; —D;
Mo ::Zpi|%_pi| s | T 5T |
1
20—1 2a-1]\
,6’+1 ‘q —D; ‘
(sz’qz pil ) <; o Tpza
= o0
and from the second inequality ¢f (2.6) we obtain,
1 .
Dk (p,q) < Mo p.
(20— 1)« (B+1)7

Fora = ( = 2, we get the particular inequality,

1 ‘74 7
D1 (pa) < 5 (szlqz pil ) (Z qq@pz )

=1 =1

Nl—

If we assume that
(2.8) 1I€1£ [min {p;, ¢i}] =6 >0
then from the third inequality of (2.6) we have,

DKL (p7 = 252 sz qi — pz)Q-

REMARK 2.2. Since .
Di
— (i — @) = Dy2 (¢, p),
i=1
then the first inequality irf (2} 7) is obvious
Using Holder's inequality, from the second inequality[in {2.7) we get,
1 .
D,z (q,p) — Drr (p,q) < Mo .
(200 — 1) (B+ 1)

If, as above, we assume thit (2.8) holds, then from the third inequallty in (2.7) we have,

1 m
Dya(4:p) = Drr (0,0) < 53 > pilgi—p).
=1

3. INEQUALITIES FOR THE ENTROPY MAPPING

Let X be a random variable having the probability mass function € {1,...,m} . Con-

sider theentropy mapping,
= 1
= Zpi (ln —) .
i1 Di
We have the following representation Bf(X) [63].
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THEOREM 3.1 (Dragomir & Glugevic, 2001 B3]). With the above assumption faf, we
have,

(3.1) H(X)=1lom— ZZ k:z,f’ Zk_ll

k=2 i=1

or

(3.2) H(X Em: (‘ mpl_l))

m

m Pi
1)n+1 Zpi (/1 tn—+1)dt>
=1 m

PROOF Putg = u in (2.1)), whereu is the uniform distribution, i.ey; = =, then,

1nm—H(X):iiM

from which resultg[3.1]) .
Putq = win (2.2) to get,

from which results3.2)) . 1

Using Theorem 2]2, we can state the following result concerning the approximation of the
entropy mappingg3].
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THEOREM 3.2 (Dragomir & Glugevic, 2001 B3]). With the above assumption foaf, we
have,

k
k=2 1=1 km p7f
/ |1 m lln 1— [m]n ‘
1 m P s
nmm ZZ 1 pn 1
1
1 m 1 nt+g
T LZi:lpi‘E_pi‘
[(n+1)a—1]a (nf+1) P )
< poi= ‘1_m(7z+1>a71p§vl+1)a71‘ «
X pgn-kl)a—l 7
n+1
1 m 1 n+1 1 .
e R P e I
and
k k
—1)" (mp; — 1
H(X)—Inm— g Di E ? i~ 1) ‘ < p.
=1

4. INEQUALITIES FOR MUTUAL INFORMATION

Let X andY be random variables having the probability distributipnsy;, : € {1, ..., m},
j €{1,...,m}. Consider thenutual informatior{21],

pz]
I(X ; ; pij In quJ

wherep;;, i € {1,...,m}, j € {1,...,m} is the mutual probability distribution.
We have the following representation fbf.X, Y") [63].

THEOREM4.1 (Dragomir & Glugevic, 2001 B3]). With the above assumption féf and
Y,

n m m

] pzy sz]
k=2 i=1 j=1
3 m.om piq]( t)”
n—1 piq
eSS ([ )
j=1 i=1 Pij
or
el (—1)’“_1(1% pig;)"
[ Pij

nzzpw (/pzq plén—%l) dt) :

i=1 j=1
The proof follows by Theorein 2.1, taking into account that
I(X,Y) =D (pij lpig;) -
Finally, using Theorerp 2,2, we can state the following estimation ofrtteial information.
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THEOREM4.2 (Dragomir & Glugevic, 2001 B3]). With the above assumption ov&rand

Y, we have:

izz%p%

k=2 i=1 j=1

( 1 \Pz‘h plj' n . n
Zz 12; Lo g () )X‘pi%

[(n+1)a—1]«

and

3

I(X, Zzpw

=1 j

k=1

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018

n+r1 2211 Z;n:1 Dij X |]iin — pij

]1 o > YT b X pigy — pij

(n+l)a—1 (n+l)a—1 (n+l)a
p; 4; bij

1
_p(n+1)a 1q§n+1)o¢ 1 pg;zﬂ)a 1]a
)

n+1

n+
| min{pq; 7pin}:| ’

m kl(

k
Dij —Pi%') < M
=1 kpz qJ B

s
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CHAPTER 16

Approximation of f-Divergences Via Taylor Expansions

1. GENERAL RESULTS

We start with the following resuld].

THEOREM1.1 (Barnett et al., 2002]). Let f : (0,00) — R ben—time differentiable and
such thatf™ is absolutely continuous dn, R], where0 < r < 1 < R < oco. Assume that the
probability distributionsp, ¢ satisfy the condition,

(1.1) r<Pi<R ie{l,..m}.
qi
We then have,
Ny LONS!
@ eo-r0-> 00060
k=1 ’
(i 17 Dy (00) i SOV € Lo [, R]
— 1 _||fD|l D 1 (p, if flrtl) ¢ L,[r, R],
S n'(nﬁ-‘,—l)z Hf Ha |X‘n+é (p Q) f r ]

o > ]_, é—l— 1 = 17
L 7] Dy (9,0) 5

(L I R=n)" i feY e Lo R

e

|| (R— )i e € Lo
n!(nB+1) 8

IN

Bl

where
D — — (i _Qi)k
xe (Prg) 1= ZT’
 |pi — ail’
Dy (p,q) = Z'q—1| (k€N,s>0)
and||-||, are the usual Lebesgue norms, i.e.,

R 3
Hf(nH)Ha — (/ }f(nﬂ)}adt) a1,

||f(”+1)||OQ ;= eSS sup }f("ﬂ) (t)‘ .
te[r,R)

211
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PROOF We start with a Taylor expansion with integral remainder:
1 [~ n eln
a3 s +Z CL 0@k [ wa

forall z,a € (0, 00).
Using the properties of the modulus, we have,

1 # w1 en
< |- ola

=M (f("H); a, z) )

)  fe-s@-3 E o

Now, assume that, =z € [r, R], then, obviously,

(1.5) M (f("+1);a,z) < sup ‘f("“) (t)! l' / |z —t|" dt‘
te[r,R] n{Ja
1
— (n+1) n+1
= mr e =

forall a, z € [r, R].
Also, by use of Hoélder’s integral inequality, we have:

(1.6) M (f(”H); a, z)

U | PR,
m/yx—ﬂﬁdt‘ U | £ (1)) dt}
1

1 . |Z |n/3+1 B
< S, [W
S S S N R
n!(nB+1)7 “ o f
and, obviously,
1 wl 51 otn
(1.7) M(f("+1);a,z) < mlz—a| /a |f( +) (t)‘dt‘

1 n "
Lo [ 5],

forall z,a € [r, R].
Consequently, by (114)-(1.7), we may write (see a&3) for a similar inequality),

noo_ \k
(1.8) |f(z)— f(a)— Z (2 k'a) £® (a)
k=1 :
([ 17N 1 = a"*! it f+) ¢ Lo [r, R];
; (n+1) o 7’1,—‘,—l . (n+1)

S\ nlesn)? Hf H“‘Z o 77 f € La[r, B],
o > 17 é + % - 17

\ n! an+1 H |Z ’

forall z,a € [r, R].

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

INEQUALITIES FOR DISCRETE--DIVERGENCE MEASURES 213

If in ( we choose: = £, a = 1, then we obtain,

n (w-1)
(L.9) I (]i) BT PR Ay

q; 1 k!
) n+1
() [z -
= n!(nﬁlﬂ)% 21l %_1’ ﬁ
\ 1‘n’
' m\}f““)Hoo(R—r)"“
natl
S Bl
\ me”“ I (B =r)",

fori e {1,...,m}.
If we multiply (1.9) byg; > 0 and sum ovet, and then use the generalised triangle inequal-

ity,
f - (pi - qi)k
=1 4

e s Hm %

< D) s lpima™t

B n!(nB+1)7 Hf H Zi:lﬁ?
L al anH)H D it |p;nq21 ;
By [ feD]| (R= )"

= n!(n,31+1)3[ £, (R = T>n+%

P (R =),

and the inequality] (T}1) is proved.
The following theorem also holdd]

THEOREM 1.2 (Barnett et al., 2002). Let f be as in Theorefn 1.1. i), ¢ (j = 1,2)
are probability distributions such that,

(1.10) pu) .om} andj=1,2,
g;
then
A (1) A (2)
(1.11) pe i FU=NPT b {1,..,m} and X € [0, 1]

T AgW + (1= )¢
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and we have the inequality, fgi"*Y ¢ L, [r, R],
(1.12) ‘Jf (™ + (1 =2 p?, A + (1 - X) ¢?)
— ¢ (p(l)’q(l)) _ (1 _ )\) I (p(2),q(2))
/\nlm kk(k)pz(l)
ST

n m

p?
21312[1, TRk ()

By IIf("“)II A 1—A>

1 Hf("“)HaMl _ A)
n!(nB+1) 78

< 1 ntL-1 n+il_1
— m nts (1=X) "8 A B .
X Zz:l |nz| [ q§1> n+%—1 + [q@)]n-'—};_l] )
ol LA PR S
m n | (1=\)""! A1
\ X 22:1 |n’L| [[qgl)]nl + [qu)]nll )
where
0 o
det
1) (2)
q; q;
ni =" (/\7p(1)7p(2)7 q( )7 q(2)) ( )

P+ =N
forall A € [0,1] andi € {1, ..., m}.

