SOME PROPERTIES OF k–QUASI CLASS Q^* OPERATORS
SHQIPE LOHAJ AND VALDETE REXHËBEQAJ HAMITI

Received 12 February, 2017; accepted 20 April, 2017; published 6 July 2017.

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRICAL AND COMPUTER ENGINEERING, UNIVERSITY OF PRISHTINA "HASAN PRISHTINA", PRISHTINE 10000, KOSOVA.

shqipe.lohaj@uni-pr.edu

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRICAL AND COMPUTER ENGINEERING, UNIVERSITY OF PRISHTINA "HASAN PRISHTINA", PRISHTINE 10000, KOSOVA.

valdete.rexhebeqaj@uni-pr.edu Corresponding author

ABSTRACT. In this paper, we give some results of k–quasi class Q^* operators. We proved that if T is an invertible operator and N be an operator such that N commutes with T^*T, then N is k–quasi class Q^* if and only if TNT^{-1} is of k–quasi class Q^*. With example we proved that exist an operator k–quasi class Q^* which is quasi nilpotent but it is not quasi hyponormal.

Key words and phrases: k–quasi class Q^* operator; quasi nilpotent; quasi hyponormal.

2000 Mathematics Subject Classification Primary 47B47, 47B20.

ISSN (electronic): 1449-5910
© 2017 Austral Internet Publishing. All rights reserved.
1. Introduction

Let \(\mathcal{L}(\mathcal{H}) \) denote the \(C^* \) algebra of all bounded operators on \(\mathcal{H} \) and let \(\mathcal{H} \) be a complex Hilbert space with inner product \(\langle \cdot , \cdot \rangle \). For \(T \in \mathcal{L}(\mathcal{H}) \), we denote by \(\sigma(T) \) the spectrum of \(T \) and by \(r(T) \) the spectral radius of operator \(T \) which is defined by \(r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\} \). The null operator and the identity on \(\mathcal{H} \) will be denoted by \(0 \) and \(I \), respectively. If \(T \) is an operator, then \(T^* \) is its adjoint, and \(\|T\| = \|T^*\| \).

An operator \(T \in \mathcal{L}(\mathcal{H}) \) is a positive operator, \(T \geq 0 \), if \(\langle Tx, x \rangle \geq 0 \) for all \(x \in \mathcal{H} \). If two operator \(A \in \mathcal{L}(\mathcal{H}) \) and \(B \in \mathcal{L}(\mathcal{H}) \) are positive operators and if \(AB = BA \) then the product \(AB \) is also positive operator. The \(\|T\| = (T^*T)^{\frac{1}{2}} \) is a positive operator and we have that \(|T|^2 = T^*T \) and \(|T^*|^2 = TT^* \).

The operator \(T \) is called unitary operator if \(T^*T = TT^* = I \). The operator \(T \) is normaloid if \(r(T) = \|T\| \) and it is quasi nilpotent if \(r(T) = 0 \).

An operator \(T \in \mathcal{L}(\mathcal{H}) \), is said to be paranormal \([4]\), if \(\|Tx\|^2 \leq \|T^2x\| \) for any unit vector \(x \) in \(\mathcal{H} \). Further, \(T \) is said to be quasi hyponormal \([3]\), if \(\|T^*Tx\| \leq \|T^2x\| \) for any unit vector \(x \) in \(\mathcal{H} \).

An operator \(T \) is called \(k \)-quasi-\(*\)-paranormal if \(\|T^{*}Tkx\|^2 \leq \|T^{k+2}x\|\|Tkx\| \), for all \(x \in \mathcal{H} \), where \(k \) is a natural number \([8]\).

An operator \(T \in \mathcal{L}(\mathcal{H}) \) belongs to class \(Q^* \) if \(T^{*}T^2 - 2TT^* + I \geq 0 \) or equivalent if \(\|T^*x\|^2 \leq \frac{1}{2} (\|T^2x\|^2 + \|x\|^2) \), for all \(x \in \mathcal{H} \) \([6]\).

