

The Australian Journal of Mathematical Analysis and Applications

AJMAA

Volume 13, Issue 1, Article 5, pp. 1-20, 2016

INEQUALITIES FOR THE AREA BALANCE OF FUNCTIONS OF BOUNDED VARIATION

S. S. DRAGOMIR^{1,2}

Received 14 January, 2016; accepted 18 May, 2016; published 16 June, 2016.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA.

ABSTRACT. We introduce the *area balance* function associated to a Lebesgue integrable function $f:[a,b]\to\mathbb{C}$ by

$$AB_{f}\left(a,b,\cdot\right):\left[a,b
ight]
ightarrow\mathbb{C},AB_{f}\left(a,b,x
ight):=rac{1}{2}\left[\int_{x}^{b}f\left(t
ight)dt-\int_{a}^{x}f\left(t
ight)dt
ight].$$

Several sharp bounds for functions of bounded variation are provided. Applications for Lipschitzian and convex functions are also given.

Key words and phrases: Functions of bounded variation, Lipschitzian functions, Convex functions, Integral inequalities.

2010 Mathematics Subject Classification. 26D15; 25D10.

ISSN (electronic): 1449-5910

^{© 2016} Austral Internet Publishing. All rights reserved.

1. Introduction

For a Lebesgue integrable function $f:[a,b]\to\mathbb{C}$ and a number $x\in(a,b)$ we can naturally ask how far the integral $\int_x^b f(t)\,dt$ is from the integral $\int_a^x f(t)\,dt$. If f is nonnegative and continuous on [a,b], then the above question has the geometrical interpretation of comparing the area under the curve generated by f at the right of the point x with the area at the left of x. The point x will be called a *median point*, if

$$\int_{x}^{b} f(t) dt = \int_{a}^{x} f(t) dt.$$

Due to the above geometrical interpretation, we can introduce the *area balance* function associated to a Lebesgue integrable function $f:[a,b]\to\mathbb{C}$ defined as

$$AB_{f}(a,b,\cdot):[a,b]\to\mathbb{C}, AB_{f}(a,b,x):=\frac{1}{2}\left[\int_{x}^{b}f\left(t\right)dt-\int_{a}^{x}f\left(t\right)dt\right].$$

Utilising the *cumulative function* notation $F : [a, b] \to \mathbb{C}$ given by

$$F\left(x\right) := \int_{a}^{x} f\left(t\right) dt$$

then we observe that

$$AB_{f}(a, b, x) = \frac{1}{2}F(b) - F(x), x \in [a, b].$$

If f is a probability density, i.e. f is nonnegative and $\int_{a}^{b} f\left(t\right)dt=1$, then

$$AB_{f}(a,b,x) = \frac{1}{2} - F(x), x \in [a,b].$$

In this paper we obtain some inequalities concerning the area balance for functions of bounded variation and Lipschitzian functions. Applications for differentiable functions and convex functions are provided. Bounds for the *Jensen difference*

$$\frac{f\left(a\right) + f\left(b\right)}{2} - f\left(\frac{a+b}{2}\right)$$

with sharps constants are also established.

Jensen difference is closely related to the Hermite-Hadamard type inequalities where various bounds for the quantities

$$\frac{f\left(a\right)+f\left(b\right)}{2}-\frac{1}{b-a}\int_{a}^{b}f\left(t\right)dt$$

and

$$\frac{1}{b-a} \int_{a}^{b} f(t) dt - f\left(\frac{a+b}{2}\right)$$

are provided, see [1]-[6] and [8]-[18].

2. Preliminary Results

The following representation result holds:

Theorem 2.1. Let $f:[a,b] \to \mathbb{C}$ be a function of bounded variation on [a,b]. Then we have the representation

(2.1)
$$AB_{f}(a,b,x) = \left(\frac{a+b}{2} - x\right) f(x) + \frac{1}{2} \left[\int_{a}^{x} (t-a) df(t) + \int_{x}^{b} (b-t) df(t) \right]$$

and

(2.2)
$$AB_{f}(a,b,x) = \frac{bf(b) + af(a)}{2} - \frac{f(b) + f(a)}{2}x - \frac{1}{2} \int_{a}^{b} |t - x| df(t)$$

for any $x \in [a, b]$, where the integrals in the right hand side are taken in the Riemann-Stieltjes sense.

Proof. We observe that since f is of bounded variation, then the Riemann-Stieltjes integrals involved in (2.1) and (2.2) exist.

Utilising the integration by parts formula for the Riemann-Stieltjes integral, we have

(2.3)
$$\int_{a}^{x} (t-a) df(t) + \int_{x}^{b} (b-t) df(t)$$

$$= (t-a) f(t)|_{a}^{x} - \int_{a}^{x} f(t) dt + (b-t) f(t)|_{x}^{b} + \int_{x}^{b} f(t) dt$$

$$= (x-a) f(x) - \int_{a}^{x} f(t) dt - (b-x) f(x) + \int_{x}^{b} f(t) dt$$

$$= (2x-a-b) f(x) + 2AB_{f}(a,b,x)$$

for any $x \in [a, b]$.

Dividing (2.3) by 2 and rearranging the equation, we deduce (2.1). Integrating by parts, we also have

(2.4)
$$\int_{a}^{b} |t - x| \, df(t) = \int_{a}^{x} (x - t) \, df(t) + \int_{x}^{b} (t - x) \, df(t)$$
$$= (x - t) f(t)|_{a}^{x} + \int_{a}^{x} f(t) \, dt + (t - x) f(t)|_{x}^{b} - \int_{x}^{b} f(t) \, dt$$
$$= -(x - a) f(a) + (b - x) f(b) - 2AB_{f}(a, b, x)$$
$$= bf(b) + af(a) - [f(b) + f(a)] x - 2AB_{f}(a, b, x)$$

for any $x \in [a, b]$.

Dividing (2.4) by 2 and rearranging the equation, we deduce (2.2).

Corollary 2.2. Let $f:[a,b] \to \mathbb{R}$ be a monotonic nondecreasing function on [a,b]. Then

(2.5)
$$\frac{bf(b) + af(a)}{2} - \frac{f(b) + f(a)}{2}x \ge AB_f(a, b, x)$$
$$\ge \left(\frac{a+b}{2} - x\right)f(x)$$

for any $x \in [a, b]$.

4 S. S. DRAGOMIR

In particular,

(2.6)
$$\frac{1}{4}(b-a)[f(b)-f(a)] \ge AB_f\left(a,b,\frac{a+b}{2}\right) \ge 0.$$

The constant $\frac{1}{4}$ is a best possible constant in the sense that it cannot be replaced by a smaller quantity.