PROOF We use the inequality (1.8) to write,
1) @) (1)
: 1—\)p! :
@13 (Vo) (O
A+ (L= A)g g

n k
oyl (ApE” +(1-Np? p§”> £ (pﬁ”)
SR\ +(1-0¢? ¢ g\

7

n+1
A +(1-0p? pt

VTSRO

o £Vl

n+L
< H (n—‘,—l)H )\p,gl>+( ) (2) B pg_l) B
- 1 2 1
n! (nﬂJrl)ﬁ @ )\q( )+( N, ( ) QE )
Bl et - |
| L ag@41-x2g?® (D
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114 A+ (1) p? P
(1.14) |f (1) @ | f o)
g+ (1= XA) g 4

_zn: 1 (Apgl) + (1= p? _ ﬁ) £ (ﬁ)
SR\ - N ¢

k_
( n+1
O P +a-0p®
(nt1)! 00 | AV +(1-0g? ¢
n+
< H (n—l—l)H )\p,gl>+( ) (2) B ﬁ B
- 1 2 2
n(n,BJrl)ﬁ o | AgiV+(1-2)qf ® a”
L || fsn| P a-0p® s "
Liag+a-20g ¢

If we multiply (1.13) by ¢ and [1.14) by(1 — )) ¢?, add them and apply the triangle in-
equality, we obtain,

(1.15)

k
Ca-ny L w4+ =N p e )
i “d? @ @

n+1
Aq§1)+(1—x)q<2> g’

PN [Aqi”

(-2 g (R
v )\q(l)ﬁ»(lf)\)q@) (2)
n+=
S——— R ) AV +a-0p® 0
- P g AT+ (10D gD

n+L
W +a-0p? PP
VNI MO E)

n
A +(1=Np!”) pgl)l

+(1-Ng”
Al (-0 gV

S,
w+a-0p® pt? ]

(2) | Apy i
TN

3
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which is equivalent to

(1.16)

A+ (1= )

Mg+ (1= ) g
(1

O
(1 (2)
W[ Pi _ @2 [ Pi
>‘Qi f( (1)> 4; f( (2)>
q; 4;
1 0=N"Dety ) (piz)
' —
=t [qum +(1 =) Q§2)] [qzm} 4
n k -\ k (2)
—(1- /\)Zi A" (Det2 (7)) — &) Pi
KUy () 1% [ @1% ! (2)
k=1 |:)\qi +(1-Ng ] |:Qi } 4

(
—\)

n

. e raa AA=N)"HDeta 1 ()"
(n+1)! 00 [Aq§1)+(1_A)q£2)]n+l[q§1>]n

(A=X)A"11 Deto 1 (3)* ! ]
b

oV +(1-24] o 4] !

Lo A1=N" B Det 1
< nl(nB+1)7 @ [Aqlgl)Jr(l_A)qZ(z)]”*B[ql(n]"w—l
(1- )\)An+%\D€t21(l)|"+%l ;
[ AV (1— A)q@)]“*@[(z)]’lﬁ—l
) @"
||f (nt1) ||1 [)\ (1)+(1 )\)lD(2e)t]2 1[ (1)]7171
(1—=A)A"|Deta 1 (i)™ .
| Pl ] T |
(

n A(1=N)|Deta,i (i)
ﬁ Hf( +1)Hoo [Aq§1)+(1_t;);§2)]n+1 [
Hf(n+1)‘ A(l—A)\DetQ,l(i)|"+%

1 1
nl(nB+1)7 o [/\Q§1)+(1—/\)Q§2)] i

VA AP s S
. [[qm]"*él + [q<2)]"+331] ’
1

1

an+1 H A1=N)[Deta ()|" | 1=N)"""
1 )\q(l)Jr(l /\)q(Q)] [qgl)]n_

An—l

T

where

| NORNG
Det,, , (1) = det qzy) qu) , (y,2) €{(1,2),(2,1)}.

Summing [(1.1p) ovef and using the generalised triangle inequality, we deduce the desired
inequality (1.1P).x
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In [35], S.S. Dragomir proved the following perturbed Taylor’'s formula which is an im-
provement of a result due to MatiP&aric and Ujevc [10§. It is instructive to give the details
here for the sake of completeness.

LEMMA 1.3 (Dragomir, 200035)). Let f : I C R — R be such thatf™ is absolutely
continuous andgf "V ¢ L, (I), then we have,

wn =3 ;f” 7 (a) + —(Z(n_ - a

for all z € I, where,

)n—i-l

[f(”);a,z} + G, (f;a,z)

10 (2) = £ (a)

zZ—aQ

50 =

andG,, (f;a, z) satisfies the estimate,

N

a/)n—l-l

. n(z—
(1.18) |G (f;a,2)] < (n+ D)2n + 1

1
= ()’
forall z > a.

PrROOF Recall Korkine’s identity for the mappingds g,

(1.19) Zia/:h(t)g(t)dt—(Z_—la)Q/azh(t)dt-/:g(t)dt
1 z z
5= [ ] GO -re) ) g () dras

Using (1.19), we have,
/ (2 ;!t) FOD () dt — 1 / (2 ;!t) gt / £ (1) g

zZ—Q

_ 1 (=" = (z—9)" ) -
- 2(2—a) /a /a ( nl (fI () — Y (s)) dids
and using Taylor’s representatign (|1.3) and the formula {1.17), we conclude that,

(1.20) G, (f;a,z)
IS T Y (z—t)" = (z—3s)" (n+1) () — o) (g .
_2<z—a>/a/a { nl ]<f () — fH () dtds.

Now, using the Cauchy-Buniakowski-Schwartz integral inequality for double integrals, we
have,

(1.21) |G (fia,2)| < ﬁ [/ / [<Z‘t>" = <Z_S)n]2dtds

« / ) / LA () — 0 ()] deds

2

Elementary calculations show that,
1 2/3/3{(z—t)”—(z—s)”rdtdsz n2(z2—a)2”
2(z—a)" Ja Ja n! (n+ D))" (2n+1)

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA



http://ajmaa.org

218 S. S. IRAGOMIR

and (see alsdl€])

1 [ n+1 _ flntl) (g 2 s
m/a/a[f( V() = fF (5)] " dtd

1 n 2 n 2
= L = ([0 2])

and so, by[(1.21), we dedude (1.18).

Now, by the Gruss inequality, we may state that,

o< = [l e (2 /:f<“+1><t>dt)2

< PE -7,
where
(1.22) v(z) < f(#) <T'(2) forallt € [a,z].

By Lemmé&[1.B, we can obtain the result B8], showing that[(1.18) is an improvement on the
pre-Gruss result obtained i Q€.

COROLLARY 1.4. Let f : I C R — R be such thatf™ is absolutely continuous and
f+1 is bounded and satisfigs (1]22), then we have the representatioh (1.17) and the remainder
G, (f;a, z) satisfies the estimate,

n (Z . a)n-i-l

(n+1)V2n+1

(123) Ga (i) < 5 () =7()

forall z > a.

If 2 < a, then a similar bound can be stated and so, in general, fox any, we have the
representatiorj (1.17) and the bounds,

(1.24) G (fia,2)|
n ‘Z . a’n—&-l f: [f(n—H) (t)]th . ) %
T (n+1)V2n+1 z—a L UARLE)
n|2_a|n+1

(F'(2) =7 (%)),

“2(n+1)V2n+1
where

I :=sup f"* (2) < 00 and v := in§ F (2) > —o0.
zel z€

In what follows, we use the estimafe (1.24).

THEOREM 1.5 (Barnett et al., 2002]). Let f : (0,00) — R ben-time differentiable and
such thatf(™ is absolutely continuous dn, R], where0 < r < 1 < R < co. Assume that the
probability distributionsp, ¢ satisfy the condition,

(1.25) r < bi < R a.eonl,
qi

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

INEQUALITIES FOR DISCRETE--DIVERGENCE MEASURES 219

then we have the inequalities,

(1.26) Ir(pyq) = f(1) - [ " f(k/:;!(l)ka (P, Q)]
k=1
- ﬁf(.l)kf(k)(.) (p,q) + {f;"l(ll))‘ Dy~ (p, Q)'
= (n+ 1)!n TS (., )
= (n f Y)D' _zi)+ 7D (1 0) < (n JT: SD' _292)+ p - 2
h
o o= Zzl[ir;]f”“ () <co and ¢:= inf F (2) > —oc0
and
B (p,q, ™) =1, (p,q)

where

z ) ™ () — £ (N2 ?
9(2) = e — 1" [%1/ e ) e - (FHE (”)] |

z—1

PROOF. Apply the inequality4) fon = 1 andz = 2 to obtain,

H(2)-r0- 550 (2 -)

Sl @)-rol

n
Pg

4i (n+1) 2
= (n+1)!\/2n+1pi—(]i/1 / (0] de

) (f(n) (;L) _ (1))2 3

B
qi

i n+1

P 1‘ (®—9)

(n+1)2n+1

If we multiply by p; > 0, sum overi and use the generalised triangle inequality, we deduce,

®) (
]f (pv Z f Q)

Tﬁmiwgw%%@+ﬁﬁwmw

=1

n
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n(®—¢) S P " i “ (n+1) (1\12
T (n+1)W2n+1 Z.Zlql g ! [pi — g /1 )
| 2]
_qz‘f(n) <§_> ! )(1)‘
' (pi — %)2
e o) Dyt (poq) < —— (&~ 9) (R—r)""

“2(n+ 1)V 1 “2n+ 1)V +1

and the theorem is proved.