An operator \(T \in \mathcal{L}(\mathcal{H}) \) belongs to \(k \)-quasi class \(Q^* \) if
\[
\|T^{*}Tkx\|^2 \leq \frac{1}{2} (\|Tk^2x\|^2 + \|Tkx\|^2),
\]
for all \(x \in \mathcal{H} \), where \(k \) is a natural number. Equivalently, operator \(T \in \mathcal{L}(\mathcal{H}) \) belongs to \(k \)-quasi class \(Q^* \) if \(T^{*k}(T^{2}T^2 - 2TT^* + I)Tk \geq 0 \), where \(k \) is a natural number \([5]\).

Aluthge in \([1]\) define a transformation \(\tilde{T} \) of operator \(T \) by \(\tilde{T} = |T|^\frac{1}{2}U|T|^\frac{1}{2} \), where \(T = U|T| \) is the polar decomposition of operator \(T \). \(\tilde{T} \) is called Aluthge transformation.

Yamazaki in \([7]\) define the \(*\)-Aluthge transformation of operator \(T \). The \(*\)-Aluthge transformation is defined by \(\tilde{T}^{(*)} \overset{\text{def}}{=} (\tilde{T}^*)^* = |T|^\frac{1}{2}U|T^*|^\frac{1}{2} \).

It is proved that \(U^*|T^*|^\frac{1}{2} = |T|^\frac{1}{2}U^* \), \(U^*|T|^\frac{1}{2} = |T|U^* \), \(U|T|^\frac{1}{2} = |T^*|^\frac{1}{2}U \), \(U|T| = |T^*|U \).

2. Main results

In this section we prove some properties of \(k \)-quasi class \(Q^* \) operators.

Theorem 2.1. Let be \(T \) an invertible operator and \(N \) be an operator such that \(N \) commutes with \(T^*T \). Then \(N \) is \(k \)-quasi class \(Q^* \) if and only if \(TTN^{-1} \) is of \(k \)-quasi class \(Q^* \).

Proof. Let \(N \) be a \(k \)-quasi class \(Q^* \) operator.
\[
N^k(N^{*2}N^2 - 2NN^* + I)N^k \geq 0.
\]

From this we have that:
\[
TN^k[N^{*2}N^2 - 2NN^* + I]N^kT^* \geq 0.
\]

Consider,
\[
TN^k[N^{*2}N^2 - 2NN^* + I]N^kT^*[TT^*]
\]
\[
= TN^k[N^{*2}N^2 - 2NN^* + I]N^k[T^*T]T^*
\]
\[
= T[T^*T]N^k[N^{*2}N^2 - 2NN^* + I]N^kT^*
\]
\[
= [TT^*]TN^k[N^{*2}N^2 - 2NN^* + I]N^kT^*.
\]
So, we see that operator TT^* commutes with operator

$$TN^k[N^s2N^2 - 2NN^* + I]N^kT^*.$$

Then operator $[TT^*]^{-1}$ also commutes with operator

$$TN^k[N^s2N^2 - 2NN^* + I]N^kT^*.$$

Since the operators $[TT^*]^{-1}$ and $TN^k[N^s2N^2 - 2NN^* + I]N^kT^*$ are positive and since they commute with each other we have that their product is also positive operator:

$$T^k[N^s2N^2 - 2NN^* + I]N^k[TT^*]^{-1} \geq 0.$$

Since operator N commutes with operator T^*T, we get,

$$(TNT^{-1})^k = (TNT^{-1})^s(TNT^{-1})^s \cdots (TNT^{-1})^s$$

(2.1)

$$= T^{s^{-1}}N^sT^*T^{s^{-1}}N^sT^* \cdots T^{s^{-1}}N^sT^* = T^{s^{-1}}N^kT^*$$