Proof. The inequalities (2.5) follow from the representations (2.1) and (2.2) by taking into account that f is monotonic nondecreasing.

The inequality (2.6) follows by (2.5) for $x = \frac{a+b}{2}$.

Consider the function $f:[a,b]\to\mathbb{R}$ given by

$$f(t) := \begin{cases} 0 & \text{if } x \in \left[a, \frac{a+b}{2}\right) \\ 1 & \text{if } x \in \left[\frac{a+b}{2}, b\right]. \end{cases}$$

This function is monotonic nondecreasing on [a, b]

$$\frac{1}{4}(b-a)[f(b)-f(a)] = \frac{1}{4}(b-a)$$

and

$$AB_{f}\left(a, b, \frac{a+b}{2}\right) = \frac{1}{2} \left[\int_{\frac{a+b}{2}}^{b} f(t) dt - \int_{a}^{\frac{a+b}{2}} f(t) dt \right]$$
$$= \frac{1}{2} \left[\left(b - \frac{a+b}{2}\right) - 0 \right] = \frac{1}{4} (b-a),$$

which shows that the equality case is realized in the first inequality in (2.6). That proves the sharpness of the constant $\frac{1}{4}$.

Remark 2.1. If $f:[a,b]\to\mathbb{R}$ is monotonic nondecreasing and nonnegative (nonpositive) on [a,b] then $AB_f(a,b,x)\geq 0$ for $x\in \left[a,\frac{a+b}{2}\right]\left(\left[\frac{a+b}{2},b\right]\right)$. If $f:[a,b]\to\mathbb{R}$ is monotonic nondecreasing, $f(b)\neq -f(a)$ and

$$\frac{bf(b) + af(a)}{f(b) + f(a)} \in [a, b]$$

then

(2.8)
$$AB_f\left(a, b, \frac{bf(b) + af(a)}{f(b) + f(a)}\right) \le 0.$$

If $f:[a,b]\to\mathbb{R}$ is monotonic nondecreasing and f(a)>0, then (2.7) holds and the inequality (2.8) is valid.

3. Bounds for Functions of Bounded Variation

For a function of bounded variation $v:[a,b]\to\mathbb{C}$ we define the *Cumulative Variation* Function (CVF) $V: [a, b] \rightarrow [0, \infty)$ by

$$V\left(t\right) := \bigvee_{i}^{t} \left(v\right),$$

the total variation of v on the interval [a, t] with $t \in [a, b]$.

It is know that the CVF is monotonic nondecreasing on [a, b] and is continuous in a point $c \in [a, b]$ if and only if the generating function v is continuing in that point. If v is Lipschitzian with the constant L > 0, i.e.

$$|v(t) - v(s)| \le L|t - s|$$
 for any $t, s \in [a, b]$

then V is also Lipschitzian with the same constant.

The following lemma is of interest in itself as well, see [7] for a simple proof and related results.

Lemma 3.1. Let $f, u : [a, b] \to \mathbb{C}$. If f is continuous on [a, b] and u is of bounded variation on [a, b], then

$$\left| \int_{a}^{b} f(t) du(t) \right| \leq \int_{a}^{b} |f(t)| d\left(\bigvee_{a}^{t} (u)\right) \leq \max_{t \in [a,b]} |f(t)| \bigvee_{a}^{b} (u).$$

We can state the first results as follows:

Theorem 3.2. Let $f:[a,b] \to \mathbb{C}$ be a function of bounded variation on [a,b]. Then

$$\begin{vmatrix}
AB_{f}(a,b,x) - \left(\frac{a+b}{2} - x\right) f(x) \\
\leq AB_{\bigvee_{a}(f)}(a,b,x) - \left(\frac{a+b}{2} - x\right) \bigvee_{a}^{x} (f) \\
= \frac{1}{2} \left[\int_{a}^{x} \left(\bigvee_{t}^{x} (f)\right) dt + \int_{x}^{b} \left(\bigvee_{x}^{t} (f)\right) dt \right] \\
\leq \frac{1}{2} \left[(x-a) \bigvee_{a}^{x} (f) + (b-x) \bigvee_{x}^{b} (f) \right] \\
\leq \frac{1}{2} \times \begin{cases}
\left[\frac{1}{2} (b-a) + \left| x - \frac{a+b}{2} \right| \right] \bigvee_{a}^{b} (f), \\
\left[\frac{1}{2} \bigvee_{a}^{b} (f) + \frac{1}{2} \left| \bigvee_{a}^{x} (f) - \bigvee_{x}^{b} (f) \right| \right] (b-a),
\end{cases}$$

for any $x \in [a, b]$.

Proof. From the equality (2.1) and by Lemma 3.1 we have

$$\begin{vmatrix}
AB_{f}(a,b,x) - \left(\frac{a+b}{2} - x\right) f(x) \\
\leq \frac{1}{2} \left| \int_{a}^{x} (t-a) df(t) + \int_{x}^{b} (b-t) df(t) \right| \\
\leq \frac{1}{2} \left[\left| \int_{a}^{x} (t-a) df(t) \right| + \left| \int_{x}^{b} (b-t) df(t) \right| \right] \\
\leq \frac{1}{2} \left[\int_{a}^{x} (t-a) d\left(\bigvee_{a}^{t} (f)\right) + \int_{x}^{b} (b-t) d\left(\bigvee_{x}^{t} (f)\right) \right]$$

for any $x \in [a, b]$.

Since for $t \geq x$ we have $\bigvee_{x}^{t}\left(f\right) = \bigvee_{a}^{t}\left(f\right) - \bigvee_{a}^{x}\left(f\right)$, then

$$\int_{x}^{b} (b-t) d\left(\bigvee_{x}^{t} (f)\right) = \int_{x}^{b} (b-t) d\left(\bigvee_{a}^{t} (f)\right)$$

and by (3.3) we have

(3.4)
$$\left| AB_{f}(a,b,x) - \left(\frac{a+b}{2} - x \right) f(x) \right|$$

$$\leq \frac{1}{2} \left[\int_{a}^{x} (t-a) d\left(\bigvee_{a}^{t} (f) \right) + \int_{x}^{b} (b-t) d\left(\bigvee_{a}^{t} (f) \right) \right]$$

for any $x \in [a, b]$.