2. SOME PARTICULAR INEQUALITIES
The following proposition hold<4].
PROPOSITION2.1 (Barnett et al., 2002]). Letp, ¢ be two probability distributions satis-
fying the condition

(2.1) 0<r<&<R<ooaeonF

di
then, forn > 1, we have the inequality,

(2.2) ‘DKL (¢,p) — 1 Dxt (p,q)

( WDMWH (p,q);

1

1 R(n+tla—1_,(n+1)a—1 a
[ Rt Da—T,(ntha—1 D n+% (p, Q):
1

SN )P (1] X
a>1, é + % =L
1
\ E ) Rnrn D‘Xln (p? q) Y
( 1 n+l
G (B=r)™
1
1 R(n+1)a—17,,,(n+1)a—1:| o n+l
- (n,@—&—l)%[(n—i—l)a—l}é ROv¥Doatp(nto=t ( ) ’

Oz>1,é+%:1;

1B (R—1)

\ Rnyn

PrROOF Consider the mapping (t) = Int. We have,

m

Zqz ( ) Z%ln@)
_ izlqi In (%) = —Dk1(2.p).

k—1
f(lc) (t) = (=1) tk(k - 1)!7 keN k> 1
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fora > 1 and

1 n!
FOEON = sup [ Y (1) = n! sup { }: :
700l = s |70 0] =t sup {2 d = 2
L 1
R 1 R L
[e% @ dt «
n+1 o ntl B
o0l o= ([ ) =] [ ]
[ t—(nt1l)at1 R &
=l dt
—(n+1l)a+1 |,
[ R(n+1)a_1 — T(n-‘rl)a—l %
=nl
" [(n+1)a—1] R(n+1)a1r<n+1)a1}

Applying Theoreni 1]1 and using the above assumptions, we deduce the desired inequality

2.2).n

The following proposition also hold&l].

PROPOSITION2.2 (Barnett et al., 20024]). Letp,q be as in the above Proposition .1,
then we have the inequality,

(-
(2.3) lDK])(Q?ZO _-jg: Z%_:T15751)Xk(p7Q)
k=2
( WD\XI"H (P, q);
1
1 R7La71_,,,nu71:| a D
< n(nﬁ‘i‘l)%(na—l)é |: Rno—lpna=l ‘X|”+% (p7 Q)a
a>1, é + % =1;

nflirnfl
o 2 Dy (p:9);

\ (n—1)n Rn—lpn-1

( 1 (R—T)n+1;

n(n+1)rntl

1
1 L ] “(R—r)"
< ”("ﬂ—l—l)%(na_l)% [ Rra—Tyna—1 ( ) ’
n—1 Tn71 "
\ (n—ll)n ) RRn717,n,1 (R _ 7,.)
PROOF Consider the mapping (¢) = ¢1n () . We have,
) b m Pi Di
= Z ul (_) - Zqz'— In (_)
i=1 qi —~"q %
m
Di
B szhl (_> = DKL (p7 Q) )
i=1 qi
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fO@#) =Int +1,

oo VG
o >
)| (n—1)!
) = =2

Rnafl - 7,,n0471 o

Hf(ml)”a =(n—-1)! [ FnaTyna 1 } : ,a>1

and
Rn—l _ Tn—l
Rn—lrn—l

Applying Theorenj 1]1 for the mapping(¢) = ¢Int, we have,

P2, = (=2

D () — £ () Dy (g) ~ S T E=D ) g

k=2

n—1)!
ﬁ(r—n)Dm"“ (p,q);

1
1 . (n—l)' [Rna—l_rna—l] o D X ]
”(nﬁ-ﬁ-l)% (nafl)é Rno—lpna=l |X\n+ﬁ (pv (]) )

L(n— 222Dy (p,q)

IN

4 1 )
atwry Dy (9, 4);
1
1 Rna714¢na71] « D . ‘
”(”5+1)%(na71)é [ Rre—ipna=l |X‘"+§ (p7 (]) )

n—1_,n—1
i e D (9, 9)

\ (n—1)n Rn—lpn—1

IN

and the first inequality irff (2}3) is proved.
The second inequality is obvious and we omit the detgils.

REMARK 2.1. Similar results can be obtained if we apply Thedrerm 1.1 for other particular
mappingsf, generating the Hellinger, Jeffrey’s, Bhattacharyya, or other divergence measures
as considered in the introduction.

3. APPROXIMATING f-DIVERGENCES VIA A GENERALISED TAYLOR FORMULA

We may state the following representation result which is a reformulation of Theorem 1 in
[109:
THEOREM3.1. Let{S, (-,-)},n b€ a sequence of polynomials of two variables satisfying
the condition:
S, (t, x)

(3.1) T:Sn_l (t,x), So(t,z) =1forz,t € R and n € N,
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then we have the identity,

(8.2) f(x )+ Z kH Sk (z,2) f(k) () — Sk (a, ) f(k) (@)}
R, (f;a,),

where
Ru(fiaa)i= (<17 [ 8, (t.0) 1 (o)
andf : I — Ris such thatf" is absolutely continuous oh
(1) Ifin B.2) we sets,, (t,z) = & (t —z)" (n € N), we get the Taylor's identityd3]:

- (z — a)k (k) I n p(n+l1)
(3.3) f(x):f(a)+ZTf (a)—i—m/ (x—=0)" f (t)dt, ze€l.
= ! ' Ja

(2) Ifin 8.2) we setS, (t,z) = & (t — «4=)" | (n € N), then we have the identit{LD:

2

@4 f +Z =19 ) 4 (<) 19 ()]

(3) Ifin @) we setS,, (t,z) = %Bn (£2),n €N, Sy (t,z) = 1, whereB, denotes

the Bernoulli polynomial and,, := B,, (0) are the Bernoulli numbers, then we have
the following representatioriDd,

r—a

(35) f(@)=f(a)+=

[f (2) + [ (a)]

+(=1)" (z—a)" /: B, (t - a) FO (1) dt.

r—a

(4) If in @) we setS,, (t,x) = (””;L—?)HE,L (£=2), n € N, Sy (t,z) = 1, whereE, (t)

x

denotes the Euler polynomials aiit), are the Bernoulli numbers, then we have the
representation1iog],

(. —a)*! (48 —1)
(2k)!

X By [V (2) + fE (a)]
et [ ()

a

(3.6) f(z)=[(a)+2 )

We are now able to point out the following representation forfthelivergencel4).
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THEOREM3.2. Let{S, (t,2)},.yandf : I C R — R be as in Theoref 3.1. i ¢ € Q,
then we have the representation,

(3.7) Iy (p.q) ) + Z kH [Sk(~,~)f(k)(.) (p,q)

- ]Sk(l,-)f(k)(l) (p7 Q>] + Rf (p7 Q) )

where the remaindeR; (p, ¢) can be given by,
(3.8) Ry (p,q) = (=1)" ) _a (/ Sn (t, %) FU(t) dt) :
i=1 1 g

PrROOF. From the representation (8.2), we may write,

& k+1 7 % (k)
(3:9) f(%) +Z { (qz %)f (qz)
— S}, (1,&) f® (1)1 +(=1)" /q S, (t,%) FOD (#) dt

qi

foralli € {1,...,m}.
If we multiply ) byg; > 0, sum over and take into account that" , ¢; = 1, then we

obtain the desired representatipn [3¥).

The following particular cases are important in applications
(1) If we use the representatign (3.3), we get,

(310) 1; (p.q) +Z RACVN

S () e

for all p, ¢, where,

quk‘i'l _Qikv k:]-?"'vn'

(2) From the identity[(3]4),

f® (-
(3.11) Iy (p,q) —|—Z 2%' Dy (p,q) + L] Iy sy (05 0)
k=1
1 & o pit+aq\"
- ; [N U R ICES VAR A
cad [/ (1= g
for all p, g.
AJMAA
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(3) If we use the identity] (3]5), we may obtain:

(3.12) I (p.q) +Z(pz ) (]qi)

(5] (5]
Boy
T ; s ) (P, q) — Z (Qk) I 1)2k f(2k) () (p,q)

k=1

for all p, q.
(4) Finally, by use of identity[ (3]6), we may write,

& @ = 1) Bag® )

(3.13) Iy (p,q) = f (1) +2 2n) Dok (p, q)
k=1 )
2] Boi (4F —1
+2 (2]6)' ]( 1)2k 1f2’“ 1) (p,q)
k=1
_1)” - —-n n
4 - Zqi (p— q)

for all p, g.

4. BOUNDS FOR THE REMAINDER

Fora,b € R, we denote

/b|f(t)|pdt‘p it pe[1,00)

[ lapp =
and
[/ lap00 == €8s sup |f(2)].
t€[a,b]
(t€[b,al])

It is obvious that the order < b ora > b is irrelevant in the definitions of the above Lebesgue
p—norms.

The following general theorem involving the estimation of the remaitiefp, ¢) holds
[64].
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nen @nd f are

THEOREM4.1 (Dragomir & Glugevic, 2001 [B4]). Assume tha{s, (¢,z)}
as in Theorer 3|1. I§, ¢ € €, then we have the inequality,

)
> ey i ”f(nﬂ)“[lv&],oo % ‘
q;

PRV
q‘

k3

4.1 R <
@y IR(pa)l < ot

1
21‘11 qi ||f(n+1)||[1,§—§],1 X ’ Sn (" ZZ)‘ [1,&_'],00'

\

PROOE We have that

/qi S, <t, ]ﬁ) FOD () dt
1 4i

(4.2) IRy (p,q)] < Zqz-

Now, observe that,

P4

/qi S, (t, Zﬁ> FOD (1) dt
1 qi

(4.3)

(2
qi

<1y

(3

1]
and, by Holder’s inequality for > 1, = + % =1,

Pi

/tu S, <t, &) f(n+1) (t) dt
1 4

(4.4)
v NE B o a
< / S, (t,&>’ dt|  x /Zf("“)(t) dt
1 di 1
Di
=S, (= D
fs G2 17
Finally,
(4.5) / s (t, ]ﬁ> FOHD (1) dt
1 qi
< (nt1) P Sn (" &>
<1< s (5]
foralli € {1,...,m}.
Using [4.2) and[(4]3) 4 (4.5), we dedufe (4.4).
AJMAA
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REMARK 4.1. If we assume that < r < 2 < R < oo fori € {1, ...,m}, then obviously
r <1< Randthe rlght side of the mequah@.l) may be upper bounded by,

Hf(n+1)H[T’RLOO S al[s. ( Z‘)

Hf<n+1) H [r,R],a Z:il i

Hf(n-&-l)
\

1 izt Gi

Sn <.’ %> ‘ [1,ﬂ],oo ’

4
If we choose some particular instances of polynomsalé, -) we may compute the Lebesgue
Sh (-, Z—) H , s € [1, 00], obtaining more explicit bounds for the remaindgr (p, q).

