WEAKLY COMPACT COMPOSITION OPERATORS ON REAL LIPSCHITZ SPACES OF COMPLEX-VALUED FUNCTIONS ON COMPACT METRIC SPACES WITH LIPSCHITZ INVOLUTIONS

D. ALIMOHAMMADI AND H. ALIHOSEINI

Received 10 January, 2017; accepted 1 September, 2017; published 16 October, 2017.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ARAK UNIVERSITY, P. O. BOX, 38156-8-8349, ARAK, IRAN.

d-alimohammadi@araku.ac.ir, hr_alihoseini@yahoo.com
URL: http://www.araku.ac.ir

ABSTRACT. We first show that a bounded linear operator T on a real Banach space E is weakly compact if and only if the complex linear operator T' on the complex Banach space E_C is weakly compact, where E_C is a suitable complexification of E and T' is the complex linear operator on E_C associated with T. Next we show that every weakly compact composition operator on real Lipschitz spaces of complex-valued functions on compact metric spaces with Lipschitz involutions is compact.

Key words and phrases: Compact operator; Composition operator; Lipschitz involution; Weakly compact operator.

2010 Mathematics Subject Classification. Primary 47B33, 47B07, Secondary 26A16, 46J10.
1. Introduction and Preliminaries

The Symbol \mathbb{K} denotes a field that can be either \mathbb{R} or \mathbb{C}. Let E and F be Banach spaces over \mathbb{K}. We denote by $B_{\mathbb{K}}(E,F)$ the Banach space over \mathbb{K} consisting of all bounded linear operators from E into F with the operator norm $\| \cdot \|_{op}$. We write $B_{\mathbb{K}}(E)$ instead of $B_{\mathbb{K}}(E,E)$. Let us recall that $T \in B_{\mathbb{K}}(E,F)$ is compact (weakly compact, respectively) if the closure of $T(U)$ in F is compact with the norm-topology (weak-topology, respectively), where U is the open unit ball in E.

It is known that if E, F and G are Banach spaces over \mathbb{K}, $S \in B_{\mathbb{K}}(E,F)$ and $T \in B_{\mathbb{K}}(F,G)$, then $T \circ S$ is compact (weakly compact, respectively) whenever T or S is compact (weakly compact, respectively).

Applying the Eberlein-Šmulian theorem [4, Theorem V.6.1] and the definition of weakly compact operators between Banach spaces over \mathbb{K}, we obtain the following result.

Theorem 1.1. Let $(E, \| \cdot \|)$ and $(F, \| \cdot \|)$ be Banach spaces and $T : E \rightarrow F$ be a linear operator from E into F over \mathbb{K}. Then T is weakly compact if and only if for each bounded sequence $\{a_n\}_{n=1}^{\infty}$ in $(E, \| \cdot \|)$ there exist a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ of $\{a_n\}_{n=1}^{\infty}$ and an element b of F such that $\lim_{k \rightarrow \infty} T a_{n_k} = b$ in F with the weak-topology.

Let X be a nonempty set, $V_{\mathbb{K}}(X)$ be a vector space of \mathbb{K}-valued functions on X and $T : V_{\mathbb{K}}(X) \rightarrow V_{\mathbb{K}}(X)$ be a linear operator on $V_{\mathbb{K}}(X)$ over \mathbb{K}. If there exists a self-map $\phi : X \rightarrow X$ such that $T f = f \circ \phi$ for all $f \in V_{\mathbb{K}}(X)$, then T is called the composition operator on $V_{\mathbb{K}}(X)$ induced by ϕ.

Let X be a topological space. We denote by $C_{\mathbb{K}}(X)$ and $C_{\mathbb{K}}(X)^b$ the set of all \mathbb{K}-valued continuous and bounded continuous functions on X, respectively. Then $C_{\mathbb{K}}(X)$ is a commutative \mathbb{K}-algebra over \mathbb{K} with unit 1_X, the constant function on X with value 1, and $C_{\mathbb{K}}(X)^b$ is a subalgebra of $C_{\mathbb{K}}(X)$ containing 1_X. Moreover, $C_{\mathbb{K}}(X)^b$ is a unital commutative Banach algebra over \mathbb{K} with the uniform norm

$$\|f\|_X = \sup\{|f(x)| : x \in X\} \quad (f \in C_{\mathbb{K}}(X)^b(X)).$$

Clearly, $C_{\mathbb{K}}(X)^b = C_{\mathbb{K}}(X)$ whenever X is compact. We write $C(X)$ and $C^b(X)$ instead of $C_{\mathbb{K}}(X)$ and $C_{\mathbb{K}}(X)^b$, respectively.

Let (X,d) and (Y,ρ) be metric spaces. A map $\phi : X \rightarrow Y$ is called a Lipschitz mapping from (X,d) into (Y,ρ) if there exists a constant $M \geq 0$ such that $\rho(\phi(s),\phi(t)) \leq M d(s,t)$ for all $s,t \in X$. For a map $\phi : X \rightarrow Y$, the Lipschitz constant of ϕ is denoted by $p(\phi)$ and defined by

$$p(\phi) = \sup \left\{ \frac{\rho(\phi(s),\phi(t))}{d(s,t)} : s,t \in X, s \neq t \right\}.$$

Clearly a map $\phi : X \rightarrow Y$ is a Lipschitz mapping if and only if $p(\phi) < \infty$. A map $\phi : X \rightarrow Y$ is called a supercontractive mapping from (X,d) into (Y,ρ) if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $\rho(\phi(s),\phi(t))/d(s,t) < \varepsilon$ for all $s,t \in X$ with $0 < d(s,t) < \delta$. It is clear that if $\phi : X \rightarrow Y$ is a supercontractive mapping from (X,d) into (Y,ρ) such that $\phi(X)$ is bounded set in (Y,ρ), then ϕ is a Lipschitz mapping.