Now, on utilizing the representation (2.1) for the CVF $\bigvee_{a}^{\cdot} (f)$ we have

(3.5)
$$\frac{1}{2} \left[\int_{a}^{x} (t-a) d \left(\bigvee_{a}^{t} (f) \right) + \int_{x}^{b} (b-t) d \left(\bigvee_{a}^{t} (f) \right) \right]$$
$$= AB_{\bigvee_{a}(f)} (a,b,x) - \left(\frac{a+b}{2} - x \right) \bigvee_{a}^{x} (f)$$

for any $x \in [a, b]$, we deduce from (3.4) the first inequality in (3.2).

Utilising the integration by parts formula for the Riemann-Stieltjes integral, we have

(3.6)
$$\int_{a}^{x} (t-a) d\left(\bigvee_{a}^{t} (f)\right) = (t-a) \bigvee_{a}^{t} (f) \Big|_{a}^{x} - \int_{a}^{x} \left(\bigvee_{a}^{t} (f)\right) dt$$
$$= (x-a) \bigvee_{a}^{x} (f) - \int_{a}^{x} \left(\bigvee_{a}^{t} (f)\right) dt$$
$$= \int_{a}^{x} \left(\bigvee_{a}^{x} (f) - \bigvee_{a}^{t} (f)\right) dt = \int_{a}^{x} \left(\bigvee_{t}^{x} (f)\right) dt$$

and

(3.7)
$$\int_{x}^{b} (b-t) d\left(\bigvee_{x}^{t} (f)\right) = (b-t) \bigvee_{x}^{t} (f) \Big|_{x}^{b} + \int_{x}^{b} \left(\bigvee_{x}^{t} (f)\right) dt$$
$$= \int_{x}^{b} \left(\bigvee_{x}^{t} (f)\right) dt$$

for any $x \in [a, b]$.

Then

$$\frac{1}{2} \left[\int_{a}^{x} (t - a) d \left(\bigvee_{a}^{t} (f) \right) + \int_{x}^{b} (b - t) d \left(\bigvee_{x}^{t} (f) \right) \right] \\
= \frac{1}{2} \left[\int_{a}^{x} \left(\bigvee_{t}^{x} (f) \right) dt + \int_{x}^{b} \left(\bigvee_{x}^{t} (f) \right) dt \right],$$

which proves the equality in (3.2).

Since $\bigvee_{t}^{x}(f) \leq \bigvee_{a}^{x}(f)$ for $t \in [a, x]$ and $\bigvee_{x}^{t}(f) \leq \bigvee_{x}^{b}(f)$ for $t \in [x, b]$, then

$$\int_{a}^{x} \left(\bigvee_{t}^{x} (f)\right) dt + \int_{x}^{b} \left(\bigvee_{x}^{t} (f)\right) dt \le (x - a) \bigvee_{a}^{x} (f) + (b - x) \bigvee_{x}^{b} (f)$$

for any $x \in [a, b]$, which proves the second inequality in (3.2).

The last part is obvious by the max properties and the fact that for $c, d \in \mathbb{R}$ we have

$$\max\{c, d\} = \frac{c + d + |c - d|}{2}.$$

The details are omitted.

Corollary 3.3. With the assumptions of Theorem 3.2 we have the inequality

$$\left| AB_{f}\left(a,b,\frac{a+b}{2}\right) \right| \leq AB_{\bigvee_{a}(f)}\left(a,b,\frac{a+b}{2}\right)$$

$$= \frac{1}{2} \left[\int_{a}^{\frac{a+b}{2}} \left(\bigvee_{t}^{\frac{a+b}{2}}(f)\right) dt + \int_{\frac{a+b}{2}}^{b} \left(\bigvee_{\frac{a+b}{2}}^{t}(f)\right) dt \right]$$

$$\leq \frac{1}{4} (b-a) \bigvee_{a}^{b} (f).$$

The constants $\frac{1}{2}$ and $\frac{1}{4}$ are best possible in (3.8).

Proof. Consider the function $f:[a,b] \to \mathbb{R}$ given by

$$f(t) := \begin{cases} 0 & \text{if } x \in \left[a, \frac{a+b}{2}\right) \\ 1 & \text{if } x \in \left[\frac{a+b}{2}, b\right]. \end{cases}$$

This function is of bounded variation on [a, b], $\bigvee_{a}^{b} (f) = 1$,

$$\bigvee_{t}^{\frac{a+b}{2}}(f) = 1 \text{ for any } t \in \left[a, \frac{a+b}{2}\right),$$

$$\bigvee_{\frac{a+b}{2}}^{t}\left(f\right)=0\text{ for any }t\in\left[\frac{a+b}{2},b\right],$$

$$AB_{f}\left(a, b, \frac{a+b}{2}\right) = \frac{1}{2} \left[\int_{\frac{a+b}{2}}^{b} f(t) dt - \int_{a}^{\frac{a+b}{2}} f(t) dt \right]$$
$$= \frac{1}{2} \left[\left(b - \frac{a+b}{2}\right) - 0 \right] = \frac{1}{4} (b-a),$$

and

$$\int_{a}^{\frac{a+b}{2}} \left(\bigvee_{t}^{\frac{a+b}{2}} (f)\right) dt + \int_{\frac{a+b}{2}}^{b} \left(\bigvee_{\frac{a+b}{2}}^{t} (f)\right) dt = \frac{1}{2} (b-a).$$

Replacing this function in the inequality (3.8) we obtain in all terms the same quantity $\frac{1}{4} \, (b-a)$.

Theorem 3.4. Let $f:[a,b]\to\mathbb{C}$ be a function of bounded variation on [a,b]. Then

$$\begin{vmatrix}
\frac{bf(b) + af(a)}{2} - \frac{f(b) + f(a)}{2}x - AB_f(a, b, x) \\
\leq \frac{1}{2}(b - x) \bigvee_{a}^{b}(f) - AB_{\bigvee_{a}(f)}(a, b, x) \\
= \frac{1}{2} \left[\int_{a}^{x} \left(\bigvee_{a}^{t}(f) \right) dt + \int_{x}^{b} \left(\bigvee_{t}^{b}(f) \right) dt \right] \\
\leq \frac{1}{2} \left[(x - a) \bigvee_{a}^{x}(f) + (b - x) \bigvee_{x}^{b}(f) \right] \\
\leq \frac{1}{2} \times \begin{cases}
\left[\frac{1}{2}(b - a) + \left| x - \frac{a + b}{2} \right| \right] \bigvee_{a}^{b}(f), \\
\left[\frac{1}{2} \bigvee_{a}^{b}(f) + \frac{1}{2} \left| \bigvee_{a}^{x}(f) - \bigvee_{x}^{b}(f) \right| \right] (b - a),
\end{cases}$$

for any $x \in [a, b]$.