(1) If we chooses,, (t,z) = & (t — 2)", then,

150 (2l as = \/ = " dt\ -

\t— |a"dt‘
IR T
~nl an + 1

1 n
I8 (12}l 0 = 27 |2 = 11"

Consequently, we may state the following corollary which is useful in practice.

1
150 (5 2) |1 21 0

1
@

a B |Z_1|n+

n!(an +1)

Q=

and

COROLLARY 4.2. Let f be as in Theorein 3.1, then, forg two probability distri-
butions, we have

(4.6) Iy (p.q +Zf p.q) + Ry (p.q),
where
=> ¢ (i)
i=1
and the remainder?; (p, ¢) satisfies the bound

(4.7) Ry (p, q)

n+1 ql—n Hf(n+1) H

ﬁﬂil Ipi — qil %]OO,
B B L R A TSI [

|f a>1, é+%:1,

% > Ipi = Qi|nq;n+1 Hf(nH)H [1%]1 :
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Moreover, if0 < r < 2 < R < cofori € {1,...,m}, then the right hand side .7)
can be upper bounded by,

(I e ntl
(n+1 Zz 1 |p1 - q’L| - q;
||f(n+1)|| —_ ntl —n—Lil
(4.8) Tt X -Gl g :
if a>1, = —i— % 1,
7] m S
\ o A2 Yo lpi —al" g i
/ Hf(n+1)||[r R],oo(RfT)nﬂ
(n+1)! )
< Hf(nH)||[7~,R],,3(R*T)n+é
n!(an—i—l)é ’
Hf(nﬂ) H [r,R],l(R_r)n
\ n! :
(2) If we chooseS, (t,z) = & (t — 12)", then,
1 + z
15, Mo = o | [ |- 15|
If we assume that > 1,
* 1 1 * 1 "
/ o1l +Z—t) dt+/ (t— +Z) dt
1 Liz 2
z—1 1 [(z—1\""
Con+1 2 n +1 2
B (n +1)2n
If we assume that < 1, then,
1 n n+1
1 1-—
/ L + z g — (1—2)
. (n+1)2n
and thus, we may state that,
1 |z — 1!
Sn ) '
15 ( Z)H[Lz},l (n+1) on
Similarly, we have,
1 1
L7 1+z™ | |z — 1"t |
Sp (-, — t— dt| = — | ————
1 1 n+
LA
and | |
1 |z—1|"
Sh =—- :
15 o g0 = 7 5

Consequently, we may state the following corollary.
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COROLLARY 4.3. Let f be as in Theorein 3.1. Then, for for amy; we have

(49) I (p.0) = +Zf2kk, (v.0)

k+
+ Z 2]%, ( —1)F () (p, Q) + Rf (1% Q)

and the remaindefif (p, q) satisfies the bound
(4.10) Ry (v,0)|
(o i 4 - @™ 17 ) o
T it " e gl Hf(”“)ll[ o
if a>1, 1+ ﬁ =1,
| 2 =l [

Moreover, if0 < r < 2 < R < oo fori € {1,...,m}, then the right hand side of
(4.10) can be upper bounded by:

( ||f(n+1)H - -
(n+1) '2” Zz 1 |pZ - ql|n+1 4q; n)

||f(n+1)

IN

n+7 —n—7+1

[r,R],B o =
4.11) { et it i =@l g ,
if a>1, E + % =1,

||f(n+1)||[r,R],1 m n _—n+l
\ —ona Zi:l pi — @l q )
([ [F O]y B
(n+1)127 ’

H fnt1) H [r,R],ﬁ(R_T)n+7

IN

n'(an—i—l)%Q"
IS

\ n'
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CHAPTER 17

Approximations Via Some Integral Identities

1. REPRESENTATION OF CSISZAR f-DIVERGENCE

In [16] (see also[19)), the authors proved the following integral identity generalising the
mid-point rule.

LEMMA 1.1. Letg : [a,b] — R be a function such thaj"~") is absolutely continuous.
Then for allz € [a, b], we have the identity:

—_

n—

1
(k+1)

an [ o= (=2 4 () @ = )] g @)

i

e [ g @

where the kernek, : [a,]” — R is given by

1 a<t<x< b
(1.2) K, (z,t) ==
O a<a<t<b
In particular, if v = %2, then
b n—1 k
I |14 (-1) ki1 oy [O+D
1.3 t)dt = b— (k)
b
+ (=" [ M, (1) g™ (¢) dt,
where
i a<t<og
(1.4) M, (t) :=
e )

Another integral identity generalising the trapezoid rule is embodied in the following lemma
(seell?7] or [14])).

LEMMA 1.2. Letg : [a,b] — R be as in Lemmp 1l1. Then for all€ [a, b], we have the
representation

as [ it =3 [l — g (@) + (1) (o ) g%
. ag _kzo(k+1)! r—a g\ (a x g
+— b(a:—t)”g<"> (t) dt,

230
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. . __a b
In particular, if z = 422, then

o) [ o0d =Y g 00 [0 @+ () 0 0)

B (-2

Let us consider: = (1 — X) a + Ab, A € [0, 1], then from[(1.1L) we obtain

b
(1.7) / g(t)dt

3
—

1
(k+1)!

(1= )M (DA (0= ) g (1= A @+ Ab)

B
Il

’ b
_1)”/ Ko (1= A a+ b, t) g™ (1) dt,

and from [(1.5) we obtain

b
(1.8) / g (t)dt

i s [ k+lg(k) (a) + (_1)k (1- /\)k:—i-l g(k) ®)] (b— a)k—i-l
k=0

1 b
+ [ (=N a+ b —4" g™ (t)dt.
nt J,
We are now able to state and prove the following representation result for the Cgiszar

divergence.

THEOREM 1.3 (Barnett et al., 20025]). Let f : R — R be a function such thaf™ is
absolutely continuous on ary, b] C R. If p,q € P™, then

_ 1 k+1 k
a9 La)=f 0+ G [CERVAERC PN

X I(._l)k+1f(k+1)[(1_)\)-1-)\-] (p.q) + <_1)n Zq@'

i=1
o (1= X) g+ Ap; } (n+1)

><</1 Kn{ " ,tf ()dt),/\e[(),l]

and
— A (k+1)
n—1 , \k \ k+1 m
+ ( 1) (1 ) [( LG Z —n+1

_|_
X /q Api + [(1 = A) — ] )" £ (¢ dt)
1
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where

m

Di(pq) =Y (pi— )" ¢, "

i=1

PROOF If we apply the identity[(1]7) fof’, we get
n—1
_ 1 k+1 k
(1.11) F0 =@ +3 Gy (=) (1) ae
X (b—a) "t fED (1= A)a+ )
+(=1)" /b K, [(1 =X a+ b, t] fV () dt.

If in () we choosé = 2, i € {1,...,m} anda = 1, then we get

(1.12) f (%) =f(1)+ ”Z_l C i 0l [(1 — /\)k+1 + (—1)’f )\k+1]
C k=0 '

k1
« (pi — qi) . i) {(1—)\)qi+>\pi]

[q:]* ! i
Py

A [(1 et t] £ (1)

foralli € {1,...,m}.

If we multiply (1.12) bygq; > 0 (i € {1,...,m}), sum overi € {1,...,m} and take into
accountthad " ¢; = 1, then we get the representatil.g).

If we apply the identity[(1]8) for’, we get

w.13) FO) = fla) + 3 Ak ()
k=0

— (k+1)!

£ (D A= )] (6 - )
b

+— [ 1= Na+2b— t]" f D (2) dt.

If in () we choosé = £, € {1,...,m} anda = 1, we get
n—1 k+1 k+1
Pi A (k+1) <pi )

1.14 Y=+ (%
(1.14) f<qi> f() ;(,Hl)!f W

n—1

+ Z (‘Uk (1- /\)kﬂ FlhD) Pi) (Pi 4 o
— (k+1)! ¢) \4i
1 a5 1 — )\ i + )\ i " n

foralli e {1,...,m}.
If we multiply (1.14) byg; > 0 (i € {1,...,m}), sum overi € {1,...,m} and take into
account thab~"" | ¢; = 1, we get the representatidn (1]1Q).
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REMARK 1.1. Ifin (1.9) we choosa = 0 or, A = 1 or, A = §, we get, respectively

_ . 1
(1.15) Ir (p,q) = f(1) + kz:% mf(k+ ) (1) Dk (p. q)
+ ( 1)"27”:%( ?;K (1 t)f(”“)()df>
=1 1
S~ =1

— (k
+(—1)”Zm:qi (/15 K, (7; )f<n+1 ()dt>

=1
and
n—1 k
14 (-1
(1 17) I <p7 q) f(l) + ok+1 <(]€ +)1)' ](._1)k+1f(k+1)(%) (pa q)
k=0
n - % q; +pz (n+1)
1 : K, [ ZT5 tydt | .
S (/ (%2 e) £ )
REMARK 1.2. Ifin (1.1Q) we choosa = 0, or A = 1 or, A = 1, we get, respectively
n—1
(1.18) I (p, +Z G +1 g (2 0)
k:D
)" fOD (t )dt> ;
1
ol okt (1
(1.19) It (p.gq +Zf< ( ) (P q)
k=0

Py

nl Z b (/q —tq)" fY (t) dt)

and

Skt

(1200  Lpa=fL)+Y.
k

2’ p
> S Gy 11 ()

n—1 k

(=1

> 2041 (k + 1)!]<-fl>’““f<k+1><-> (p.q)
k=0

RIR S i b U6 B W LT
I3 (/ ot (5-1)a] 0 0a).