Let (X,d) be a metric space. A function $f : X \rightarrow \mathbb{K}$ is called a \mathbb{K}-valued Lipschitz function (supercontractive function, respectively) on (X,d) if f is a Lipschitz mapping (supercontractive mapping, respectively) from (X,d) into the Euclidean metric space \mathbb{K}. For a Lipschitz function f on (X,d), the Lipschitz number of f is denoted by $L_{(X,d)}(f)$ and defined by

$$L_{(X,d)}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d(x,y)} : x,y \in X, x \neq y \right\}.$$
Let \((X, d)\) be a pointed metric space with the base point \(e \in X\). We denote by \(\text{Lip}_{0,K}(X, d)\) the set of all \(K\)-valued Lipschitz functions \(f\) on \((X, d)\) for which \(f(e) = 0\). Clearly, \(\text{Lip}_{0,K}(X, d)\) is a linear subspace \(C_K(X)\) over \(K\). Moreover, \(\text{Lip}_{0,K}(X, d)\) with the norm \(L_{(X,d)}(\cdot)\) is a Banach space over \(K\). We denote by \(\text{lip}_{0,K}(X, d)\) the set of all \(f \in \text{Lip}_{0,K}(X, d)\) for which \(f\) is a supercontraction function on \((X, d)\). It is easy to see that \(\text{lip}_{0,K}(X, d)\) is a linear subspace of \(\text{Lip}_{0,K}(X, d)\) and it is a closed set in the Banach space \((\text{Lip}_{0,K}(X, d), L_{(X,d)}(\cdot))\). Therefore, \((\text{lip}_{0,K}(X, d), L_{(X,d)}(\cdot))\) is a Banach space over \(K\). Note that if \(\phi : X \rightarrow X\) is a base point-preserving Lipschitz mapping on \((X, d)\), then \(f \circ \phi \in \text{Lip}_{0,K}(X, d)\) (\(f \circ \phi \in \text{lip}_{0,K}(X, d)\), respectively) for all \(f \in \text{Lip}_{0,K}(X, d)\) (\(f \in \text{lip}_{0,K}(X, d)\), respectively). For further general facts about Lipschitz spaces \(\text{Lip}_{0,K}(X, d)\) and little Lipschitz spaces \(\text{lip}_{0,K}(X, d)\), we refer to [14]. We write \(\text{Lip}_0(X, d)\) (\(\text{lip}_0(X, d)\), respectively) instead of \(\text{Lip}_{0,C}(X, d)\) (\(\text{lip}_{0,C}(X, d)\), respectively). Note that there are \(\text{lip}_{0,K}\) spaces containing only the zero function as for instance, \(\text{lip}_{0,K}([0, 1], d)\) whenever \(d\) is the Euclidean metric on \([0, 1]\).

Let \((X, d)\) be a pointed compact metric space. It is said that \(\text{lip}_{0,K}(X, d)\) separates points uniformly on \(X\) if there exists a constant \(\alpha > 1\) such that, for every \(x, y \in X\) there exists \(f \in \text{Lip}_{0,K}(X, d)\) with \(L_{(X,d)}(f) \leq \alpha\) such that \(f(x) = d(x, y)\) and \(f(y) = 0\). For instance, if \(X\) is the middle-thirds Cantor set in \([0, 1]\) and \(d\) is the Euclidean metric on \(X\), the \(\text{lip}_{0,K}(X, d)\) separates points uniformly on \(X\) (See [14], Proposition 3.2.2(a))).

Let \((X, d)\) be a metric space and \(\alpha \in (0, 1]\). We know that the map \(d^\alpha : X \times X \rightarrow \mathbb{R}\) defined by \(d^\alpha(x, y) = (d(x, y))^\alpha\), is a metric on \(X\) and the generated topology on \(X\) by \(d^\alpha\) coincides by the generated topology on \(X\) by \(d\). It is known [14], Proposition 3.2.2(b)] that \(\text{lip}_0(X, d^\alpha)\) separates points uniformly on \(X\) whenever \((X, d)\) is a pointed compact metric space and \(\alpha \in (0, 1]\).

Let \((X, d)\) be a metric space and \(\alpha \in (0, 1]\). We denote by \(\text{Lip}_K(X, d^\alpha)\) the set of all \(K\)-valued bounded Lipschitz functions on \((X, d^\alpha)\). Clearly, \(\text{Lip}_K(X, d^\alpha)\) is a subalgebra of \(C^\alpha(X)\) containing \(1_X\). Moreover, \(\text{Lip}_K(X, d^\alpha)\) is a Banach space under the norm

\[
\|f\|_{\text{Lip}_K(X, d^\alpha)} = \max\{\|f\|_X, L_{(X,d^\alpha)}(f)\} \quad (f \in \text{Lip}_K(X, d^\alpha)).
\]

