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ABSTRACT. In this paper we investigate the utility of mappings to solve numerically an impor-
tant class of integral equations on the real line. The main idea is to map the infinite interval to a
finite one and use Chebyshev spectral-collocation method to solve the mapped integral equation
in the finite interval. Numerical examples are presented to illustrate the accuracy of the method.
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1. I NTRODUCTION

Integral equations appear in many fields of scientific and engineering, such as the radiative
transfer [10, 22], acoustic resonance scattering [9], population dynamics [6, 14], electromag-
netic and elastic waves [12], fluid dynamics [23]. So it is necessary to solve them over bounded
or unbounded domains. In recent years spectral methods for bounded domains have been found
to be a powerful tool for the solution of differential and integral equations due to their bigger ac-
curacy when compare to standard methods. The rate of convergence of spectral approximations
depends only on the smoothness of the solution, yielding the ability to achieve high precision
with a small number of data (see, e.g., [4, 5, 11, 20, 21]).

Spectral methods in unbounded domains have also been used and discussed by many authors
with different approaches, see, e.g., [2, 3, 16, 18, 19, 20]. In general, they are essentially classi-
fied into four approaches: Domain truncation, Approximation by Laguerre or Hermite polyno-
mials/functions, Approximation by non classical orthogonal systems, or by mapped orthogonal
systems, and by Mapping of the unbounded domain to a bounded one. We should note here that,
the domain truncation approach is only a viable option for problems with rapidly(exponentially)
decaying solutions. However, with proper choices of mapping or scaling parameters, the other
three approaches can all be effectively applied to a variety of problems with rapid or slow de-
caying solutions.

It’s been more than thirty years since Grosch and Orszag [13] showed that differential equa-
tions on a semi-infinite interval can be solved very effectively by mapping the interval into
[−1, 1] using an algebraic function for the map. Boyd [2] generalized their technique and pro-
vided in [4, Ch. 17, p. 338] an excellent extensive review on general properties and practical
implementations for many of these approaches. The most frequently used mappings are alge-
braic, exponential and logarithmic given by the following formulas, in which the constants > 0
sets the length scale of the mappings :

- Algebraic map x = sz(1− z2)−1/2, z =
x√

x2 + s2
.

- Logarithmic map x = s tanh−1 z =
s

2
ln

1 + z

1− z
, z = tanh(s−1x).

- Exponential map x = sinh sz = s−1 ln(z +
√

z2 + 1),

wherex ∈ (−∞, +∞). The name of these families of maps are chosen by how rapidlyx
increases withz → ±1.

In this paper we are concerned with the numerical solution of integral equations on the real
line (−∞, +∞). The essential idea in our approach is to map the given infinite interval to
[−1, 1], and use Chebyshev spectral-collocation method to solve the mapped integral equation.
The main advantage of this technique is that it can be implemented and analyzed using standard
procedures and approximation results.

2. CHEBYSHEV POLYNOMIALS

Chebyshev polynomials of the first kind of degreen are defined by

(2.1) Tn(z) = cos(n cos−1 z), n = 0, 1, 2 · · ·

Also they are derived by the following recursive formula

(2.2) Tn+1(z) = 2zTn(z)− Tn−1(z), n ≥ 1,

with T0(z) = 1 andT1(z) = z.
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It is well known that Chebyshev polynomials are an orthogonal system on the segment[−1, 1]
with respect to the weight functionω(z) = (1− z2)−1/2. Namely,

(2.3)
∫ 1

−1

Tn(z)Tm(z)√
1− z2

=
αnπ

2
δnm

whereα0 = 2 andαn = 1 for n ≥ 1.
The Chebyshev expansion of a functionu ∈ L2

ω(−1, 1) is

(2.4) u(z) =
∞∑
i=0

ûiTi(z), ûi =
2

παi

∫ 1

−1

u(z)Ti(z)ω(z)dz.

The polynomialTn+1(z) of degreen + 1 hasn + 1 different simple zeros in[−1, 1] at

(2.5) zi = cos

(
2i + 1

2n + 2
π

)
, i = 0, 1, 2 · · ·n.