(2.2)

$$(TNT^{-1})^k = TNT^{-1}TNT^{-1} \cdots TNT^{-1} = TN^kT^{-1}$$

(2.3)

$$(TNT^{-1})^s(TNT^{-1})^2 = TN^kN^2T^{-1}$$

(2.4)

$$(TNT^{-1})(TNT^{-1})^s = TNT^{-1}T^{s^{-1}}N^sT^* = TNN^sT^{-1}$$

To prove that TNT^{-1} is k–quasi class Q^* operator, the equation (2.1), (2.2), (2.3) and (2.4) we substitute in above expression:

$$(TNT^{-1})^k[(TNT^{-1})^s(TNT^{-1})^2 - 2(TNT^{-1})(TNT^{-1})^s + I](TNT^{-1})^k$$

and we have

$$(TNT^{-1})^k[(TNT^{-1})^s(TNT^{-1})^2 - 2(TNT^{-1})(TNT^{-1})^s + I](TNT^{-1})$$

$$= T^{s^{-1}}N^kT^*[TN^s2N^2T^{-1} - 2TN^sT^{-1} + I]TN^kT^{-1}$$

$$= T^{s^{-1}}N^kT^*[N^s2N^2 - 2NN^* + I]T^{-1}TN^kT^{-1}$$

$$= T^{s^{-1}}N^kT^*[N^s2N^2 - 2NN^* + I]N^kT^{-1}$$

$$= TN^k[N^s2N^2 - 2NN^* + I]N^kT^{-1}$$

Now we have to prove that that the last expression is positive. From the fact that we prove that

$$TN^k[N^s2N^2 - 2NN^* + I]N^kT^*[TT^*]^{-1} \geq 0$$

we have that:

$$\Rightarrow TN^k[N^s2N^2 - 2NN^* + I]N^kT^*T^{-1}T^{-1} \geq 0$$

$$\Rightarrow TN^k[N^s2N^2 - 2NN^* + I]N^kT^{-1} \geq 0$$

Hence, TNT^{-1} is k–quasi class Q^* operator.

Conversely, let TNT^{-1} be a k–quasi class Q^* operator.

$$(TNT^{-1})^k[(TNT^{-1})^s(TNT^{-1})^2 - 2(TNT^{-1})(TNT^{-1})^s + I](TNT^{-1})^k \geq 0.$$
Then similar as before, after substituting the equation (2.1), (2.2), (2.3) and (2.4) we have:

\[T N^{*k}[N^{*2}N^2 - 2NN^* + I]N^kT^{-1} \geq 0 \]
\[T^*TN^{*k}[N^{*2}N^2 - 2NN^* + I]N^kT^{-1}T \geq 0 \]
\[[T^*T]N^{*k}[N^{*2}N^2 - 2NN^* + I]N^k \geq 0. \]

Since operator \([T^*T]\) commutes with operator \(N\) and hence commute with operator

\[[T^*T]N^{*k}[N^{*2}N^2 - 2NN^* + I]N^k. \]

The also the operator \([T^*T]^{-1}\) commutes with operator

\[[T^*T]N^{*k}[N^{*2}N^2 - 2NN^* + I]N^k. \]

Since the operators \([T^*T]^{-1}\) and \([T^*T]N^{*k}[N^{*2}N^2 - 2NN^* + I]N^k\) are positive and since they commute with each other we have:

\[[T^*T]^{-1}[T^*T]N^{*k}[N^{*2}N^2 - 2NN^* + I]N^k \geq 0. \]

Therefore,

\[N^{*k}[N^{*2}N^2 - 2NN^* + I]N^k \geq 0. \]

Hence, \(N\) is \(k\)-quasi class \(Q^*\) operator. \(\blacksquare\)

Corollary 2.2. Let \(S\) be a \(k\)-quasi class \(Q^*\) operator and \(M\) any positive operator such that \(M^{-1} = M^*\). Then \(T = M^{-1}SM\) is \(k\)-quasi class \(Q^*\) operator.