Let \(\text{lip}_K(X, d^\alpha)\) denote the set of all \(K\)-valued supercontractive bounded functions on \((X, d^\alpha)\). Clearly, \(\text{lip}_K(X, d^\alpha)\) is a subalgebra of \(\text{Lip}_K(X, d^\alpha)\) and it is a closed set in the Banach space \((\text{Lip}_K(X, d^\alpha), \|\cdot\|_{\text{Lip}_K(X, d^\alpha)})\). Hence, \((\text{lip}_K(X, d^\alpha), \|\cdot\|_{\text{Lip}_K(X, d^\alpha)})\) is a Banach space over \(\mathbb{K}\). Moreover, \(\text{Lip}(X, d^\beta) \subseteq \text{lip}(X, d^\alpha)\) whenever \(0 < \alpha < \beta \leq 1\). It is known that \(\text{lip}_K(X, d^1)\) separates the points of \(X\). Lipschitz algebras \(\text{Lip}(X, d^\alpha)\) and little Lipschitz algebras \(\text{lip}(X, d^\alpha)\) were first introduced by Sherbert in [12] and [13].

Komowitz and Scheinberg in [8] characterized compact composition operators on \(\text{Lip}(X, d^\alpha)\) for \(\alpha \in (0, 1]\) and \(\text{lip}(X, d^\alpha)\) for \((0, 1]\) whenever \((X, d)\) is a compact metric space.

Jiménez-Vargas and Villegas-Vallecillos in [7] studied and characterized compact composition operators on \(\text{Lip}_0(X, d)\) whenever \((X, d)\) is a pointed metric space not necessarily compact, and on \(\text{Lip}_0(X, d)\) and \(\text{lip}_0(X, d)\) whenever \((X, d)\) is a metric space not necessarily compact.

Jiménez-Vargas in [6] studied weakly compact composition operators on \(\text{Lip}_{0,K}(X, d)\) and \(\text{lip}_{0,K}(X, d)\) whenever \((X, d)\) is a pointed compact metric space, and on \(\text{Lip}_{0,K}(X, d^\alpha)\) for \(\alpha \in (0, 1]\) and \(\text{lip}_{0,K}(X, d^\alpha)\) for \(\alpha \in (0, 1]\) whenever \((X, d)\) is a compact metric space and obtained the following results.

Theorem 1.2 (See [6] Theorem 2.3). Let \((X, d)\) be a pointed compact metric space, the map \(\phi : X \rightarrow X\) be a base point-preserving Lipschitz mapping on \((X, d)\) and \(T : \text{lip}_{0,K}(X, d) \rightarrow \text{lip}_{0,K}(X, d)\) be the composition operator on \(\text{lip}_{0,K}(X, d)\) induced by \(\phi\). Suppose that the little Lipschitz space \(\text{lip}_{0,K}(X, d)\) separates points uniformly on \(X\). If \(T\) is weakly compact, then \(T\) is compact.
Theorem 1.3 (See [6 Corollary 2.4]). Let \((X, d)\) be a pointed compact metric space, the map
\[\phi : X \longrightarrow X \]
is a base point-preserving Lipschitz mapping on \((X, d)\) and \(T : \text{Lip}_0(X, d) \longrightarrow \text{Lip}_{0,K}(X, d)\) be the composition operator on \(\text{Lip}_{0,K}(X, d)\) induced by \(\phi\). Suppose that the little Lipschitz space \(\text{lip}_0(X, d)\) separates points uniformly on \(X\). If \(T\) is weakly compact, then \(T\) is compact.

Theorem 1.4 (See [6 Remark 2.1]). Let \((X, d)\) be a compact metric space, \(E = \text{Lip}_K(X, d^\alpha)\) for \(\alpha \in (0, 1)\) or \(E = \text{lip}_K(X, d^\alpha)\) for \(\alpha \in (0, 1)\), \(\phi : X \longrightarrow X\) be a Lipschitz mapping on \((X, d)\) and \(T : E \longrightarrow E\) be the composition operator on \(E\) induced by \(\phi\). If \(T\) is weakly compact, then \(T\) is compact.

Let \(X\) be a topological space. A self-map \(\tau : X \longrightarrow X\) is called a topological involution on \(X\) if \(\tau\) is continuous and \(\tau(\tau(x)) = x\) for all \(x \in X\). Clearly, such \(\tau\) is a homeomorphism from \(X\) onto \(X\).

Let \(X\) be a Hausdorff space and \(\tau\) be a topological involution on \(X\). Then the map \(\tau^* : C^b(X) \longrightarrow C^b(X)\) defined by \(\tau^*(f) = \bar{f} \circ \tau\) is an algebra involution on \(C^b(X)\), which is called the algebra involution on \(C^b(X)\) induced by \(\tau\). We now define
\[C(X, \tau) = \{ f \in C(X) : \tau^*(f) = f \}, \]
\[C^b(X, \tau) = \{ f \in C^b(X) : \tau^*(f) = f \}. \]

Then \(C(X, \tau)\) is a real subalgebra of \(C(X)\), \(1_X \in C(X, \tau), i1_X \notin C(X, \tau)\) and \(C(X) = C(X, \tau) \oplus iC(X, \tau)\). Moreover \(C^b(X, \tau)\) is a unital self–adjoint uniformly closed real subalgebra of \(C^b(X)\), \(i1_X \notin C^b(X, \tau)\), \(C^b(X) = C^b(X, \tau) \oplus iC^b(X, \tau)\)
\[\max \{ \|f\|_X, \|g\|_X \} \leq \|f + ig\|_X \leq 2 \max \{ \|f\|_X, \|g\|_X \} \]
for all \(f, g \in C^b(X, \tau)\). Clearly, \(C^b(X, \tau) = C(X, \tau)\) if \(X\) is compact.