Proof. Taking the modulus in the equality (2.2) and utilizing Lemma 3.1 we have

$$(3.10) \qquad \left| \frac{bf(b) + af(a)}{2} - \frac{f(b) + f(a)}{2} x - AB_f(a, b, x) \right|$$

$$= \frac{1}{2} \left| \int_a^b |t - x| \, df(t) \right| \le \frac{1}{2} \int_a^b |t - x| \, d\left(\bigvee_a^t (f)\right)$$

$$= \frac{1}{2} \left[\int_a^x (x - t) \, d\left(\bigvee_a^t (f)\right) + \int_x^b (t - x) \, d\left(\bigvee_a^t (f)\right) \right]$$

for any $x \in [a, b]$.

Utilising the identity (2.2) for the CVF $\bigvee_a (f)$ we also have

$$\int_{a}^{b} |t - x| d\left(\bigvee_{a}^{t} (f)\right) = \frac{1}{2} (b - x) (f) - AB_{\bigvee_{a}^{t} (f)} (a, b, x) \ge 0$$

and the first inequality in (3.9) is proved.

Integrating by parts in the Riemann-Stieltjes integral we have

(3.11)
$$\int_{a}^{x} (x-t) d\left(\bigvee_{a}^{t} (f)\right) = (x-t) \left(\bigvee_{a}^{t} (f)\right) \Big|_{a}^{x} + \int_{a}^{x} \left(\bigvee_{a}^{t} (f)\right) dt$$
$$= \int_{a}^{x} \left(\bigvee_{a}^{t} (f)\right) dt$$

and

(3.12)
$$\int_{x}^{b} (t-x) d\left(\bigvee_{a}^{t} (f)\right) = (t-x) \left(\bigvee_{a}^{t} (f)\right) \Big|_{x}^{b} - \int_{x}^{b} \left(\bigvee_{a}^{t} (f)\right) dt$$
$$= (b-x) \left(\bigvee_{a}^{b} (f)\right) - \int_{x}^{b} \left(\bigvee_{a}^{t} (f)\right) dt$$
$$= \int_{x}^{b} \left(\bigvee_{a}^{b} (f) - \bigvee_{a}^{t} (f)\right) dt = \int_{x}^{b} \left(\bigvee_{t}^{b} (f)\right) dt$$

for any $x \in [a, b]$.

Making use of (3.11) and (3.12) we get the equality case in (3.9).

Since \bigvee_a is monotonic nondecreasing on [a, b] while \bigvee_a is nonincreasing in the same interval, we have

$$\int_{a}^{x} \left(\bigvee_{a}^{t} (f)\right) dt \leq (x-a) \bigvee_{a}^{x} (f) \text{ and } \int_{x}^{b} \left(\bigvee_{t}^{b} (f)\right) dt \leq (b-x) \bigvee_{x}^{b} (f) ,$$

for any $x \in [a, b]$, which gives the second inequality in (3.9).

Using the properties of the maximum, we have

$$(x-a) \bigvee_{a}^{x} (f) + (b-x) \bigvee_{x}^{b} (f)$$

$$\leq \begin{cases} \max\{x-a, b-x\} \bigvee_{a}^{b} (f) \\ \max\{\bigvee_{a}^{x} (f), \bigvee_{x}^{b} (f)\} (b-a) \end{cases}$$

$$= \begin{cases} \left[\frac{1}{2} (b-a) + \left|x - \frac{a+b}{2}\right|\right] \bigvee_{a}^{b} (f) \\ \left[\frac{1}{2} \bigvee_{a}^{b} (f) + \frac{1}{2} \left|\bigvee_{a}^{x} (f) - \bigvee_{x}^{b} (f)\right|\right] (b-a) \end{cases}$$

for any $x \in [a, b]$, and the proof is complete.

Corollary 3.5. With the assumptions of Theorem 3.4 we have

$$(3.13) \qquad \left| \frac{1}{4} (b-a) \left[f(b) - f(a) \right] - AB_f \left(a, b, \frac{a+b}{2} \right) \right|$$

$$\leq \frac{1}{4} (b-a) \bigvee_a^b (f) - AB_{\bigvee_a^a(f)} \left(a, b, \frac{a+b}{2} \right)$$

$$= \frac{1}{2} \left[\int_a^{\frac{a+b}{2}} \left(\bigvee_a^t (f) \right) dt + \int_{\frac{a+b}{2}}^b \left(\bigvee_t^b (f) \right) dt \right]$$

$$\leq \frac{1}{4} (b-a) \bigvee_a^b (f).$$

The constants $\frac{1}{2}$ and $\frac{1}{4}$ are best possible in (3.13).

Proof. Consider the function $f:[a,b]\to\mathbb{R}$ given by

$$f(t) := \begin{cases} 0 & \text{if } x = a \\ 1 & \text{if } x \in \left(\frac{a+b}{2}, b\right] \end{cases}$$

This function is of bounded variation on [a, b], $\bigvee_{a}^{b} (f) = 1$,

$$\bigvee_{a}^{t} (f) = 1 \text{ for any } t \in \left[a, \frac{a+b}{2} \right),$$

$$\bigvee_{t}^{b} (f) = 0 \text{ for any } t \in \left[\frac{a+b}{2}, b \right],$$

$$AB_{f} \left(a, b, \frac{a+b}{2} \right) = \frac{1}{2} \left[\int_{\frac{a+b}{2}}^{b} f(t) dt - \int_{a}^{\frac{a+b}{2}} f(t) dt \right]$$

$$= \frac{1}{2} \left[\left(b - \frac{a+b}{2} \right) - \left(\frac{a+b}{2} - a \right) \right] = 0,$$

and

$$\left[\int_{a}^{\frac{a+b}{2}} \left(\bigvee_{a}^{t} (f)\right) dt + \int_{\frac{a+b}{2}}^{b} \left(\bigvee_{t}^{b} (f)\right) dt\right] = \frac{1}{2} (b-a).$$

Replacing this function in the inequality (3.13) we obtain in all terms the same quantity $\frac{1}{4}(b-a)$.

4. BOUNDS FOR LIPSCHITZIAN FUNCTIONS

If v is Lipschitzian with the constant L > 0, i.e.

$$|v(t) - v(s)| \le L|t - s|$$
 for any $t, s \in [a, b]$

then, it is well known that for any Riemann integrable function $g:[a,b]\to\mathbb{C}$ the Riemann-Stieltjes integral $\int_a^b g\left(t\right)dv\left(t\right)$ exists and

$$\left| \int_{a}^{b} g(t) \, dv(t) \right| \le L \int_{a}^{b} |g(t)| \, dt.$$

Theorem 4.1. If $f:[a,b]\to\mathbb{C}$ is Lipschitzian with the constant L>0 on [a,b], then

(4.2)
$$\left| AB_f(a,b,x) - \left(\frac{a+b}{2} - x \right) f(x) \right|$$

$$\leq \frac{1}{2} L \left[\frac{1}{4} (b-a)^2 + \left(x - \frac{a+b}{2} \right)^2 \right]$$

for any $x \in [a, b]$.