=1
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2. BOUNDS FOR THE REMAINDER

In this section we point out some bounds for the remainders in the representatipns (1.9) and

(1.10), i.e.,
1)  Rs(p,q) :=(-1)" Zqz- (/1 K, {(1 “Nat Api,t] £ () dt)

=1 %
and
. 1 X o
(2.2) Ry (p.ag) =~ q{"“/1 pi + [(1 = X) =t q]" f" D (2) dt
T =1

wherep, ¢ € P, X € [0,1] andK,, (-, -) is the kernel defined in equatidn (IL.2).
Fora,b € R, let us denote

b .
/If@Wﬁ’,p21

1 ey p =
and
1|l ap,00 = €88 sup [f (£)].
t€[a,b]
(t[b,al)

In order to obtain bounds of; (p,¢) as given in[(2]1), we need to consider integrals of the
form

L (2) := / K [(1=X) -1+ Xz, t] fD) (1) dt, 2 € (0,00).
1
Thus

| [ 10 T a0 0] af

SHﬂ””M@WL[meu—A»1+AawM4

1 ) (1=A)-14 Az z
=l [ e [ e
n: <l 1 (I=X)- 14Xz

i n+1 n+1
R R R R | A Gl SR AR S 17|
n! n+1 [1,2],00
- n n+1 n+1 n+1
1 DAl PR | L n e § S L P | ||f(n+1)H
ol n+1 [1,2],00
|Z_1|n+1

— m [)\n+1 + (1 . )\)n-‘rl} Hf(n—i-l)H[l’Z]’oo )

Using Holder’s inequality, we may write fer > 1, > + 5 = 1, that:

[e3

R 7 | [ 00— 2012z 0
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However,
/IKMG—Ay1+A4wRﬁa
1
1
1 (1=X)-1+Az . 1
= / |t—1|andt—|—/ ’t_Z|andt
U (1-A)-1+Az
[ 1
N 1 |(1_)\)+)\2_1|an+1+‘Z—(l—)\)'l—AZPn—H a
-l an + 1
[ 1
B 1 )\om-i-l |Z . 1|an+1 + (1 o )\)an+1 |Z B 1|an+1 P
nl an+ 1
1
— 1" N
= |Z—|1 |:)\om+1 + (1 B )\)om—i-l] <
n!(an+ 1)«
and then:
|Z B 1|n+é 41 1
n+l an+1 an =
1@< D= N (=)™
n!(an + 1)«

Finally, we observe that

sup [K, (1= ) -1+ Az, 1)

te(l,z]
—%ﬁmxﬂﬂ—A%hM—if+%z—G—Ayl—Adﬂ

1 . o1 1 1"
:m(z—l) (max {\, 1 —\}) :m|2—1| [54—'/\—5]

and then

1 1 1
I < —lz=1" =+ A==
L ()] < 1z 1] L+\ :

[l

Using the above inequalities, we may state the following result

|Z71|n+1
(n+1)!

[)\”+1 + (1 - /\)n+1] Hf(n—i_l)H[l,z],oo \

‘Z—1|n+é an+1 an+1 é n
(23) |Il (Z)| < < n!(oerl)é [)\ ' - (1 - )\) ] Hf( +1)H[1,z],5

a>1,é+%:1

J

L bz =1 G+ =3l

=:k(z,n)

forall z > 0,n € N.
We are now able to state the following theorem pertaining to the remaitider, ¢).
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THEOREM 2.1 (Barnett et al., 20025]). Assume that the functiofiis as in Theorem 1] 3.
If p, g € P™, then we have the inequality

(2.4) |R;(p,q)l

A AR G A DO Tl R i A [

k3

, 00

1
I S an+1 o an+17%
n!(anJrl)é [/\ + (1 /\) }

1
it =l O
where o > 1, £ + 5 =1; l

INA
s
i

P b=l £ g

Moreover, if we assume that< r < 2 < R < o0, i € {1, ..., n}, then the second term i.4)
can be upper bounded by

( (n+1)‘ (A (1= )" [P H[TR]
xS g pi — a™
(2.5) B = m P‘MH +(1- MH] Hf ey H ,R],5

[r
S g p— e i a1, Lyl=1

Qh—‘

a3 "H)‘__H anH H[rR S -l

\

(n+1 [/\nJrl (1 - )\)n+1} ||f(n+1)||[r7R]7oo (R _ r)nJrl

" 1+1)1 |:>\om+1 4 (1 . )\)om-l-l] é

X O (R—r)™% if a>1, L4

IA
Q
i

ai o =31 gy (B =)

\

The proof of (2] .) follows by the inequalitms) choosing= 2 and suming ovef €
{1, ..
The proof of .b) follows by the fact th+¥ — 1‘ < R-—rforallie{l,..,n}.

We omit the et ils.
The following corollary may be useful in practical applications.
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COROLLARY 2.2 (Barnett et al., 2005]). With the assumptions of Theorém|2.1, we have
the inequality:

n—1 fk—i—l
(2.6) I (p,q) 2 (k+1 Dy (p,q)
(ot S b a7 ‘

oL 1
—n!(m;l)é S *ps — qi|"+i | fe+)]| or

where a > 1, + + 5 =1;

IN

S =l O g
Furthermore, if we assume that< 2 < R < oo, i € {1,...,n}, then we have

( (n-il—l)! Hf(n—i_l)H[r,R],oo Z’:il ql_n ’pl o q’i’n—i_l \

Vs

nt+t

_1
M1 < n!l(an+1)« ||f et ||[rR]BZz 14 ot |pl - Qz|
a wherea > 1, L+ 4 =1;

[
=

A (1N g i @ i = il

FltD) H (R— T)nJrl \

1
(n+1)! H [r,R],00

iy ”[rRm (R—r)"">

< < n(an+17||
where o > 1, L+ 4 =1;

[
=

\ ol FAda o (B =1)" )
and
5~ (=1
Iy (p.g) — (1) — 0T 1)!1(._1)k+1f<k+1><.) (p.q)
k=0

< M; < My < Ms;
andif0 <r < f]l < R<o0,i€{l,..,n}, then

n—1 k
Iy (,q) ZO 2k+1 ]{3 n 1 I(.il)k+1f(k+1)(%) (p,q)
1 1 1
< =M, < =My < —M;.
2" omn on

Now, to obtain the bound oR; (p, ¢) as defined in (2]2), consider the integral

[ e e

n!

L(z2) =
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from which we have

1 z
1L < [1F" e | 1=
1
1] pa=n1ea
——/ (1= \) -1+ Az —t["dt
n!'|J;
+/ |(1—)\)-1+>\z—t]”dt' [l T
(1=X)-14+Az =

n! n+1

1 [|(1—/\)-1+/\z—1|"+1+|(1—/\)-1+/\z—z|”+1]

<

(z—1)"" n+1 n+1 n+1
- (n+1)! ’ [)‘ +(1 =) ] ’ Hf( ' )H[l,z],oo
Using Holder’s inequality, we may write, for > 1, ; + 5 = 1, that
1
|12 (= Hf Al A / ¢ LAz =™ dt‘

)-1+Az
== Hf”+1 [ / (1= A) -1+ Az —t"dt

+/ \(1—)\)-1+)\z—t\”o‘dt’
(1=X\)- 14Xz

P

_H _’(1—)\)+)\Z_1’na+1+‘2_(1_)\)_>\Z|na+1]oc
~onl

no+ 1

'/\an+1 |Z . 1|an+1 + (1 . )\)an—H |Z . 1|an+1]

Q=

1
— (n+1)
o Hf o H[l,z]ﬂ an + 1

-1 ntg
_ |Z | . [)\an+1 + (1 N )\)an+1]
n!(an +1)

Finally, we observe that

1
@

3 FA TP

Q=

1 n n
|y (2)] < —~ Hf( +1)H[1Z] | Sup [(1T—=X) -1+ Xz —t
n: VT te[l,2]

1y ) )
:mHﬂ +1)“[1721’1max{|(1—)\)+>\z—1| TN !

— Hf(nH)H[LZ]J (z — 1" (max{\, 1 —A})"

1 11"
n+1 n
= a1t 3 g
Using the above inequalities, we may state that
(2.7) 1L (2)] < K (n,2),

AJMAA Vol. 15, No. 1, Art. 1, pp. 1-275, 2018 AJMAA


http://ajmaa.org

INEQUALITIES FOR DISCRETE--DIVERGENCE MEASURES 239

wherer: (n, z) is defined in[(2.8). That is, the bounds ¥ (p, ) andR; (p, q) are the same.
We may now state the following theorem concerning a bound for the remaityder q).

THEOREM 2.3 (Barnett et al., 2008]). Assume that the functiofiis as in Theorer 1] 3.
If p, ¢ € P, then we have the inequality:
(2.8) Ry (p.a)| < A,
whereA is given in [(2.4).
Moreover, if we assume that< r < ZL < R<o0,i€{l,..,n}, then
(2.9) A< B<C,
with B andC being as defined i (3.5).
The following corollary may be useful in practical applications.
COROLLARY 2.4 (Barnett et al., 200%]). With the above assumptions, we have

n—1 k
(=1)
2.10 1 — f(1) - 1
(2.10) rpg) = (1) 2 (o T -0 (P 9)
S Ml S M2 S M37
n—1 fk+1
2.11 I
(211) r(p.a) > %+1 (v.0)
< My < My < Mj
and
2.12 I 1 - Q) D
(2.12) f(p,Q)_f()— m k (P:q)
N Z 2k:+1 k:—l— ey (P, 9)
1 1 1
< _ _
< oM = 2nM2 < 2nM3

forr <2 < R,i€{l,..,n}, whereM, (i =1, 3) are as defined in Corolla .2.

REMARK 2.1. If in all the above results we choogeo be a particular function generat-
ing the classical divergences listed in the introduction), then we can obtain many interesting
approximations for the above distances. We omit the detalils.

3. REPRESENTATION OF f-DIVERGENCE VIA A GENERAL MONTGOMERY |IDENTITY

In [16], the authors have pointed out the following integral identity generalising the Mont-
gomery identity.