Real Banach algebra \((C(X, \tau), \| \cdot \|_X)\) was defined explicitly by Kulkarni and Limaye in [9], where \((X, d)\) is a compact Hausdorff space and \(\tau\) is a topological involution on \(X\). For further general facts about \(C(X, \tau)\) and certain real subalgebras, we refer to [10].

Let \((X, d)\) be a metric space. A self-map \(\tau : X \longrightarrow X\) is called a Lipschitz involution on \((X, d)\) if \(\tau(\tau(x)) = x\) for all \(x \in X\) and \(\tau\) is a Lipschitz mapping on \((X, d)\).

Note that if \(\tau\) is a Lipschitz involution on \((X, d)\), then \(\tau\) is a topological involution on \((X, d)\) and \(1 \leq p(\tau) < \infty\).

Let \((X, d)\) be a pointed metric space and \(\tau\) be a base point-preserving Lipschitz involution on \((X, d)\). Then \(\tau^*(\text{Lip}_0(X, d)) = \text{Lip}_0(X, d)\) and \(\tau^*(\text{lip}_0(X, d)) = \text{lip}_0(X, d)\). We now define
\[\text{Lip}_0(X, d, \tau) = \{ f \in \text{Lip}_0(X, d) : \tau^*(f) = f \}, \]
\[\text{lip}_0(X, d, \tau) = \{ f \in \text{lip}_0(X, d) : \tau^*(f) = f \}. \]

In fact \(\text{Lip}_0(X, d, \tau) = \text{Lip}_0(X, d) \cap C(X, \tau)\) and \(\text{lip}_0(X, d, \tau) = \text{lip}_0(X, d) \cap C(X, \tau)\). The following result is a modification of [2 Theorem 1.3].

Theorem 1.5. Let \((X, d)\) be a pointed metric space and \(\tau\) be a base point-preserving Lipschitz involution on \((X, d)\). Suppose that \(A = \text{Lip}_0(X, d, \tau)\) and \(B = \text{Lip}_0(X, d)\), or, \(A = \text{lip}_0(X, d, \tau)\) and \(B = \text{lip}_0(X, d)\). Then:

(i) \(A\) is a self-adjoint real subspace of \(C^b(X, \tau)\) and \(B\), \(1_X \notin A\) and \(i1_X \notin A\).

(ii) \(B = A \oplus iA\).

(iii) For all \(f, g \in A\) we have
\[\max\{L_{(X,d)}(f), L_{(X,d)}(g)\} \leq p(\tau)L_{(X,d)}(f + ig) \]
\[\leq 2p(\tau)\max\{L_{(X,d)}(f), L_{(X,d)}(g)\} \].
(iv) A is closed in $(B, L_{(X,d)}(\cdot))$ and so $(A, L_{(X,d)}(\cdot))$ is a real Banach space.

(v) $f \circ \phi \in A$ for all $f \in A$ if $\phi : X \to X$ is a base point–preserving Lipschitz mapping on (X, d) with $\phi \circ \phi = \phi \circ \phi$.

(vi) If τ is the identity map on X, then $\text{Lip}_0(X,d,\tau) = \text{Lip}_{0,R}(X,d)$ and $\text{lip}_0(X,d,\tau) = \text{lip}_{0,R}(X,d)$.

Let (X, d) be a metric space and the map $\tau : X \to X$ be a Lipschitz involution on (X, d). Then $\tau^*(\text{Lip}(X,d^\alpha)) = \text{Lip}(X,d^\alpha)$ and $\tau^*(\text{lip}(X,d^\alpha)) = \text{lip}(X,d^\alpha)$ for $\alpha \in (0, 1]$. We now define

$$\text{Lip}(X, d^\alpha, \tau) = \{f \in \text{Lip}(X,d^\alpha) : \tau^*(f) = f\},$$

$$\text{lip}(X, d^\alpha, \tau) = \{f \in \text{lip}(X,d^\alpha) : \tau^*(f) = f\}.$$

The following result is a modification of [2, Theorem 1.2].

Theorem 1.6. Let (X, d) be a metric space and τ be a Lipschitz involution on (X, d). Suppose that $\alpha \in (0, 1]$ and $A = \text{Lip}(X,d^\alpha,\tau)$ and $B = \text{Lip}(X,d^\alpha)$, or, $A = \text{lip}(X,d^\alpha,\tau)$ and $B = \text{lip}(X,d^\alpha)$. Then:

(i) A is a real subalgebra of $C^b(X,\tau)$ and B, $1_X \in A$, $i1_X \notin A$.

(ii) $B = A \oplus iA$.

(iii) For all $f, g \in A$ we have

$$\max\{\|f\|_{L_{(X,d^\alpha)}},\|g\|_{L_{(X,d^\alpha)}}\} \leq (p(\tau))^\alpha \|f + ig\|_{L_{(X,d^\alpha)}},$$

$$\leq 2 (p(\tau))^\alpha \max\{\|f\|_{L_{(X,d^\alpha)}},\|g\|_{L_{(X,d^\alpha)}}\}.$$

(iv) A is closed in $(B, \|\cdot\|_{L_{(X,d^\alpha)}})$ and so $(A, \|\cdot\|_{L_{(X,d^\alpha)}})$ is a real Banach space.