Proof. Let \(S\) be a \(k\)-quasi class \(Q^*\) operator. Then

\[S^{*k}(S^{*2}S^2 - 2SS^* + I)S^k \geq 0. \]

Consider,

\[T^{*k}(T^{*2}T^2 - 2TT^* + I)T^k = (M^{-1}SM)^{*k}((M^{-1}SM)^{*2}(M^{-1}SM)^2 - 2(M^{-1}SM)(M^{-1}SM)^* + I)(M^{-1}SM)^k = M^*S^*M^{-1*}M^*S^*M^{-1*}...M^*S^*M^{-1*}(M^*S^*M^{-1*}M^*S^*M^{-1*}M^{-1}SMM^{-1}SM
- 2M^*S^*M^{-1*}M^{-1}SM + I)M^{-1}SMM^{-1}SM...M^{-1}SM
= M^*S^{*k}(S^{*2}S^2 - 2SS^* + I)S^kM \geq O. \]

hence, \(T = M^{-1}SM\) is \(k\)-quasi class \(Q^*\) operator. \(\blacksquare\)

Theorem 2.3. Let be \(T \in L(H)\). Then \(\tilde{T}\) is \(k\)-quasi class \(Q^*\) operator if and only if \(\tilde{T}^{(e)}\) is \(k\)-quasi class \(Q^*\) operator.

Proof. Assume that \(\tilde{T}\) is \(k\)-quasi class \(Q^*\) then

\[\tilde{T}^{*k}(\tilde{T}^{*2}\tilde{T}^2 - 2\tilde{T}\tilde{T}^* + I)\tilde{T}^k \geq 0. \]
We need to prove that $\tilde{T}(s)$ is k–quasi class Q^* operator.

\[
\tilde{T}(s)^{k}(\tilde{T}(s)^{2}\tilde{T}(s)^{2} - 2\tilde{T}(s)\tilde{T}(s) + I)\tilde{T}(s)^{k} = (|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2})^{k}
\]

\[
= ((|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2})^{2} - 2(|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2})((|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2}) + I)
\]

\[
= ((|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2})^{2} ... ((|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2})^{k})
\]

\[
= (|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2})(|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2}) ... (|T^{s}|\frac{1}{2}U|T^{s}|\frac{1}{2})
\]

\[
= UU^{*}(|T^{s}|\frac{1}{2}U|T^{s}|U^{*} ... U^{*}|T^{s}|\frac{1}{2})UU^{*}
\]

\[
= U(U^{*}|T^{s}|\frac{1}{2}U^{*}|T^{s}|U^{*} ... U^{*}|T^{s}|\frac{1}{2})U^{*}|T^{s}|\frac{1}{2}U^{*} ... U^{*}|T^{s}|\frac{1}{2}U^{*}
\]

Therefore

\[
\tilde{T}^{*k}(\tilde{T}^{*2}\tilde{T}^{*2} - 2\tilde{T}^{*}\tilde{T}^{*} + I)\tilde{T}^{*k} \geq 0.
\]

Hence $\tilde{T}(s)$ is k–quasi class Q^* operator.

Conversely, assume that $\tilde{T}(s)$ is k–quasi class Q^* operator, then

\[
\tilde{T}^{*k}(\tilde{T}^{*2}\tilde{T}^{*2} - 2\tilde{T}^{*}\tilde{T}^{*} + I)\tilde{T}^{*k} \geq 0.
\]
We need to prove that \tilde{T} is k–quasi class Q^*.
Consider

$$
\tilde{T}^*k(\tilde{T}^*2\tilde{T}^2 - 2\tilde{T}\tilde{T}^* + I)\tilde{T}^k
$$

$$
= U^*U(|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}})(|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}})\ldots (|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}})U^*U
$$

$$
[(|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}})(|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}})(|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}}) - 2(|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}})]
$$

$$
(U|T|^{\frac{1}{2}}U^*|T|U|T|U|T|^{\frac{1}{2}}U^* - 2U|T|^{\frac{1}{2}}U^*|T|U|T|U|T|^{\frac{1}{2}}U^* + I)
$$

$$
(U|T|^{\frac{1}{2}}U^*|T|U\ldots U|T|^{\frac{1}{2}}U^*)U
$$

$$
= U^*((|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}})U
$$

$$
[(|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}})((|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}}) - 2(|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}})]
$$

$$
(U|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}}U^* - 2U|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}}U^* + I)
$$

$$
(U|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}}U^*)U
$$

$$
= U^*((|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}})^k
$$

$$
[(|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}})^k((|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}})^k - 2(|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}})^kU
$$

$$
(U|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}}^kU^* - 2U|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}}^kU^* + I)((|T^*|^{\frac{1}{2}}U^*|T^*|U\ldots U|T^*|^{\frac{1}{2}})^kU
$$

$$
= U^*\tilde{T}^*k(\tilde{T}^*2\tilde{T}^2 - 2\tilde{T}\tilde{T}^* + I)\tilde{T}^k
$$