Theorem 2.1.Givenf ∈ C2n[−1, 1] and letz0, z1, ..., zn be then + 1 zeros ofTn+1(z). Then

(2.6)
∫ 1

−1

f(z)√
1− z2

dz ≈ π

n + 1

n∑
i=0

f(zi)

3. SOLUTION METHODS

Consider integral equations of the form

(3.1) ϕ(x)−
∫ +∞

−∞
k(x, t)ϕ(t)dt = f(x)

where the functionsk(x, t) andf(x) are given, andϕ(x) is an unknown function to be de-
termined. The regular part of (3.1) is assumed to be exists in the Riemann sense. Which is
considered becomes

(3.2) lim
L→∞

∫ L

−L

k(x, t)ϕ(t)dt

We first use Logarithmic map. Then (3.1) becomes

(3.3) ϕ(x)−
∫ 1

−1

k(x, s tanh−1 y)ϕ(s tanh−1 y)
s

1− y2
dy = f(x)

If we posex = s tanh−1 z, then

(3.4) ϕ(s tanh−1 z)−
∫ 1

−1

k(s tanh−1 z, s tanh−1 y)ϕ(s tanh−1 y)
s

1− y2
dy = f(s tanh−1 z)

and letu(z) = ϕ(s tanh−1 z), so we obtain

(3.5) u(z)−
∫ 1

−1

k(s tanh−1 z, s tanh−1 y)u(y)
s

(1− y2)
dy = f(s tanh−1 z)

By setting

M(z, y) =
k(s tanh−1 z, s tanh−1 y)√

1− y2

ω(y) =
1√

1− y2
and F (z) = f(s tanh−1 z)
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equation (3.5) can be written as follows

(3.6) u(z)− s

∫ 1

−1

M(z, y)u(y)ω(y)dy = F (z)

In the same manner using algebraic map, we also obtain an integral equation of the form
(3.6), where

M(z, y) =
k(sz(1− z2)−1/2, sy(1− y2)−1/2)

1− y2
,

and
F (z) = f(sz(1− z2)−1/2),

Therefore, in both cases, the problem is to solve approximately the mapped integral equation
(3.6) which can be written in the operator form

(3.7) (I − sK)u = F

To do this, we assume that the operatorK is compact on the spaceL2
ω(−1, 1), and letPn the

n + 1-dimensional subspace spanned by the Chebyshev polynomialsT0, · · · , Tn. Let Pn :
L2

ω(−1, 1) −→ Pn be a bounded projection operator. Our motivation is to approximate (3.6) by
attempting to solve the problem

(3.8) (I − sPnK)un = PnF, un ∈ Pn

Using Gauss-Chebyshev quadrature formula given by theorem (2.1) to approximate the integral
part of the equation (3.6) gives

(3.9) ũ(z)− sπ

n + 1

n∑
i=0

M(z, yi)ũ(yi) = F (z)

Now, forcing this semi-discrete equation to be almost exact in the sense that the residual

rn(z) = ũ(z)− sπ

n + 1

n∑
i=0

M(z, yi)ũ(yi)− F (z)(3.10)

is zero at collocation pointszj, j = 0, ..., n. Thus, the conditionr(zj) = 0, for j from 0 ton,
lead to the following system of linear equations

(3.11) ũ(zj)−
sπ

n + 1

n∑
i=0

M(zj, yi)ũ(yi) = F (zj)

Therefore, the Chebyshev polynomial approximation is given by

(3.12) Pnu(z) =
n∑

i=0

ciTi(z)

where

c0 ≈ 1

n + 1

n∑
i=0

ũ(zi)(3.13)

cj ≈ 2

n + 1

n∑
i=0

ũ(zj)Tj(zi), j = 1, . . . , n(3.14)

Consequently, the approximate solution of equation (3.1) in the real line is given by

(3.15) ϕn(x) =
n∑

i=0

ciTi

(
tanh(s−1x)

)
,
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using Logarithmic map, and

(3.16) ϕn(x) =
n∑

i=0

ciTi

(
x/
√

x2 + s2
)

,

in the case of algebraic map.

3.1. Spectral convergence analysis.In this subsection, a convergence analysis for the numer-
ical schemes for the mapped integral equation (3.6) will be provided. The goal is to show that
the rate of convergence depends on the regularity properties of the corresponding exact solution.
Also, we note that the following results are based on framework in [1, 5].

Lemma 3.1(See [5], p. 296). Letu ∈ Hm
ω (−1, 1) with m > 1. The truncation erroru− Pnu,

satisfies the inequality

(3.17) ‖u− Pnu‖L2
ω(−1,1) 6 Cn−m|u|Hm,n

ω (−1,1)

where,

(3.18) |u|Hm,n
ω (−1,1) =

 m∑
k=min(m,n+1)

‖u(k)‖2
L2

ω(−1,1)

1/2

.