(v) $f \circ \phi \in A$ for all $f \in A$ if $\phi : X \to X$ is a Lipschitz mapping on (X, d) with $\phi \circ \phi = \phi \circ \phi$.

(vi) If τ is the identity map on X, then $\text{Lip}(X,d^\alpha,\tau) = \text{Lip}_{R}(X,d^\alpha)$ and $\text{lip}(X,d^\alpha,\tau) = \text{lip}_{R}(X,d^\alpha)$.

Real Lipschitz algebras $\text{Lip}(X,d^\alpha,\tau)$ and real little Lipschitz algebras $\text{lip}(X,d^\alpha,\tau)$ were first introduced in [1], whenever (X,d) is a compact metric space. In this case, Ebadian and Ostadbashi characterized compact composition operators on these algebras in [5]. Compact composition operators on $\text{Lip}_0(X,d,\tau), \text{Lip}(X, d, \tau)$ and $\text{lip}(X, d, \tau)$ characterized in [2].

In Section 2 we first show that a bounded linear operator T on a real Banach space E is weakly compact if and only if the complex linear operator T' on the complex Banach space E_C is weakly compact, where E_C is a suitable complication of E and T' is the complex linear operator on E_C associated with T. Next we show that if T is a weakly compact composition operator on real Lipschitz spaces of complex-valued Lipschitz functions $\text{Lip}_0(X,d,\tau)$ and $\text{lip}_0(X,d,\tau)$ on pointed compact metric space (X,d) with Lipschitz involution τ or on real Lipschitz space of complex-valued Lipschitz functions $\text{Lip}(X,d^\alpha,\tau)$ and $\text{lip}(X,d^\alpha,\tau)$ on compact metric spaces (X,d) with Lipschitz involution τ for $\alpha \in (0, 1)$, then T is compact under certain conditions. Finally, we show that the class of weakly compact composition operators on real Lipschitz spaces of complex-valued Lipschitz functions on compact metric spaces with Lipschitz involutions is larger than the class of weakly compact composition operators on complex Lipschitz spaces of complex-valued functions on compact metric spaces.

2. Results

Let E be a real vector space. A complex vector space E_C is called a complexification of E if there exists an injective real linear map $J : E \to E_C$ such that $E_C = J(E) \oplus iJ(E)$. Clearly,
Let $E \times E$ with addition and scalar multiplication defined by

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2) \quad (a_1, b_1, a_2, b_2 \in E)$$

$$(\alpha + i\beta)(a, b) = (\alpha a - \beta b, \beta a + \alpha b) \quad (\alpha, \beta \in \mathbb{R}, a, b \in E),$$

is a complexification of E under the injective real linear map $J : E \to E \times E$ defined by $J(a) = (a, 0), a \in X$.

Let $(E, \| \cdot \|)$ be a real Banach space. By a similar proof of [3, Proposition I.13.3], one can show that there is a norm $\| \cdot \|$ on $E \times E$ with $\| (a, 0) \| = \| a \|$ for all $a \in E$ such that

$$\max\{\| a \|, \| b \|\} \leq \| (a, b) \| \leq 2 \max\{\| a \|, \| b \|\}$$

for all $a, b \in E$. Clearly, $(E \times E, \| \cdot \|)$ is a complex Banach space.

Definition 2.1. Let E be a real linear space and E_C be a complexification of E under an injective real linear map $J : E \to E_C$. Suppose that $T : E \to E$ is a real linear operator on E and the linear map $T' : E_C \to E_C$ defines by

$$T'(J(a) + iJ(b)) = J(T(a)) + iJ(T(b)) \quad (a, b \in E).$$

Clearly, T' is a complex linear operator on E_C. We say that T' is the complex linear operator on E_C associated with T.

For further general facts about the complexifications of real Banach spaces, we refer to [II].

The following result is a modification of [II, Theorem 2.1] and we use it in the sequel.

Theorem 2.1. Let $(E, \| \cdot \|)$ be a real Banach space and E_C be a complexification of E under an injective real linear map $J : E \to E_C$. Suppose that $\| \cdot \|$ is a norm on E_C with $\| J(a) \| = \| a \|$ for all $a \in E$ and there exist positive constants k_1 and k_2 such that

$$\max\{\| a \|, \| b \|\} \leq k_1 \| J(a) + iJ(b) \| \leq k_2 \max\{\| a \|, \| b \|\}$$

for all $a, b \in E$. Let $T : E \to E$ be a bounded real linear operator on E and $T' : E_C \to E_C$ be the complex linear operator on E_C associated with T. Then the following statements hold.

(i) T' is bounded and $\| T' \|_{op} \leq k_1 k_2 \| T \|_{op}$

(ii) T' is compact if and only if T is compact.

For a Banach space E over \mathbb{K}, we denote by E^* the dual space of E.

The following lemma is a modification [II, Theorem 7] and its proof is straightforward. We will use this lemma in the next theorem.

Lemma 2.2. Let $(E, \| \cdot \|)$ be a real linear Banach space and E_C be a complexification of E under an injective real linear map $J : E \to E_C$. Suppose that $\| \cdot \|$ is a norm on E_C with $\| J(a) \| = \| a \|$ for all $a \in E$ and there exist positive constant k_1 and k_2 such that

$$\max\{\| a \|, \| b \|\} \leq k_1 \| J(a) + iJ(b) \| \leq k_2 \max\{\| a \|, \| b \|\}$$

for all $a, b \in E$.