LEMMA 3.1. Let f : [a,b] — R be a mapping such thgt”—!) is absolutely continuous on
la, b]. Then for allz € [a, b], we have the identity:

-1 [(b B x)k+1 i (_1>k (z — a)k—H f(k:) @

b n
(3.1) / f)dt = kz_: ey

) /b Ko (2,8) £ (8) dt
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where the kernek, : [a,b]* — R is given by

al g <t<az<b
(3.2) K, (z,t):=
(t=b)"

n!

andn is a natural numbem > 1.

In what follows, we need the identity (3.2) in the following equivalent fof®]{

b
S WACL

3 i a ; (k _il_ 1)! [(b - z)"”rl + (—1)k (2 — a)kﬂ} f(k) (2)

+% o (t)dt+/zb(t—b)”f‘”) (0|

(3.3) f(z)

forall z € [a, b].

Note that forn = 1, the sumzz;l1 is empty and we obtain thilontgomery identitysee
for example B5])

(3.4) f(z>=bfa/abf<t> _a[/:@—a)f(”(t)dt
+ l%t—®f“de4,xe[@m.

In what follows, we assume that the probability distributipng € P satisfy the standing
condition:

(3.5) 0<r<P <R<oo foric{l,..m}.
g

Obviouslyr <1 < R.
The following representation of Csiszardivergence holds.

THEOREM 3.2 (Barnett et al., 200Z7)). Let f : [r, R] — R, wherer, R are as above and

f™=1 is absolutely continuous g, R]. Then for allp, ¢ € P™ satisfying ), we have the
representation:

(3.6) 1'(p,

n—1
/f dt—R " k—i—l Iig_ye+iymy (P Q)
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PROOF Using ) forz = 2,4 € {1,..,m} anda = r, b = R, we may write

an (%)
(r-2)"

foralli € {1,...,m}.
If we multiply (3.7) byg; > 0, sum oveti € {1,....m} and take into account that'"  ¢; =

1, we get the desired identity (3.6).
REMARK 3.1. Ifn = 1, then we have the representation:

(3.8) It (p

if n = 2, then we have the representatlon'
(39) ]f :—/ f dt+ )IR ) f(1)()(p,Q)

+R_T]< gy (P ‘D

=3 (R_l— 524 </ Al dt)

_—2(R1—r) Zq@' (ﬁ (t_R)2f(2) (t)dt) :

4. BOUNDS FOR THE REMAINDER

In formula (3.6), we consider the remaindey (p, ¢) given by

Rrlpa)i= [Z . ( [Fa-nrow dt)

1

+ Zm:ql- (/j(t—R)”f(”) (t)dt)] :

In this section, we are interested in obtaining some boundgB fdp, q).
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For this purpose, consider

and

wherez € [r, R].
Fora < b, we also define the Lebesgue norm,

: :
= | [ I OPa] " 521

1 llfa,0),00 7= €55 sup |f ()]

tela,b]

and

Now, we observe that

’ n | ) (n) (z =)™
< [ o= ol <|)s H[r,z],oon—ﬂj
(n) jon (n) (z=n®
ST A R T
41
o) (z=n)"" (G N S
Hf H[r,z}ﬁ (an—i—l)é o= "o I} ’

and, finally,
BN g g =" = 1 ="

Consequently, we have

4 n+1

n+1 an)H[rz 0

(4.1) | (2)] < ((MT”f")”[m]ﬂ’ a>1, 14

@l
|

L =) (170

In a similar fashion, we may point out that

z”'H
[ 1 e

ntl
(4.2) L2 (@) < § CEE | fO] e @> 1 g+

Q=

\ (R — Z)n Hf(n)H[z,R],l :
The following bound for the remaindéi; (p, ¢) holds.

THEOREM4.1 (Barnett et al., 200Z]). Let f,r, R, p andq be as in Theorefn 3.2. Then we
have the inequality

(4.3) Ry (p,q)| < W (R—1)
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T | (R=2)" 1 g
) oN

e D) [(R - %)n+i Hf(n)H[%,R],B
)

! 1711,

< nt+t n+t
— rRﬁ i * i *
S ey zm[< ) ()

[r,R],1 Z:’il i [(R— %)n+ (;% _T)n]

17

( ||f(n>||[r,R],oo(R_T)n
(n+1)!

H Fm H [T,R],ﬁ(R_T)nJré_l

n!(om—f—l)é

IN

if a>1,

Q |~
+
D=
Il
—_

1

Hf(n) H [T,R],1(R7T)n_
\ n!
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PrROOF Using [4.]) aanZ) we may write:

Ro1) [Z;q / (t—r)" f™ (1) dt

+Zqzﬁi ]

4

Ry (p, )| <

— R)" f™ (t)dt

IN
X
£}
S
+
=
Q

(R—r)n!

+1
()
17 e ] o

\ntt
ar S (B 2) 1l
(R—r)n!

ifoz>1,é—|— =1

=

Yo

(7]
n+1

(an+1)«@

n+1

S B V]

( ||f(n)||[r,R],oo (R i

(7~

> Hf H pl,R],l

bt () ()]

rRﬁZz li

r>n+1

(Rfr)”""a

\ Hf(n)

and the theorem is proved.
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[rR],1 (

(om—l—l)é

R —

r)"

\

{(@- G %W]
10 S [ (2 =)+ (R=2)]

R],oo(Rir)

£

[r,R],B

(n+1)!

(R_T)nﬁ»éfl

e

T
n!l(an+1)«

[T,R],I(R_T)n71

n!
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REMARK 4.1. Forn = 1, we obtain the estimate

(15 [<R— p—f>2||f<1>u -

+ (8-

1
[Rf (p, )] < — % 4 (

\

Hf(l)“rRooZ ( _ﬂ>2+<pz_ )2

i=1 7‘ qi qi r

L . 1+4
+(r-2) }

[EAR T 3
1 Rﬁzzlz (q_:_,r>

< X (at+1)a
- R-r
if a>1, L4+4=1;
| (R=n) [F D, 0
LA )
2
1
e N S T
(0+1)% e
S Y

which improves some results froig].
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CHAPTER 18

Two Functions Associated tof-Divergences

1. INTRODUCTION

In [102], Lin and Wong (see alsdD1]) introduced the following divergence measure

(1.1) Diw (p,q sz log ( ) , pq P
Z+ g

This can be represented as follows, using the Kullback-Leibler divergence:

2
Lin and Wong have established the following inequalities

1 1
Drw (p,q) = Dkr <p, P + —Q) :

(1.2) Drw (p,q) < %DKL (P, q);
(1.3) Drw (p,q) + Drw (¢,p) < Dy (p,q) < 2;
(1.4) Drw (p,q) < 1.

In [121], Shioya and Da-te improve@.2)-(1.4) by showing that

1
Drw (p,q) < §DU (p,q) < 1.

In the same papelR]], the authors have introduced the generalised Lin-WbAdivergence
Dy (p, ip + ) and the Hermite-Hadamard divergence

Diyyy (P Z fl —— p.gEP"

and, by the use of the Hermite-Hadamard mequallty for convex functions, proved the following
basic inequality

11 1
(1.5) Dy (p, Pt 561) < D}y (p.q) < 5 Ds (p.q),

provided thatf is convex and normalised, i.€f(1) = 0.
In the following we point out new inequalites féf H —divergence, which also improve the
above result.

2. SOME INEQUALITIES

In the following, we assume everywhere that the mapging(0, o) — R is convex and
normalised.
The following result holds.

246
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THEOREMZ2.1 (Barnett et al., 2003]). Letp, ¢ € P". Then we have the inequality

1 1
2.1 D “p4 =
(2.1) f (1% 5P+ 261)

< ADj (p,p+%(q—p)> + (1 =)Dy (pvz%ﬂ%(q—p))

< D}y (p.q) < %[Df (p, (1 =AN)p+Aq)+(1—=A) Dy (p,q)]

forall A € [0, 1].

PROOF. Firstly, let us prove the following refinement of the Hermite-Hadamard inequality

2.2) f (a+b)
u <

2

u(

\-
2+ 2

(a—l—b b—a

_b_a/f %f((l—A)a+Ab)+Af(a)+(1—A)f(b)]
_f@
- 2

forall A € [0,1].

Applying the Hermite-Hadamard inequality on every subinterval
la, (1 —X)a+ Ab], [(1—A)a+ Ab,b], we have

f(a—i-(l—)\)a—l—)\b

2

(1=X)a+Ab
S/ f(u)du
F((1=X)a+Ib)+ f(a)

) X [(1—=X)a+ A\b—q]

< 5 X [(1=X)a+ Ab—d
and
f ((1—>\)a2+Ab+b> b= (1— A)a— A
b
= /(1 )\)a+/\bf(U) u
_f()+f((2 Nat) e,
which are clearly equivalent to
. (1=X\)a+Xb
(2.3) /\f(a+)\-b2a)§bia/ f (u) du
<)\f((1—)\)a+)\b)+)\f(a)
- 2
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and
(2.4) (1—A)f(“;b+x-b;a)
1 b
= b_a/(l—k)a—l—)\bf(U) au
< (L1=X)f(b)+ (1 =X f({(1=Xa+ b
< 5 )

Summing[(2.B) and (214), we obtain the second and the first inequaljty in (2.2).
By the convexity property, we obtain

b—a a+b b—a
)\f(a+)\~T)+(1—)\)f< 5 N 5 )

Zf[A(aanb;a)Jr(l—)\) (a;b—l-/\-b;a)]

()

and the first inequality irf (2} 1) is proved.
The last inequality is obvious by the convexity propertyfof
Now, if we chooser = 1 andb = £, z € x, in ) and multiply byp; > 0, = € x, we get

Di + q;
pif( 9 )
Di

i+ A (g —pi
o (2208

pitai | Agi—pi)
1=N)p;
N

9

< PO " d
qi —Pi J1

() s - (2)]

pif (L) +pif (E
< (p2> .
- 2
Integrating ony and taking into account the definition of Csiszardivergence and the Hermite-
Hadamard divergence, we obtdin (2.4).