Theorem 3.2(See [1], p. 55). AssumeK : L2
ω(−1, 1) −→ L2

ω(−1, 1) is bounded, and assume
I − sK is one-to-one and onto operator. Further assume

(3.19) ‖K − PnK‖ → 0 asn →∞

Then for all sufficiently largen, the operator(I − sPnK)−1 exists as a bounded operator.
Moreover, it is uniformly bounded :

(3.20) sup
n
‖(I − sPnK)−1‖ 6 M

For the solution of (3.7) and (3.8),

(3.21) ‖u− un‖ 6 s−1M‖u− Pnu‖

Lemma 3.3. AssumeK : L2
ω(−1, 1) −→ L2

ω(−1, 1) is a compact operator and assumePnu →
u for all sufficiently largen. Then,

(3.22) ‖K − PnK‖ → 0

Proof. From the definition of operator norm,

‖K − PnK‖ = sup
‖u‖61

‖Ku− PnKu‖ = sup
v∈K(U)

‖v − Pnv‖

with K(U) = {Ku | ‖u‖ 6 1}. Since the setK(U) is compact. Therefore, by the preceding
lemma,

sup
v∈K(U)

‖v − Pnv‖ → 0

for all sufficiently largen.

AJMAA, Vol. 14, No. 2, Art. 12, pp. 1-8, 2017 AJMAA

http://ajmaa.org


6 AHMED GUECHI AND AZEDINE RAHMOUNE

4. I LLUSTRATIVE EXAMPLES

Example 4.1.Consider Fredholm integral equation (3.1) with

k(x, t) = xt sin(t), f(x) = e−x2 −
√

π

2e1/4
x.

Whose exact solution isϕ(x) = e−x2
, which is a smooth function and decay exponentially at

infinity. In table 4.1, we give Maximum absolute errors at 1000 selected equally spaced points
on the interval[−5, 5] using logarithmic and algebraic maps against variousn and different
scaling factors. We observe that the error decay exponentially and we remark also that for a
fixed integern, the numerical results withs = 2.5 are better than other choices of scaling factor
either with logarithmic or algebraic map.

Example 4.2.Consider Fredholm integral equation (3.1) with

k(x, t) = xt cos(t), f(x) =
1

1 + x2
.

The corresponding exact solution isϕ(x) =
1

1 + x2
, which decays algebraically at infinity.

In table 4.2, we give Maximum absolute errors at 1000 selected equally spaced points on the
interval [−500, 500] using algebraic map against variousn and different scaling factors. We
observe thats = 1 gives better numerical results than other choices, contrarily to the first
example where the choice ofs = 2.5 is better.

Table 4.1: Maximum absolute error at 1000 equally spaced points on the interval[−5, 5] for example 1

s
Mapping n 1 2.5 5.0 7.5 10
Logarithmic 20 1.13E-03 6.54E-07 2.74E-03 1.16E-01 –

30 1.10E-04 2.91E-09 2.26E-06 3.46E-03 4.38E-02
40 2.30E-05 2.42E-11 1.92E-10 8.81E-05 3.82E-03
80 2.36E-07 7.21E-14 6.62E-13 1.72E-12 4.04E-09

Algebraic 20 1.13E-03 5.11E-05 2.23E-03 1.19E-01 –
30 1.06E-04 8.96E-07 3.50E-06 3.19E-03 4.35E-02
40 1.48E-05 2.27E-08 1.43E-08 5.89E-05 3.66E-03
80 1.48E-08 4.93E-11 1.45E-09 1.92E-09 1.45E-09

Table 4.2: Maximum absolute error at 1000 equally spaced points on the interval[−500, 500] for example 2 using
algebraic map.

s
n 0.5 1 2.5 5 7.5
10 5.49E-03 1.49E-15 8.49E-03 7.95E-02 1.89E-01
20 2.26E-05 2.81E-15 1.50E-04 1.01E-02 4.84E-02
30 9.29E-08 3.00E-15 2.03E-06 1.42E-03 1.11E-02
40 3.83E-10 3.75E-15 2.73E-08 1.64E-04 3.76E-03
80 9.83E-15 1.34E-14 4.78E-14 7.24E-08 1.20E-05
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5. CONCLUSION

In this paper, Fredholm integral equation of the second kind on the real-line is solved by
Mapped Chebyshev spectral methods. Convergence of the presented method is analyzed and
tested. The proposed method provides a good efficiency for smooth solutions decaying expo-
nentially or algebraically at infinity as shown in Tables 1-2. The scaling factors offers great
flexibility to improve the numerical resolution. However, the best choice ofs is one that gives a
good adjustment of the collocation points.
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