(i) If for $\lambda, \mu \in E^*$ the map $\lambda \circ \mu : E_C \to \mathbb{C}$ defines by

$$(\lambda \circ \mu)(J(a) + iJ(b)) = \lambda(a) - \mu(b) + i(\mu(a) + \lambda(b)) \quad (a, b \in E),$$

then $\lambda \circ \mu \in (E_C)^*$ and

$$\| \lambda \circ \mu \|_{op} \leq 2k_1 (\| \lambda \|_{op} + \| \mu \|_{op}).$$
(ii) Let $|| \cdot ||$ be a norm on $E^* \times E^*$, as a complexification of E^*, with $||(\lambda, 0)|| = ||\lambda||_{op}$ for all $\lambda \in E^*$ and

$$\max\{||\lambda||_{op}, ||\mu||_{op}\} \leq ||(\lambda, \mu)|| \leq 2\max\{||\lambda||_{op}, ||\mu||_{op}\}$$

for all $\lambda, \mu \in E^*$. Then the map $\Psi : E^* \times E^* \longrightarrow (E_C)^*$ defined by

$$\Psi(\lambda, \mu) = \lambda \circ \mu \quad (\lambda, \mu \in E^*),$$

is a bijective complex linear operator and continuous from the complex Banach space $(E^* \times E^*, || \cdot ||_{op})$ onto the complex Banach space $((E_C)^*, || \cdot ||_{op})$. Moreover, Ψ^{-1} is a bounded linear operator from $((E_C)^*, || \cdot ||_{op})$ to $(E^* \times E^*, || \cdot ||_{op})$.

Theorem 2.3. Let $(E, || \cdot ||)$ be a real linear Banach space and E_C be a Complexification of E under an injective real linear map $J : E \longrightarrow E_C$. Suppose that $|| \cdot ||$ is a norm on E_C with $||J(a)|| = ||a||$ for all $a \in E$ and there exist positive constants k_1 and k_2 such that

$$\max\{||a||, ||b||\} \leq k_1 ||J(a) + iJ(b)|| \leq k_2 \max\{||a||, ||b||\}$$

for all $a, b \in E$. Let $T : E \longrightarrow E$ be a bounded real linear operator on E and $T' : E_C \longrightarrow E_C$ be the complex linear operator on E_C associated with T. Then T is a weakly compact operator on the real Banach space $(E, || \cdot ||)$ if and only if T' is weakly compact operator on the complex Banach space $(E_C, || \cdot ||)$.

Proof. Let $|| \cdot ||$ be a norm on $E^* \times E^*$, as a complexification of E^*, with $||(\lambda, 0)|| = ||\lambda||_{op}$ for all $\lambda \in E^*$ and

$$\max\{||\lambda||_{op}, ||\mu||_{op}\} \leq ||(\lambda, \mu)|| \leq 2\max\{||\lambda||_{op}, ||\mu||_{op}\}$$

for all $\lambda, \mu \in E^*$. Define the map $\Psi : E^* \times E^* \longrightarrow (E_C)^*$ by

$$\Psi(\lambda, \mu) = \lambda \circ \mu \quad (\lambda, \mu \in E^*),$$

where $\lambda \circ \mu \in (E_C)^*$ defines by

$$(\lambda \circ \mu)(J(a) + iJ(b)) = (\lambda(a) - \mu(b)) + i(\mu(a) + \lambda(b)), \quad (a, b \in E).$$

By Lemma 2.2 Ψ is a bijection complex linear operator and a homeomorphism from the complex Banach space $(E^* \times E^*, || \cdot ||_{op})$ onto the complex Banach space $((E_C)^*, || \cdot ||_{op})$.

We first assume that T is weakly compact. To prove the weakly compactness of T', let $\{c_n\}_{n=1}^\infty$ be a bounded sequence in $(E_C, || \cdot ||)$. For each $n \in \mathbb{N}$ there exists $(a_n, b_n) \in E \times E$ such that $c_n = J(a_n) + iJ(b_n)$. It is clear that $\{a_n\}_{n=1}^\infty$ and $\{b_n\}_{n=1}^\infty$ are bounded seques in $(E, || \cdot ||)$. Since T is a weakly compact linear operator on $(E, || \cdot ||)$, by Theorem 1.1 there exist strictly increasing functions $q, r : \mathbb{N} \longrightarrow \mathbb{N}$ and elements $a, b \in E$ such that

$$\lim_{k \to \infty} Ta_{q(k)} = a \quad \text{(in } E \text{ with the weak-topology)},$$

$$\lim_{k \to \infty} Tb_{r(k)} = b \quad \text{(in } E \text{ with the weak-topology)}.$$

For each $k \in \mathbb{N}$, set $n_k = r(q(k))$. Then $\{a_{n_k}\}_{k=1}^\infty$ is a subsequence of $\{a_n\}_{n=1}^\infty$, $\{b_{n_k}\}_{k=1}^\infty$ is a subsequence of $\{b_n\}_{n=1}^\infty$,

$$\lim_{k \to \infty} Ta_{n_k} = a \quad \text{(in } E \text{ with the weak-topology)},$$

and,

$$\lim_{k \to \infty} Tb_{n_k} = b \quad \text{(in } E \text{ with the weak-topology)}.$$