In particular, we have

$$\left| AB_f\left(a,b,\frac{a+b}{2}\right) \right| \le \frac{1}{8}L\left(b-a\right)^2.$$

The constant $\frac{1}{8}$ is best possible in (4.3).

Proof. Taking the modulus in the equality (2.1) and utilizing the property (4.1) we have

$$\begin{vmatrix}
AB_{f}(a,b,x) - \left(\frac{a+b}{2} - x\right) f(x) \\
\leq \frac{1}{2} \left| \int_{a}^{x} (t-a) df(t) + \int_{x}^{b} (b-t) df(t) \right| \\
\leq \frac{1}{2} \left[\left| \int_{a}^{x} (t-a) df(t) \right| + \left| \int_{x}^{b} (b-t) df(t) \right| \right] \\
\leq \frac{1}{2} L \left[\int_{a}^{x} (t-a) dt + \int_{x}^{b} (b-t) dt \right] \\
= \frac{1}{4} L \left[(x-a)^{2} + (b-x)^{2} \right]$$

for any $x \in [a, b]$.

Since

$$\frac{1}{2}\left[(x-a)^2 + (b-x)^2\right] = \frac{1}{4}(b-a)^2 + \left(x - \frac{a+b}{2}\right)^2$$

for any $x \in [a, b]$, then by (4.4) we deduce the desired inequality (4.2).

Consider the function $f:[a,b] \to \mathbb{R}$, f(t)=t. The function f is Lipschitzian with the constant L=1 and

$$AB_f\left(a, b, \frac{a+b}{2}\right) = \frac{1}{2} \left[\int_{\frac{a+b}{2}}^b t dt - \int_a^{\frac{a+b}{2}} t dt \right]$$

$$= \frac{1}{2} \left[\frac{b^2 - \left(\frac{a+b}{2}\right)^2}{2} - \frac{\left(\frac{a+b}{2}\right)^2 - a^2}{2} \right]$$

$$= \frac{1}{4} \left[b^2 + a^2 - 2\left(\frac{a+b}{2}\right)^2 \right]$$

$$= \frac{1}{8} (b-a)^2.$$

If we replace this function in (4.3), then we obtain in both sides the same quantity $\frac{1}{8} (b-a)^2$. The following result also holds:

Theorem 4.2. If $f:[a,b]\to\mathbb{C}$ is Lipschitzian with the constant L>0 on [a,b], then

(4.5)
$$\left| \frac{bf(b) + af(a)}{2} - \frac{f(b) + f(a)}{2} x - AB_f(a, b, x) \right| \\ \leq \frac{1}{2} L \left[\frac{1}{4} (b - a)^2 + \left(x - \frac{a + b}{2} \right)^2 \right]$$

for any $x \in [a, b]$.

In particular, we have

(4.6)
$$\left| \frac{1}{4} (b-a) [f(b) - f(a)] - AB_f \left(a, b, \frac{a+b}{2} \right) \right| \le \frac{1}{8} L (b-a)^2.$$

The constant $\frac{1}{8}$ is best possible in (4.6).

Proof. Taking the modulus in the equality (2.2) and utilizing the property (4.1) we have

$$\left| \frac{bf(b) + af(a)}{2} - \frac{f(b) + f(a)}{2} x - AB_f(a, b, x) \right|$$

$$= \frac{1}{2} \left| \int_a^b |t - x| \, df(t) \right| \le \frac{1}{2} L \int_a^b |t - x| \, dt$$

$$= \frac{1}{2} L \left[\int_a^x (x - t) \, dt + \int_x^b (t - x) \, dt \right]$$

$$= \frac{1}{4} L \left[(x - a)^2 + (b - x)^2 \right]$$

$$= \frac{1}{2} L \left[\frac{1}{4} (b - a)^2 + \left(x - \frac{a + b}{2} \right)^2 \right]$$

for any $x \in [a, b]$ and the inequality (4.5) is proved.

Consider the function $f:[a,b] \to \mathbb{R}$, f(t)=t. The function f is Lipschitzian with the constant L=1 and, utilizing the calculation in Theorem 4.1 we have

$$\frac{1}{4}(b-a)[f(b)-f(a)] - AB_f\left(a,b,\frac{a+b}{2}\right)$$
$$= \frac{1}{4}(b-a)^2 - \frac{1}{8}(b-a)^2 = \frac{1}{8}(b-a)^2.$$

Replacing this function (4.6) we get in both sides the same quantity $\frac{1}{8} (b-a)^2$.

5. APPLICATIONS FOR DIFFERENTIABLE FUNCTIONS

The following approximation for differentiable functions can be stated:

Proposition 5.1. Let $g:[a,b] \to \mathbb{C}$ be a differentiable function and such that the derivative g' is of locally bounded variation on (a,b). Then we have the representation

(5.1)
$$g(x) = \frac{g(a) + g(b)}{2} + \left(x - \frac{a+b}{2}\right)g'(x) - \frac{1}{2}\left[\int_{a}^{x} (t-a) dg'(t) + \int_{x}^{b} (b-t) dg'(t)\right]$$

and the bound

$$|g(x) - \frac{g(a) + g(b)}{2} - \left(x - \frac{a+b}{2}\right)g'(x)|$$

$$\leq AB_{\bigvee_{a}(g')}(a, b, x) - \left(\frac{a+b}{2} - x\right)\bigvee_{a}^{x}(g')$$

$$= \frac{1}{2} \left[\int_{a}^{x} \left(\bigvee_{t}^{x}(g')\right) dt + \int_{x}^{b} \left(\bigvee_{x}^{t}(g')\right) dt \right]$$

$$\leq \frac{1}{2} \left[(x-a)\bigvee_{a}^{x}(g') + (b-x)\bigvee_{x}^{b}(g') \right]$$

$$\leq \frac{1}{2} \times \left\{ \frac{\left[\frac{1}{2}(b-a) + \left|x - \frac{a+b}{2}\right|\right]\bigvee_{a}^{b}(g')}{\left[\frac{1}{2}\bigvee_{a}^{b}(g') + \frac{1}{2}\left|\bigvee_{a}^{x}(g') - \bigvee_{x}^{b}(g')\right|\right](b-a)} \right.$$