REMARK 2.1. If A = 0 or A = 1, then by [(2.]L), we obtain the inequalify (IL.5).
COROLLARY 2.2 (Barnett et al., 2003]). Letp,q € P". Then we have the inequality

pta) _1 3p+q p+3q
2.5 Df(p.—— )<< |D D
1 p+q 1
< Dl r) < 5 |0y (0 252) 4 3D (00)
1
<5Drpa).
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REMARK 2.2. If we substitute\ by (1 — X) in ([2.1), we can get

e D (p, p;q)
( —+)\ (p— q)) + ADy (p,qu/\Tq)
< Dl (0.0) < %[Df (0 W0+ (1= A)4) + ADs (p,0)]
< 5D; (n,a).

Now, if we add[(2.]L) and (2} 6) and divide by 2, we can state the following corollary.
COROLLARY 2.3 (Barnett et al., 2003]). Letp, ¢ € P". Then we have the inequality

p+q
en o (nt5Y)

<A |:Df (p,p+%(q—p)> + Dy (P#%L%(Z?—Q)ﬂ
+(1=)) [Df (p,]%—l-%(q—p)) + Dy (p,]%ﬁ—%(p_@)}
< Dy (p,q)

< i[Df(p,(l—A)p+Aq)+Df(p,Ap+(1—A)Q)+Df(p,q)]
1

-D
9 f(paQ)a

forall A € [0, 1].

IN

We also define the divergence.

(2.8) Hy(p,g;t) := Z pif [tqz (]1)‘ t)pl} =Dy (p.tg+(1—1t)p).

We can state the following theorem.

THEOREM2.4 (Barnett et al., 2003]). Letp,q € P". Then

() Hy (p.q;-) is convex orf0, 1];
(i) We have the bounds

2.9 £ H H 0) =

(2.9) téfél] f(p.q;t) = Hy (p,q;0) =0,

(2.10) 81[11)} Hy (p,q;t) = Hy (p,q;1) = Dy (p, q)
tel0,1

and the inequality
(2.11) Hy(p,q;t) <tDy(p,q) forallt e [0,1].
(iif) The mappingd; (p, ¢; -) is monotonic nondecreasing ¢n 1].

PrROOE We have:
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(i) Letty, to € [0,1] anda, 8 € [0, 1] with v+ 8 = 1. Then
Hy (p, q; aty + Bts)
_ ip'f {(ah + Bty) q; + (1 — aty — ﬁtz)pi]

qi

(tigi + (1 —t1) pi teqi + (1 — t2) pi
B Z pif { q; b q; }

< ow;pif { tigi + (1 —tl)pi}]

qi

s il [taq; + ((1]1— t2) pi

= aHf (p7Q7t1) + ﬁHf (p7Q7t2)

and the convexity is proved.
(i) Using Jensen’s inequality, we have:

L i=1

=f tzqz"i‘(l—t)zpi]

=f(1)=0=H;(p,q,0).
Also, by the convexity off, we have

00 <Y (£) +0-0s0)
<thZ ( > (1—t)f sz

- th (p7 ) )
and the statement (ii) is proved.
(iii) Let 1, t € [0, 1] with ¢ > t1. As Hy (p, ¢; -) is convex, then

Hf (p7 Q)t2) - Hf (pa q, tl) > Hf (pa q, tl) - Hf (p7 q, 0)
to — 1 - t1—0

and as
Hf (p7q>t1) > Hf <p7Q70) = 07
we deduce thatl; (p, q,t1) > Hy (p, q,t2), which proves that monotonicity df (p, ¢, -). B

REMARK 2.3. If we write [2.1]) forl — ¢, we obtain

(2.12) Hy(p,g,1 =1) < (1=1) Dy (p,q), t€0,1].
Then, adding[(2.11) anf (2]12), we get
(2.13) Hy(p,q.t)+ Hy(p,q. 1 —t) < Dy (p.q)

forallt € [0,1].
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REMARK 2.4. Fort € [%, 1}, we have the inequality

1 1
(2.14) Dy (1% SPt 561) < Dy(ptg+ (1 —=ANp) <tDs(p,q),
which is similar with [1.8).

We can also define the divergence

(2.15) r(pa;t ZZW] [t —+(1 t)- 4,

i=1 j=1 Dj

wherep, g € P" andt € [0, 1].
The properties of this mapping are embodied in the following theorem.

THEOREM2.5 (Barnett et al., 2003]). Letp,q € P". Then:

(i) Ff (p,q;-) is symmetrical about, i.e.,
(2.16) Fy(p,q;t) = Fr(p,q; 1 —t) forall ¢t € 0,1].

(i) F'is convex ono, 1];
(i) We have the bounds:

(2.17) 81[113] Fr(p,q;t) = Fy (p,q¢;0) = Fr (p,q;1) = Dy (p, q),
telo,1
(2.18) £ F (pgit) = F !
. 11’1 = L=
Jnf Fy (p.q; i\ Py
4ipj + piq
=323 s (M) 2
i=1 j=1 qu

(iv) Ff (p,q;-)is nondecreasing ofD, 1] and nonincreasing of?, 1];
(v) We have the inequality:

(2.19) Fy(p.g;t) > max{Hy (p,q;t); Hy (p,q;1 —t)} forall ¢ €0,1].

PROOF We have:

(i) It is obvious.

(i) Follows by the convexity off in a similar way to that in the proof of Theorém .4.
(iii) For all x,y € x we have:

fle-% - t>'2}§t'f<]%>+(l—t)-f<@)

Di Dby Dpj
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for anyt € [0, 1].
Multiplying by p;p; > 0 and integrating ony?, we may write

it <Zzpzpj{t f(‘-”) (1—t)-f(@)}

11]1 bj

th_:pj ;pzf (%)
A0S ( )

=1 j=1
=t-Ds(p,q) + (1 —1)- Dy (p,q) = Dy (p,q)
= Fy(p,¢;0) = Fr (p,¢; 1)

and the bound (2.17) is proved.
Sincef is convex, then for alt € [0, 1] andz,y € x, we have

Y At R CEias )

=03 (esn))

Multiplying by p;p; > 0 and integrating orny?, we have
1 ~ L (g g
— . -] — > M) — | = =L
5 [y (0, a5t) + Fy (p,g 1 = t)] 2 ;:1 jEZl pipi f {2 (pi + pj)}

and the first part of (2.18) is proved.
Using Jensen’s integral inequality, we may write:

SEh ()

= = Diq;
¢iPj + piq
[ (M) )
Li=1 j=1 vy

1 n n n n
=/ B [szzpj +Z%Z%” =f(1)=0
L™ Li=1  j=1 i=1  j=1
and the second part gf (2]18) is proved.
(iv) The mappingF (p, ¢; -) being convex o0, 1], we may write forl > ¢, > ¢; > ; that

Fy(p,aita) = Fy (0,3 th) Iy (p.q;t1) — Ff (p,q; )
to — 11 - t1 — =

and as

1 1
Ff(pchatl) ZFf <p7qa§)a tl 2 57

we deduce that’ (p, q;t2) > Fy (p,¢;t1), i.e., the mapping; (p, ¢; -) is monotonically non-
decreasing o0, 1].

Similarly, we can prove thakt; (p, ¢; -) is monotonically nonincreasing df, 1|, and the state-
ment (iv) is proved.
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(v) Using Jensen’s integral inequality, we have

ij {t Ly 1—t)-;]7ﬂ
> f Zp]{t =+ t)-q—j”

Lj=1 Pj

= f|t g—z 1—t>éqj]=f[t-@+<1—t>].

%

Multiplying by p; > 0 and integrating ory, we have
r(pat) > sz {t —+ 1—t)] = Hy (p.q;t),

forallt € [0,1].
Now, as

andFy (p,q;t) = Fy(p,q;1 —t) forall ¢ € [0, 1], the inequality[(2.19) is completely proveg.

3. PRELIMINARY RESULTS

In [3], the authors introduced the following divergence measure

(3.1) Hy(pgit) =3 pif [t‘ﬁ o tm} ,

=1

wherep, ¢ € Q andt € [0, 1].
It is obvious that this measure can be represented in ternfs-divergence, namely, we
have the representation,

(3.2) Hy(p,g;t) = Iy (p,tg+ (1 =) p)

forall p,q € Q andt € [0, 1].
The following properties of{; (-, -; -) hold (see(8]).

THEOREM3.1. Assume that the mapping: [0, cc) — R is convex angh, ¢ € Q, then,
(i) Hf (p,q;-) is convex ono, 1];

(47)
(3.3) Hy(p,q;t) < Iy (p,q) forallt e [0,1]
with the bounds
(3.4) I Hy (psa;t) = Hy (p,q;0) =0
and
(3.5) sup Hy (p,q;t) = Hy (p,q;1) = 11 (p,q);

t€[0,1]

(i46) The mappingd; (p, ¢; -) is monotonic nondecreasing ¢i 1].
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In the same papeB], the authors introduced the following divergence,

q.
(3.6) ) =3 s &—+ut»;,
i=1 j=1 J

wherep, g € Q andt € [0, 1].
The properties of this mapping are embodied in the following theoBkm [

THEOREM3.2 (Barnett et al., 20088]). Under the assumptions of Theorem| 3.1, we have,
(i) Fy (p,g;-) is symmetrical about, i.e.,
(3.7) Fy(p,q;t) = Fy (p,q;1 —t) forallt € [0,1];

(i7) Fy (p,q;-)is convex ono, 1J;
(77i) We have the bounds

(3.8) Sup Fy(p,g;t) = Fy (p,¢;0) = Fy (p,¢;1) = I (p,q) ;
€10,
1
. f F =F D=
(3.9) tel% ) F (p,q;t) = Fy (p,q, 2)
¢iPj + Piq
=3 g [ 5
i=1 j=1 plpj
(iv) Fy (p,g;-) is nondecreasing ofp, 1] and nonincreasing ofn}, 1];
(v) and
(3.10) Fy (p,q;t) > max {Hy (p,q;t), Hy (p. ;1 — 1)}
forall ¢ € [0, 1].