Therefore

$$
\tilde{T}^*k(\tilde{T}^*2\tilde{T}^2 - 2\tilde{T}\tilde{T}^* + I)\tilde{T}^k \geq 0.
$$

Hence \tilde{T} is k–quasi class Q^* operator. \blacksquare

Proposition 2.4. Let $T \in \mathcal{L}(\mathcal{H})$ be the operator defined as

$$
T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}.
$$

If A is operator of class Q^* and $BB^* = 0$, then T is an operator of k–quasi class Q^*.

Proof. A simple calculation shows that:

\[T^* = \begin{pmatrix} A^* & 0 \\ B^* & 0 \end{pmatrix}, \]

\[T^{*k} = \begin{pmatrix} A^{*k} & 0 \\ B^* A^{*(k-1)} & 0 \end{pmatrix}, \]

\[T^k = \begin{pmatrix} A^k & A^{(k-1)}B \\ 0 & 0 \end{pmatrix}, \]

\[T^{*k} T^k = \begin{pmatrix} A^{*k} (A^* + BB^*) A^k & A^{*k} (A^* + BB^*) A^{(k-1)}B \\ B^* A^{*(k-1)} (A^* + BB^*) A^k & B^* A^{*(k-1)} (A^* + BB^*) A^{(k-1)}B \end{pmatrix}, \]

\[T^{*k} T^k = \begin{pmatrix} A^{*k} A A^k & A^{*k} A A^k A^{(k-1)}B \\ B^* A^{*(k-1)} A A^k & B^* A^{*(k-1)} A A^k A^{(k-1)}B \end{pmatrix}, \]

\[T^{*k} T^{*(k+2)} - 2 T^{*k} T^k = T^{*k} T^{*(k+2)} - 2 T^{*k} T^k = \begin{pmatrix} A^{*k} (A^2 A^2 - 2 A A^* + I) A^k & A^{*k} (A^2 A^2 - 2 A A^* + I) A^{(k-1)}B \\ B^* A^{*(k-1)} (A^2 A^2 - 2 A A^* + I) A^k & B^* A^{*(k-1)} (A^2 A^2 - 2 A A^* + I) A^{(k-1)}B \end{pmatrix}. \]

Let \(u = x \oplus y \in \mathcal{H} \oplus \mathcal{H} \). Then,

\[\langle (T^{*(k+2)} T^{(k+2)} - 2 T^{*k} T^k) u, u \rangle \]

\[= \langle A^{*k} (A^2 A^2 - 2 A A^* + I) A^k, x, x \rangle + \langle A^{*k} (A^2 A^2 - 2 A A^* + I) A^{(k-1)}B, y, x \rangle
+ \langle B^* A^{*(k-1)} (A^2 A^2 - 2 A A^* + I) A^k, x, y \rangle
+ \langle B^* A^{*(k-1)} (A^2 A^2 - 2 A A^* + I) A^{(k-1)}B, y, y \rangle
= \langle (A^2 A^2 - 2 A A^* + I) A^k, x, x \rangle
+ \langle (A^2 A^2 - 2 A A^* + I) A^{(k-1)}B, y, x \rangle
+ \langle (A^2 A^2 - 2 A A^* + I) A^k, x, (k-1)B y \rangle
+ \langle (A^2 A^2 - 2 A A^* + I) A^{(k-1)}B, y, (k-1)B y \rangle
= \langle (A^2 A^2 - 2 A A^* + I) (A^k x + A^{(k-1)}B y), (A^k x + A^{(k-1)}B y) \rangle \geq 0 \]

because \(A \) is operator of class \(Q^* \) then, \(A^2 A^2 - 2 A A^* + I \geq O \), so this prove the result. \(\blacksquare \)

Proposition 2.5. Every quasi hyponormal operator is operator of quasi class \(Q^* \).