Let $\Lambda \in (E_C)^*$. Then there exist $\lambda, \mu \in E^*$ such that

$$\Lambda = \Psi(\lambda, \mu) = \lambda \circ \mu.$$
Now we have
\begin{equation}
\lim_{k \to \infty} \lambda(a_{nk}) = \lambda(a),
\end{equation}
and,
\begin{equation}
\lim_{k \to \infty} \mu(b_{nk}) = \mu(b),
\end{equation}
by (2.1) and (2.2), respectively. From (2.4), (2.5) and (2.3) we get
\begin{equation}
\lim_{k \to \infty} \Lambda(T^c C_{n_k}) = \Lambda(J(a) + iJ(b)).
\end{equation}
Since \((E_C)^*\) separates the point of \(E_C\) and (2.6) holds for each \(\Lambda \in (E_C)^*\), we conclude that
\begin{equation}
\lim_{k \to \infty} T^c(C_{n_k}) = J(a) + iJ(b) \quad \text{(in } E_C \text{ with the weak-topology)}.
\end{equation}
This implies that \(T^c\) is weakly compact operator on \((E_C, \| \cdot \|)\) by Theorem [1,1].

We now assume that \(T^c\) is a weakly compact operator on \((E_C, \| \cdot \|)\). To prove the weakly compactness of \(T\) on \((E, \| \cdot \|)\), let \(\{a_n\}_{n=1}^{\infty}\) be a bounded sequence in \((E, \| \cdot \|)\). It is clear that \(\{J(a_n)\}_{n=1}^{\infty}\) is a bounded sequence in \((E_C, \| \cdot \|)\). Since \(T^c : E_C \to E_C\) is a weakly compact linear operator on \(E_C\), by Theorem [1,1] there exist a subsequence \(\{a_{nk}\}_{k=1}^{\infty}\) of \(\{a_n\}_{k=1}^{\infty}\) and an element \(c \in E_C\) such that
\begin{equation}
\lim_{k \to \infty} T^c(J(a_{nk})) = c \quad \text{(in } E_C \text{ with the weak-topology)}.
\end{equation}
Since \(c \in E_C\), there exists \((a, b) \in E \times E\) such that
\begin{equation}
c = J(a) + iJ(b).
\end{equation}
We claim that
\begin{equation}
\lim_{k \to \infty} T(a_{nk}) = a \quad \text{(in } E \text{ with the weak-topology)}.
\end{equation}
Let \(\lambda \in E^*\). Set \(\Lambda = \Psi(\lambda, 0)\). Then \(\Lambda \in (E_C)^*\). Hence, by (2.8) we have
\begin{equation}
\lim_{k \to \infty} \Lambda(T^c(J(a_{nk}))) = \Lambda(c).
\end{equation}
From (2.10) and (2.9), we get
\begin{equation}
\lim_{k \to \infty} (\lambda \circ 0)(J(Ta_{nk})) = (\lambda \circ 0)(J(a) + iJ(b))
\end{equation}
and so
\begin{equation}
\lim_{k \to \infty} \lambda(Ta_{nk}) = \lambda(a).
\end{equation}
Since \(E^*\) separates the points of \(E\) and (2.11) holds for each \(\lambda \in E^*\), we deduce that
\begin{equation}
\lim_{k \to \infty} T(a_{nk}) = a \quad \text{(in } E \text{ with the weak-topology)}.
\end{equation}
Therefore, \(T\) is weakly compact by Theorem [1,1].

Theorem 2.4. Let \((X, d)\) be a pointed compact metric space, \(\tau\) be a base point-preserving Lipschitz involution on \((X, d)\) and \(A = \text{Lip}_0(X, d, \tau)\) or \(A = \text{lip}_0(X, d, \tau)\). Suppose that the complex little Lipschitz space \(\text{lip}_0(X, d)\) separates points uniformly on \(X\). Let \(\phi : X \to X\) be a base point-preserving Lipschitz mapping on \((X, d)\) with \(\tau \circ \phi = \phi \circ \tau\) and \(T : A \to A\) be the composition operator on \(A\) induced by \(\phi\). If \(T\) is weakly compact, then \(T\) is compact.
Proof. We assume that $A_C = \text{Lip}_0(X, d)$ if $A = \text{Lip}_0(X, d, \tau)$ and $A_C = \text{lip}_0(X, d, \tau)$ if $A = \text{Lip}_0(X, d)$. By Theorem 1.5, A_C is a complexification of A under the injective real linear map $J : A \rightarrow A_C$ defined by $J(f) = f (f \in A), (A, \| \|_{L(x,d)})$ is a real Banach space and $L(x,d)(\cdot)$ is a norm on the complex vector space A_C with $L(x,d)(J(f)) = L(x,d)(f)$ for all $f \in A$ and

$$\max\{L(x,d)(f), L(x,d)(g)\} \leq p(\tau)L(x,d)(J(f) + iJ(g)) \leq 2p(\tau)\max\{L(x,d)(f), L(x,d)(g)\}$$

for all $f, g \in A$. Suppose that T is weakly compact. Let $T' : A_C \rightarrow A_C$ be the complex linear operator on A_C associated with T. Then T' is weakly compact by Theorem 2.3. It is easy to see that T' is the composition operator on A_C induced by ϕ. Since $\text{lip}_0(X, d)$ separates points uniformly on X, we deduce that T' is compact by Theorem 1.2. This implies that $T : A \rightarrow A$ is compact by Theorem 2.1.

By part (vi) of Theorem 1.5, it is clear that Theorem 2.4 extends [6, Theorem 2.3] and [6, Corollary 2.4] whenever $K = \mathbb{R}$.