If g' is Lipschitzian with the constant K > 0 on (a, b), then we also have

(5.3)
$$\left| g\left(x\right) - \frac{g\left(a\right) + g\left(b\right)}{2} - \left(x - \frac{a+b}{2}\right)g'\left(x\right) \right|$$

$$\leq \frac{1}{2}K \left[\frac{1}{4}\left(b-a\right)^{2} + \left(x - \frac{a+b}{2}\right)^{2} \right].$$

Proof. Since $AB_{f}\left(a,b,x\right)=\frac{1}{2}F\left(b\right)-F\left(x\right)$, where $F\left(x\right):=\int_{a}^{x}f\left(t\right)dt$, then by (2.1) we have

(5.4)
$$F(x) = \frac{1}{2}F(b) - \left(\frac{a+b}{2} - x\right)f(x) - \frac{1}{2}\left[\int_{a}^{x} (t-a) df(t) + \int_{x}^{b} (b-t) df(t)\right]$$

for any $x \in [a, b]$.

If we choose in (5.4) f = g' and perform the required calculations, we get the representation (5.1).

The inequality (5.2) follows from (3.2) while (5.3) follows from (4.2).

Remark 5.1. If g is a differentiable function and such that the derivative g' is of locally bounded variation on (a, b), then by the inequality (5.2) we have

$$\left| \frac{g(a) + g(b)}{2} - g\left(\frac{a+b}{2}\right) \right| \\
\leq AB_{\bigvee_{a}(g')} \left(a, b, \frac{a+b}{2}\right) \\
= \frac{1}{2} \left[\int_{a}^{\frac{a+b}{2}} \left(\bigvee_{t}^{\frac{a+b}{2}} (g')\right) dt + \int_{\frac{a+b}{2}}^{b} \left(\bigvee_{\frac{a+b}{2}}^{t} (g')\right) dt \right] \\
\leq \frac{1}{4} (b-a) \bigvee_{a}^{b} (g').$$

The constant $\frac{1}{2}$ is best possible in the first inequality (5.5).

Indeed, if we consider the function $g:[a,b]\to\mathbb{R}$, $g(t)=t^2$ then g'(t)=2t and

$$\left| \frac{g(a) + g(b)}{2} - g\left(\frac{a+b}{2}\right) \right| = \frac{(b-a)^2}{4},$$

$$\bigvee_{t}^{\frac{a+b}{2}} (g') = 2\left(\frac{a+b}{2} - t\right), \ \bigvee_{\frac{a+b}{2}}^{t} (g') = 2\left(t - \frac{a+b}{2}\right)$$

while

$$\int_{a}^{\frac{a+b}{2}} \left(\bigvee_{t}^{\frac{a+b}{2}} (g') \right) dt + \int_{\frac{a+b}{2}}^{b} \left(\bigvee_{\frac{a+b}{2}}^{t} (g') \right) dt$$

$$= 2 \int_{a}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - t \right) dt + 2 \int_{\frac{a+b}{2}}^{b} \left(t - \frac{a+b}{2} \right) dt$$

$$= \frac{(b-a)^{2}}{4} + \frac{(b-a)^{2}}{4} = \frac{(b-a)^{2}}{2}.$$

Replacing these values in the first inequality in (5.5) we get in both sides the same quantity $\frac{(b-a)^2}{4}$.

Remark 5.2. If g' is Lipschitzian with the constant K > 0 on (a, b), then we also have

$$\left| \frac{g\left(a\right) +g\left(b\right) }{2}-g\left(\frac{a+b}{2}\right) \right| \leq \frac{1}{8}K\left(b-a\right) ^{2}.$$

The constant $\frac{1}{8}$ is best possible in (5.6).

Indeed, if we take $g:[a,b]\to\mathbb{R}$, $g(t)=t^2$, then g'(t)=2t which is Lipschitzian with the constant K=2. Moreover,

$$\left| \frac{g\left(a\right) +g\left(b\right) }{2}-g\left(\frac{a+b}{2}\right) \right| =\frac{\left(b-a\right) ^{2}}{4}$$

and replacing in (5.6) we get in both sides the same quantity $\frac{(b-a)^2}{4}$.

Proposition 5.2. Let $g:[a,b] \to \mathbb{C}$ be a differentiable function and such that the derivative g' is of locally bounded variation on (a,b). Then we have the representation

(5.7)
$$g(x) = \frac{g(a) + g(b)}{2} - \frac{bg'(b) + ag'(a)}{2} + \frac{g'(b) + g'(a)}{2}x + \frac{1}{2} \int_{a}^{b} |t - x| dg'(t)$$

and the bound

$$|g(x) - \frac{g(a) + g(b)}{2} + \frac{bg'(b) + ag'(a)}{2} - \frac{g'(b) + g'(a)}{2}x|$$

$$\leq \frac{1}{2}(b - x)\bigvee_{a}^{b}(g') - AB_{\bigvee_{a}(g')}(a, b, x)$$

$$= \frac{1}{2}\left[\int_{a}^{x}\left(\bigvee_{a}^{t}(g')\right)dt + \int_{x}^{b}\left(\bigvee_{t}^{b}(g')\right)dt\right]$$

$$\leq \frac{1}{2}\left[(x - a)\bigvee_{a}^{x}(g') + (b - x)\bigvee_{x}^{b}(g')\right]$$

$$\leq \frac{1}{2} \times \left\{\frac{\left[\frac{1}{2}(b - a) + \left|x - \frac{a + b}{2}\right|\right]\bigvee_{a}^{b}(g')}{\left[\frac{1}{2}\bigvee_{a}^{b}(g') + \frac{1}{2}\left|\bigvee_{a}^{x}(g') - \bigvee_{x}^{b}(g')\right|\right](b - a)}\right.$$

If g' is Lipschitzian with the constant K>0 on (a,b), then we also have

(5.9)
$$\left| g(x) - \frac{g(a) + g(b)}{2} + \frac{bg'(b) + ag'(a)}{2} - \frac{g'(b) + g'(a)}{2} x \right|$$

$$\leq \frac{1}{2} K \left[\frac{1}{4} (b - a)^2 + \left(x - \frac{a + b}{2} \right)^2 \right]$$

for any $x \in [a, b]$.

Proof. By the equality (2.2) we have

(5.10)
$$F(x) = \frac{1}{2}F(b) - \frac{bf(b) + af(a)}{2} + \frac{f(b) + f(a)}{2}x + \frac{1}{2}\int_{a}^{b} |t - x| f'(t) dt$$

for any $x \in [a, b]$.