Proof. Let \(T \in \mathcal{L}(\mathcal{H}) \) be a quasi hyponormal operator, then

\[\| T^* T x \| \leq \| T^2 x \|. \]
Since every quasi hyponormal operator is paranormal \cite[Corollary 3.15]{3} then we have
\[
\|T^*Tx\| \leq \|T^2x\|^2 = \|T\left(\frac{Tx}{\|Tx\|}\right)\|^2 \cdot \|Tx\|^2 \\
\leq \|T^2\left(\frac{Tx}{\|Tx\|}\right)\| \cdot \|Tx\|^2 = \|T^3x\| \cdot \|Tx\| \\
\leq \frac{1}{2} \left(\|T^3x\|^2 + \|Tx\|^2\right),
\]

So, \(T\) is operator of quasi class \(Q^*\).

In the following example we will prove that exist an operator \(k\)–quasi class \(Q^*\) which is quasi nilpotent but it is not quasi hyponormal.

Example 2.1. Consider the operator \(T : l^2 \to l^2\) defined by
\[
T(x) = (0, \alpha_1x_1, \alpha_2x_2, \ldots)
\]
where \(\alpha_1 = \frac{1}{2^n}\) for \(n \geq 1\). Operator \(T\) is of \(k\)–quasi class \(Q^*\) and quasi nilpotent but it is not quasi hyponormal.

Given \(T(x) = (0, \alpha_1x_1, \alpha_2x_2, \ldots)\). Then \(T^*(x) = (\alpha_1x_1, \alpha_2x_2, \ldots)\),
\[
T^2(x) = (0, 0, \alpha_1\alpha_2x_1, \alpha_2\alpha_3x_2, \ldots),
\]

\(T^k(x) = (0, 0, \ldots, 0, \alpha_1\alpha_2 \ldots \alpha_kx_1, \alpha_2\alpha_3 \ldots \alpha_kx_2, \ldots)\),
\[
T^{(k-1)}T^k(x) = (0, 0, \ldots, 0, \alpha_1\alpha_2 \ldots \alpha_k^2x_1, \alpha_2\alpha_3 \ldots \alpha_k^2x_2, \ldots),
\]
\[
T^{(k-1)}T^k(x) = (\alpha_1^2\alpha_2^2 \ldots \alpha_k^2x_1, \alpha_2^2\alpha_3^2 \ldots \alpha_k^2x_2, \ldots),
\]
\[
T^{(k+1)}T^{(k+1)}(x) = (0, \alpha_1^2\alpha_2^2 \ldots \alpha_k^2\alpha_{k+1}x_1, \alpha_2^2\alpha_3^2 \ldots \alpha_k^2\alpha_{k+1}x_2, \ldots),
\]
\[
T^{(k+1)}T^{(k+1)}(x) = (\alpha_1^2\alpha_2^2 \ldots \alpha_k^2\alpha_{k+1}^2x_1, \alpha_2^2\alpha_3^2 \ldots \alpha_k^2\alpha_{k+1}^2x_2, \ldots),
\]
\[
TT^*TT^k(x) = (0, 0, \ldots, 0, \alpha_1\alpha_2 \ldots \alpha_k^3x_1, \alpha_2\alpha_3 \ldots \alpha_k^3x_2, \ldots),
\]
\[
T^{(k-1)}TT^k(x) = (\alpha_1^2\alpha_2^2 \ldots \alpha_k^2\alpha_{k-1}^3x_1, \alpha_2^2\alpha_3^2 \ldots \alpha_k^2\alpha_{k-1}^3x_2, \ldots),
\]