Theorem 2.5. Let (X, d) be a compact metric space, τ be a Lipschitz involution on (X, d), $\alpha \in (0, 1)$ and $A = \text{Lip}(X, d^\alpha, \tau)$ or $A = \text{lip}(X, d^\alpha, \tau)$. Let $\phi : X \rightarrow X$ be a Lipschitz mapping on (X, d) with $\tau \circ \phi = \phi \circ \tau$ and $T : A \rightarrow A$ be the composition operator on A induced by ϕ. If T is weakly compact, then T is compact.

Proof. We assume that $A_C = \text{Lip}(X, d^\alpha)$ if $A = \text{Lip}(X, d^\alpha, \tau)$ and $A_C = \text{lip}(X, d^\alpha)$ if $A = \text{lip}(X, d^\alpha, \tau)$. By Theorem 1.6, A_C is a complexification of A under the injective real linear map $J : A \rightarrow A_C$ defined by $J(f) = f (f \in A), (A, \| \|_{L(x,d^\alpha)})$ is a real Banach space and $\| \|_{L(x,d^\alpha)}$ is a norm on the complex vector space A_C with $\| J(f) \|_{L(x,d^\alpha)} = \| f \|_{L(x,d^\alpha)}$ for all $f \in A$ and

$$\max\{\| f \|_{L(x,d^\alpha)}, \| g \|_{L(x,d^\alpha)}\} \leq (p(\tau))^\alpha \| J(f) + (J(g)) \|_{L(x,d^\alpha)} \leq 2(p(\tau))^\alpha \max\{\| f \|_{L(x,d^\alpha)}, \| g \|_{L(x,d^\alpha)}\}$$

for all $f, g \in A$. Suppose that T is weakly compact. Let $T' : A_C \rightarrow A_C$ be the complex linear operator on A_C associated with T. Then T' is weakly compact by Theorem 2.3. It is easy to see that T' is the composition operator on A_C induced by ϕ. By Theorem 1.4, T' is compact. This implies that T is compact by Theorem 2.1.

By part (vi) of Theorem 1.6, it is clear that Theorem 2.5 extends Theorem 1.4 in the case $K = \mathbb{R}$.

Now, we show that the class of weakly compact composition operators on real Lipschitz spaces of complex-valued functions on compact metric spaces with Lipschitz involutions is larger than the class of complex linear operators on complex Lipschitz spaces of complex-valued functions on compact metric spaces.

Theorem 2.6. Let (X, d) be a compact metric space, $B = \text{Lip}(X, d^\alpha)$ for $\alpha \in (0, 1]$, or B be the complexification of B induced by the Lipschitz mapping ϕ on (X, d). Let $Y = X \times \{0, 1\}, \rho$ be the metric on Y defined by $\rho((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), |y_1 - y_2|\}$ and $\tau : Y \rightarrow Y$ be the Lipschitz involution on (Y, ρ) defined by $\tau(x, 0) = (x, 1), \tau(x, 1) = (x, 0) (x \in X)$.

Suppose that $A = \text{Lip}(Y, \rho^\alpha, \tau)$ or $B = \text{Lip}(X, d^\alpha)$, and $A = \text{lip}(Y, \rho^\alpha, \tau)$ if $B = \text{lip}(X, d^\alpha)$. Let $\phi : X \rightarrow Y$ be the self-map of Y defined by $\psi(x, 0) = (\phi(x), 0), \psi(x, 1) = (\phi(x), 1) (x \in X)$.

Then the following statements hold.

(i) \(\psi \) is a Lipschitz involution on \((Y, \rho)\) and \(\psi \circ \tau = \tau \circ \psi \).

(ii) If \(S : A \rightarrow A \) is the composition endomorphism of \(A \) induced by \(\psi \), then \(S \) is weakly compact if and only if \(T \) is weakly compact.

Proof. Clearly, (i) holds. We prove (ii) in the case \(B = \text{Lip}(X, d^\alpha) \) and \(A = \text{Lip}(Y, \rho^\alpha, \tau) \) for \(\alpha \in (0, 1) \). Define the map \(\Lambda : B \rightarrow A \) by

\[
(\Lambda f)(x, 0) = f(x) \quad (f \in B, x \in X),
\]

\[
(\Lambda f)(x, 1) = \overline{f(x)} \quad (f \in B, x \in X).
\]

Then \(\Lambda \) is an injective bounded real linear operator from \((B, \| \cdot \|_{\text{Lip}(X, d^\alpha)})\), regarded as a real Banach algebra, onto \((A, \| \cdot \|_{\text{Lip}(Y, \rho^\alpha)})\). By open mapping theorem for real Banach spaces, \(\Lambda^{-1} \) is a bounded linear operator from \((A, \| \cdot \|_{\text{Lip}(Y, \rho^\alpha)})\) into \((B, \| \cdot \|_{\text{Lip}(X, d^\alpha)})\). We can easily show that \(\Lambda \circ T \circ \Lambda^{-1} = S \). Therefore, \(S \) is weakly compact if only if \(T \) is weakly compact.

To prove (ii) in the case \(B = \text{lip}(X, d^\alpha) \) and \(A = \text{lip}(Y, \rho^\alpha, \tau) \) for \(\alpha \in (0, 1) \), it is sufficient that we apply \(\Gamma = \Lambda |_{\text{lip}(X, d^\alpha)} \) instead of \(\Lambda \).

According to Theorem 2.5, we deduce that Theorem 2.6 extends Theorem 1.4 whenever \(K = \mathbb{C} \).

REFERENCES