If we choose in (5.10) f = g' and perform the required calculations, we get the representation (5.7).

The rest follows from (3.9) and (4.5).

Remark 5.3. If g is a differentiable function and such that the derivative g' is of locally bounded variation on (a, b), then by the inequality (5.8) we have

(5.11)
$$\left| \frac{1}{4} (b - a) \left[g'(b) - g'(a) \right] - \frac{g(a) + g(b)}{2} + g\left(\frac{a + b}{2}\right) \right|$$

$$\leq \frac{1}{4} (b - a) \bigvee_{a}^{b} (g') - AB_{\bigvee_{a}(g')} \left(a, b, \frac{a + b}{2}\right)$$

$$= \frac{1}{2} \left[\int_{a}^{\frac{a + b}{2}} \left(\bigvee_{a}^{t} (g') \right) dt + \int_{\frac{a + b}{2}}^{b} \left(\bigvee_{t}^{t} (g') \right) dt \right]$$

$$\leq \frac{1}{4} (b - a) \bigvee_{a}^{b} (g') .$$

The constant $\frac{1}{2}$ is best possible in the first inequality in (5.11). Indeed, if we consider the function $g:[a,b]\to\mathbb{R}$, $g(t)=t^2$ we have

$$\left| \frac{1}{4} (b - a) [g'(b) - g'(a)] - \frac{g(a) + g(b)}{2} + g\left(\frac{a + b}{2}\right) \right|$$

$$= \frac{1}{4} (b - a)^{2}$$

and

$$\int_{a}^{\frac{a+b}{2}} \left(\bigvee_{a}^{t} (g')\right) dt + \int_{\frac{a+b}{2}}^{b} \left(\bigvee_{t}^{b} (g')\right) dt$$

$$= 2 \int_{a}^{\frac{a+b}{2}} (t-a) dt + 2 \int_{\frac{a+b}{2}}^{b} (b-t) dt$$

$$= \frac{1}{4} (b-a)^{2} + \frac{1}{4} (b-a)^{2} = \frac{1}{2} (b-a)^{2},$$

which gives in the both sides of the first inequality in (5.11) the same quantity $\frac{1}{4}(b-a)^2$.

Remark 5.4. If g' is Lipschitzian with the constant K > 0 on (a, b), then we also have

(5.12)
$$\left| \frac{1}{4} (b-a) [g'(b) - g'(a)] - \frac{g(a) + g(b)}{2} + g\left(\frac{a+b}{2}\right) \right| \le \frac{1}{8} K (b-a)^{2}.$$

The constant $\frac{1}{8}$ is best possible in (5.12).

We observe that the equality is realized in (5.12) if we take the function $g:[a,b]\to\mathbb{R}$, $g(t)=t^2$. The details are omitted.

6. APPLICATIONS FOR CONVEX FUNCTIONS

Suppose that I is an interval of real numbers with interior I and $f: I \to \mathbb{R}$ is a convex function on I. Then f is continuous on I and has finite left and right derivatives at each point of I. Moreover, if $x, y \in I$ and x < y, then $f'_-(x) \le f'_+(x) \le f'_-(y) \le f'_+(y)$ which shows that both f'_- and f'_+ are nondecreasing function on I. It is also known that a convex function must be differentiable except for at most countably many points.

For a convex function $f:I\to\mathbb{R}$, the subdifferential of f denoted by ∂f is the set of all functions $\varphi:I\to[-\infty,\infty]$ such that $\varphi\left(\mathring{\mathbf{I}}\right)\subset\mathbb{R}$ and

$$f\left(x\right)\geq f\left(a\right)+\left(x-a\right)\varphi\left(a\right)\quad\text{ for any }x,a\in I.$$

It is also well known that if f is convex on I, then ∂f is nonempty, f'_- , $f'_+ \in \partial f$ and if $\varphi \in \partial f$, then

$$f'_{-}(x) \le \varphi(x) \le f'_{+}(x)$$
 for any $x \in \mathring{\mathbf{I}}$.

In particular, φ is a nondecreasing function.

If f is differentiable and convex on \check{I} , then $\partial f = \{f'\}$.

Utilising these notations, we can state, for a convex function $f:I\to\mathbb{R}$ and $a,b\in \mathring{\mathbf{I}}$ with a< b, the following identities

(6.1)
$$f(x) = \frac{f(a) + f(b)}{2} + \left(x - \frac{a+b}{2}\right)\varphi(x)$$
$$-\frac{1}{2}\left[\int_{a}^{x} (t-a) d\varphi(t) + \int_{x}^{b} (b-t) d\varphi(t)\right]$$

and

(6.2)
$$f(x) = \frac{f(a) + f(b)}{2} - \frac{b\varphi(b) + a\varphi(a)}{2} + \frac{\varphi(b) + \varphi(a)}{2}x + \frac{1}{2} \int_{a}^{b} |t - x| \, d\varphi(t).$$

If f is differentiable and convex on \mathring{I} , then we can replace φ by f'.

We have the following inequalities for a convex function $f: I \to \mathbb{R}$ and $a, b \in \mathring{\mathbf{I}}$ with a < b and $\varphi \in \partial f$:

(6.3)
$$0 \leq \frac{f(a) + g(b)}{2} - f\left(\frac{a+b}{2}\right)$$
$$\leq \frac{1}{2} \int_{a}^{b} \left| \varphi(t) - \varphi\left(\frac{a+b}{2}\right) \right| dt \leq \frac{1}{4} (b-a) \left[\varphi(b) - \varphi(a) \right],$$

and

$$(6.4) 0 \leq \frac{1}{4} (b-a) \left[\varphi(b) - \varphi(a) \right] - \frac{f(a) + f(b)}{2} + f\left(\frac{a+b}{2}\right)$$

$$\leq \frac{1}{2} \left[\int_{a}^{\frac{a+b}{2}} \left[\varphi(t) - \varphi(a) \right] dt + \int_{\frac{a+b}{2}}^{b} \left[\varphi(b) - \varphi(t) \right] dt \right].$$

The constant $\frac{1}{2}$ is best possible in (6.3) and (6.4).

If φ is Lipschitzian with the constant K > 0, then

(6.5)
$$0 \le \frac{f(a) + g(b)}{2} - f\left(\frac{a+b}{2}\right) \le \frac{1}{8}K(b-a)^2,$$

and

(6.6)
$$0 \le \frac{1}{4} (b - a) \left[\varphi(b) - \varphi(a) \right] - \frac{f(a) + f(b)}{2} + f\left(\frac{a + b}{2}\right)$$
$$\le \frac{1}{8} K (b - a)^{2}.$$

The constant $\frac{1}{8}$ is best possible in both inequalities (6.5) and (6.6).