In this section we point out some estimates for the divergence measyfes;-) and
Hf ('7 B )
4. SOME ESTIMATES FOR n-TIME DIFFERENTIABLE MAPPINGS
We use the following lemma (see al&8]).

LEMMA 4.1. Letf : I € R — R (I interval ofR) be such thay (™ is absolutely continuous
on/, then for allz, a ef (I is the interior of /) we have the inequality,

n . k
@) |f@)— fa) -3 0
k=1 ’
'ﬁnﬂnmnmu—a!"“ if f+D € Lo () ;
< o e et g e Lo (1),
- Oz>1,é—|—%:1;
(o POV e =l

where||-||, (« € [1,00]) are the usual Lebesgue normsbn’.e.,

lgll, = (/|g o dx) a1

9]l == esssup|g ()]
zel
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The following corollary will be useful in what follows.

COROLLARY 4.2. Assume thaf is as above and, b ei, then for all \ € [0,1], we have
the inequality:

P TV T X (O S
@.2) |0+ ( Ya) — f (a) Z ol [ (a)
k=1 '
n+lip_ g+l n ; n
(I, S e L (1)
<} SR )i g0 € L, (1),
+
a>1, Lyi=1

e Lo
( P

We can now point out the following estimation result for the mapgihqp, ¢; -) [6].

THEOREM4.3 (Barnett et al., 200%]). Assume that the mapping: [0, 00) — R is such
that (™ is absolutely continuous dn, R] , where0 < r < 1 < R < oo. If p, ¢ are probability
distributions and

(4.3) 7"<—<Rf0r26{1 m},

7

then we have,

n ok (k)
(4.4) Hipat) - fO) - W )

k!
k=1

( 4+l f(n-‘rl) . n
%Db{'nﬁ% (p, Q) |f f( +1) c Loo [7", R] )
R || fontn)
< MD vy (pg) i fOY e Lo [r R,
n!(nB+1)8 [x|" 48 11,
thf(n-H)H a > 1, o + 3 b
{ — D (p.9)
( t"t1(R—7) "‘H n
el FA]
n+7 n+7
| S i,
n'(n,@—H)
tm™ R r) H
\
where
m k
xF (p,Q) —Zpk_—_l, =1,...
=1 i
and

D|X| p, Z |QZ z 0

where the Lebesgue—norms are taken ofr, R].
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PrROOF Apply inequality ) fox =t €[0,1], b= %,i € {1,...,m} anda = 1, to get,

k
% Di
4.5 PR C R IR S C R O
@) |7 (e a-0) —r ) =3 =
( e ql ! - n n
E— 17 t“rfi—lr“ I
1|n+1 tn+3 R—r n+%
< flD)| <q t PR P ||f(n+1)||
n! (nﬁ+1)ﬂ 17 nl(nf+1)B o’
oo B | e

fori e {1,...,m}.
If we multiply (4.5) byp; > 0, sum overi and use the properties of the sum, we get,

Z oif (t(b (1'— t)pi)

i—1 Di
EFO) (1) &
IR ety St ‘
k=1 =1

( tn+1||f(n+1)||oo Zm lgi—pi| "L
(n+1)! =1 p? ’
+ 1
< t” B“f(nH)Ha S li—pi "5
s
t"Hf(nH)H Iq p
\ n! ZZ_ - Z
(" (R—r)" ! +1)
ey IFAL H
1 1
< tn+/3 (Rfr)nfﬁ || (n+1) H
n‘(nﬁ+1)B ¢
t" R ) H
\

and the theorem is proved.

REMARK 4.1. If n = 0, then, basically, for an absolutely continuous mappfngr, R] C
[0,00) — R, we have:

(4.6) |y (p,tg+ (1—t)p)— f(1)]

17 e Do (0. 0) I e (R =)
<q O LD, g ) S R =),
£l £l

for all ¢ € [0, 1], whereD, (p.q) = S0, |pi — qil-
If n = 1, and taking into account thd®, (p,q) = 0, then by ) we get, for the mappings
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whose derivativeg’ are absolutely continuous,

@4.7) Iy (p,tg+(1—t)p) — f(1)]
(Bl p . (p, g) if € Lo [r,R]

IN

B+1
e D b (pg) i f1€ Lalr B
B+)8  Ixl P

(L Dy (pog)
forallt € [0,1].

Of course, if we assume thdtis convex and normalised, then the left hand side of both
(4.8) and[(4.]7) will become
0<I;(ptg+(1—1)p)
and the inequalitie$ (4.6) ar[d (4.7) will provide some upper bounds for the mafpifig ¢; t),
t e [0,1].

REMARK 4.2. If we assume that” is absolutely continuous, then frojn (4.4) we obtain,

t2 1!
(4.8) \Hy(p.a:t) = f(1) = 5" (1) Dz (p, )
(B =p s (p,q) if f”¢€ Lo[r, R];
26+
t A IIf’”H

IN

(2ﬁ+1)BaD\x|2+% (p.q) i f" € Lalr Rl
a>1, é + % =1;

t2 f///
\ ” HlD\x| (p7q)a

which provides an approximation &f (p, ¢; t) by a quadratic it whose coefficient is depen-
dent on they? -distance ofy andg.

We also note that Theorem #.3 contains, as a particular case«fdr), an approximation
of the f —divergence dontained in the following corollary.

COROLLARY 4.4. With the assumptions of Theorém|4.3, we have,

4.9) |Is(p,q) Z f (p.q)
( %DH wa) [ LD gy
= %Dx”é (p.a) = !lj(ci:;y; (R=r)"" E
—||f(n+1)”1 Dy (p,q) ( —“f(:l)nl (R—r)".

We also know that fot = % we obtain the generalised Lin-Worfg-divergence

1 1

and so, from[(4]4), we may state the following estimation for the Lin-Wpndivergence.
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COROLLARY 4.5. With the assumptions of Theorém|4.3, we have,

~ W (1)

(4.10) |LW;(p,q) — f (1) =) s Dxx (1,4)
k=1 ’
( (n+1)
f ; n
!n‘+1(n+||13c!>D\x|”“ (P, q) if f0+D € Lo [, R
[ 7] £ p(ntl)

S 1 < LD n+dl (p7Q) If f GLa [TaR]a

27l+5n!(nﬁ+l)ﬁ Ix|"" 7
a>1, % + %3 =1;

e,

REMARK 4.3. Similar particular cases far= 0, n = 1 andn = 2 may be stated but we
omit the detalils.

The following theorem also hold$]|

THEOREM4.6 (Barnett et al., 200%]). Assume that the mapping: [0, 00c) — R is such
that ™ is absolutely continuous o, R], where0 < r < 1 < R < oo. If p, ¢ satisfy the
condition

(4.11) r<—<Rforze{1 m},
bi

then we have the inequality,

(412) Ff (p7q7 If b, q Z k! f(k) p7
( n+1 n n .
D G [FL S € L
77,—0—l B
< t B LD l Hf (n+1) Ha if f(n+1 c La [T, R]
- nl(nB+1) 78 T 1 . . .
a>1, =+3=1
a Jé] ’
| S8 () [ 100
n+1 n+1 n H n .
( <Z+1>' (R— T i fTY e Lo [ R
n+ g ntl .
< t ' B - (R—T’) +3 ||f(n+1)||a if f(n+1 [ ]
- n!(nB+1) 8
a>1, é + % =1;
(o (=) ||
where
s (2 2]
* i i q
DQL(}%Q):ZZ k—1 k—1 ()(_j>7 k 17
! i=1 j=1 [pi]" " [yl bj
o |det [gj 0 ]
DY (pq)=> > b—F =L s>0
i=1 j=1 Pi Pj

and theaw—norms are taken ofr, R].
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PrROOE We choose in Corolla .Z,: Z— a = Z—J to obtain,
i j

‘f(t.@+(1_t>.@)_f<&)
Di Dj pj

_§:__ﬁ_£L_ﬂm(ﬁ)
k! D

n+1
( ¢n+l % 9 ”f(n+1)"
(n+1)! | pi Pj oo
1 nJ,»l
< - N B FlntD)
- 1 i D a
n!(nB+1)8 I J
n
" e 4 Hf(n+1)H
\ n!|p; Py 1

foralli,5 € {1,...,m} andt € [0, 1], which is clearly equivalent to,

(4.13) W(wMH%}fﬂm%>_f(@)
Pi;

ko k .
1 k! p;D; pj
/ ) ] n+1
det|: p] qj :|
g+l Pi G +1
(n+1)! pptpl ! Hf(n )||oo
n+l
bj g
det
< A { Pi 4 ] (n+1)
n'(n,@+l)% ) n+l n+d Hf ||a
: p; p;
det|: pj 4j :|
tm pZ QZ +1
\ nl ppY Hf(n )H1

foralli,j € {1,...,m} andt € [0, 1].
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If we multiply (4.13) byp;p; > 0fori, j € {1,...,m}, sum over andyj, we obtain,

izm:p.pf (tquZ' + (1 - t)pi(]j)

i=1 j=1 piP;
m m q
3w ()
i=1 j=1 P;
e e [3])
1 (] (k) ]
o _IZZ k—1 k-1 f <_)
=1 " =1 =1 Pi Pj Pj

n+1

[ i & ]
n+1 [ i
(fz—l—l)! Hf(nH) Hoo i Z;ll pipy

det|: pj qj :|
Hf(n+1) Ha ’ Z:il Z;llzl n+p%l_1 ?Lz+i_1
p; p;

n+%

IN

1
i

n!(nﬁ+1)% B

z J

det|: pj qj :|
bi 4

n—1 n—1 )
b, P;

n

el

which is clearly equivalent to the first inequality [n (4.12).
The second inequality is obvious by the fact that,

LGl < R—yforalli,je{l,.,m}.
Di Py

The theorem is thus completely provad.
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