Now consider
\[
\langle T^*(T^{(k+2)}T^2 - 2TT^* + I)T^k, x \rangle
\]
\[
= \langle (T^{(k+2)}T^2 - 2TT^* + I)T^k, x \rangle
\]
\[
= \langle (\alpha_1^2\alpha_2^2 \ldots \alpha_{k+2}^2x_1 - 2\alpha_1^2\alpha_2^2 \ldots \alpha_{k-1}^2x_1, x_1) \rangle
\]
\[
+ \langle (\alpha_1^2\alpha_2^2 \ldots \alpha_{k+2}^2x_1 - 2\alpha_1^2\alpha_2^2 \ldots \alpha_{k-1}^2x_1, x_2) \rangle + \ldots
\]
\[
= \alpha_1^2\alpha_2^2 \ldots \alpha_k^2\alpha_{k+2}^2x_1^2 - 2\alpha_1^2\alpha_2^2 \ldots \alpha_{k-1}^2x_1^2 + \alpha_2^2\alpha_3^2 \ldots \alpha_k^2\alpha_{k+2}^2x_1^2 + \alpha_2^2\alpha_3^2 \ldots \alpha_k^2\alpha_{k+2}^2x_2^2 + \ldots \geq 0.
\]
Because

\[\alpha_{n+k}^2 \alpha_{n+k+1}^2 - 2\alpha_{n+k-1}^2 + 1 = \left(\frac{1}{2n+k} \right)^2 \cdot \left(\frac{1}{2n+k+1} \right)^2 - 2\left(\frac{1}{2n+k-1} \right)^2 + 1 \geq 0, \quad k \geq 1, \quad n \geq 1. \]

From \(T(e_k) = \frac{1}{2k} e_{k+1} \) we have

\[T^2(e_k) = \frac{1}{2k} \cdot \frac{1}{2k+1} e_{k+2} \]

\[\ldots \]

\[T^n(e_k) = \frac{1}{2k} \cdot \frac{1}{2k+1} \cdot \ldots \cdot \frac{1}{2k+n-1} e_{k+n}. \]

Since \(\| T^n \| = \sup_k \frac{1}{2k} \cdot \frac{1}{2k+1} \ldots \frac{1}{2k+n-1} = \frac{1}{2} \cdot \frac{1}{2} \ldots \frac{1}{2n} \),

\[r(T) = \lim_{n \to \infty} \frac{1}{2n} = \lim_{n \to \infty} \left(\frac{1}{n \cdot (n+1)} \right) = \frac{1}{2} \cdot \frac{1}{2} = 0. \]

Hence, operator \(T \) is quasi nilpotent.

But operator \(T \) is not quasi hyponormal.

From [3, Proposition 3.4] we have that the operator \(T \) is quasi hyponormal if and only if

\[|\alpha_n| \leq |\alpha_{n+1}|. \]

In this case we have that \(|\alpha_n| \nless |\alpha_{n+1}| \), so it is not quasi hyponormal.

In following example we will prove that the \(k \)-quasi class \(Q^* \) and \(k \)-quasi \(-*\) paranormal operator are two different classes.

Example 2.2. Let \(T_x \) be the weighted shift operator with nonzero weights where

\[\alpha_0 = x, \quad \alpha_1 = \sqrt{\frac{2}{3}}, \quad \alpha_2 = \sqrt{\frac{3}{4}}, \ldots, \quad \alpha_n = \sqrt{\frac{n+1}{n+2}}, \ldots, \quad \alpha_{n+k} = \sqrt{\frac{n+k+1}{n+k+2}}, \quad n \geq 1, \quad k \geq 1. \]

Then we have the following results:

1) From [5, Corrolary 2.2] operator \(T_x \) is of an operator of \(k \)-quasi class \(Q^* \) if and only if

\[\alpha_{n+k}^2 \alpha_{n+k+1}^2 - 2\alpha_{n+k-1}^2 + 1 \geq 0. \]

So after some calculation we see that this is true only if

\[0 < x \leq \frac{\sqrt{3}}{2}. \]

2) From [8, Example 1.2] operator \(T_x \) is of an operator of \(k \)-quasi \(-*\) paranormal if and only if

\[\alpha_{n+k}^2 \leq \alpha_{n+k} \alpha_{n+k+1}. \]

So after some calculation we see that this is true only if

\[0 < x \leq \frac{1}{\sqrt{2}}. \]
3) So, if
\[\frac{1}{\sqrt{2}} \leq x \leq \frac{\sqrt{3}}{2}, \]
operator \(T_x \) is an operator of \(k- \)quasi class \(Q^* \) but not \(k- \)quasi \(- \) paranormal.

REFERENCES