18 S. S. DRAGOMIR

7. APPLICATIONS FOR MEANS

Consider the function $f_p:[a,b]\to(0,\infty)$ defined by $f_p(t)=t^p$ with $p\in\mathbb{R}\setminus\{-1\}$. Then

$$AB_{f_p}(a, b, x) = \frac{1}{2} \left(\int_x^b t^p dt - \int_a^x t^p dt \right)$$

$$= \frac{1}{2} \left(\frac{b^{p+1} - x^{p+1}}{p+1} - \frac{x^{p+1} - a^{p+1}}{p+1} \right)$$

$$= \frac{1}{p+1} \left[A \left(b^{p+1}, a^{p+1} \right) - x^{p+1} \right]$$

for $x \in [a,b]$, where $A(c,d) := \frac{c+d}{2}$ is the *arithmetic-mean* of the nonnegative numbers c,d. If $f_{-1}:[a,b] \to (0,\infty)$ is defined by $f_{-1}(t)=t^{-1}$, then

$$AB_{f_{-1}}(a, b, x) = \frac{1}{2} \left(\int_{x}^{b} \frac{1}{t} dt - \int_{a}^{x} \frac{1}{t} dt \right)$$
$$= \frac{1}{2} \left[\ln \left(\frac{b}{x} \right) - \ln \left(\frac{x}{a} \right) \right] = \ln \left[\frac{G(a, b)}{x} \right],$$

for $x \in [a, b]$, where $A(c, d) := \sqrt{cd}$ is the *geometric-mean* of the positive numbers c, d. For $p \ge 1$ we have $f_p'(t) = pt^{p-1}$ and since

$$\sup_{t \in [a,b]} \left| f_p'(t) \right| = pb^{p-1}$$

then f'_p is Lipschitzian with the constant $L_p = pb^{p-1}$.

From the inequality (4.2) we get

(7.1)
$$\left| \frac{1}{p+1} \left[A \left(b^{p+1}, a^{p+1} \right) - x^{p+1} \right] - \left[A \left(a, b \right) - x \right] x^{p} \right|$$

$$\leq \frac{1}{2} p b^{p-1} \left[\frac{1}{4} \left(b - a \right)^{2} + \left[x - A \left(a, b \right) \right]^{2} \right],$$

while from (4.5) we have

(7.2)
$$\left| A\left(b^{p+1}, a^{p+1}\right) - A\left(b^{p}, a^{p}\right) x - \frac{1}{p+1} \left[A\left(b^{p+1}, a^{p+1}\right) - x^{p+1} \right] \right|$$

$$\leq \frac{1}{2} p b^{p-1} \left[\frac{1}{4} \left(b - a\right)^{2} + \left[x - A\left(a, b\right)\right]^{2} \right]$$

for any $x \in [a, b]$.

Similar inequalities may be obtained for $p \in (0,1) \setminus \{-1\}$.

If we take x = A(a, b) in (7.1) and (7.2), then we get

(7.3)
$$0 \le A\left(b^{p+1}, a^{p+1}\right) - A^{p+1}\left(a, b\right) \le \frac{1}{8}p\left(p+1\right)b^{p-1}\left(b-a\right)^{2}$$

and

(7.4)
$$0 \le A \left(b^{p+1}, a^{p+1} \right) - A \left(b^{p}, a^{p} \right) A \left(a, b \right)$$
$$- \frac{1}{p+1} \left[A \left(b^{p+1}, a^{p+1} \right) - A^{p+1} \left(a, b \right) \right]$$
$$\le \frac{1}{8} p b^{p-1} \left(b - a \right)^{2}.$$

We also have $f'_{-1}(t) = -t^{-2}$ and since

$$\sup_{t\in\left[a,b\right]}\left|f_{-1}'\left(t\right)\right|=\frac{1}{a^{2}}$$

then from the inequality (4.2) we get

(7.5)
$$\left| \ln \left[\frac{G(a,b)}{x} \right] - [A(a,b) - x] x^{-1} \right|$$

$$\leq \frac{1}{2a^2} \left[\frac{1}{4} (b-a)^2 + [x - A(a,b)]^2 \right]$$

while from (4.5) we have

(7.6)
$$\left| 1 - H^{-1}(a,b) x^{-1} - \ln \left[\frac{x}{G(a,b)} \right] \right|$$

$$\leq \frac{1}{2a^2} \left[\frac{1}{4} (b-a)^2 + [x - A(a,b)]^2 \right]$$

for any $x \in [a,b]$. Here $H\left(a,b\right) := \frac{2ab}{a+b}$ denotes the *harmonic-mean* of the positive numbers a,b>0.

If we take x = A(a, b) in (7.5) and (7.6), then we get

(7.7)
$$0 \le \ln \left[\frac{A(a,b)}{G(a,b)} \right] \le \frac{1}{8} \left(\frac{b}{a} - 1 \right)^2$$

and

(7.8)
$$0 \le 1 - H^{-1}(a, b) A^{-1}(a, b) - \ln \left[\frac{A(a, b)}{G(a, b)} \right] \le \frac{1}{8} \left(\frac{b}{a} - 1 \right)^{2}.$$

Disclaimer: Unless otherwise indicated the views expressed in this paper are my views only and not the views of the DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences.

REFERENCES

- [1] A. G. AZPEITIA, Convex functions and the Hadamard inequality. *Rev. Colombiana Mat.* **28** (1994), no. 1, pp. 7–12.
- [2] S. S. DRAGOMIR, A mapping in connection to Hadamard's inequalities, *An. Öster. Akad. Wiss. Math.-Natur.*, (Wien), **128**(1991), pp. 17-20. MR 934:26032. ZBL No. 747:26015.
- [3] S. S. DRAGOMIR, Two mappings in connection to Hadamard's inequalities, *J. Math. Anal. Appl.*, **167**(1992), pp. 49-56. MR:934:26038, ZBL No. 758:26014.
- [4] S. S. DRAGOMIR, On Hadamard's inequalities for convex functions, *Mat. Balkanica*, **6**(1992), pp. 215-222. MR: 934: 26033.
- [5] S. S. DRAGOMIR, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, *J. Inequal. Pure & Appl. Math.*, 3(2002), No. 3, Art. 35. [Online: http://www.emis.de/journals/JIPAM/article187.html?sid=187].
- [6] S. S. DRAGOMIR, Bounds for the normalized Jensen functional, *Bull. Austral. Math. Soc.*, **74**(3)(2006), pp. 471-476.
- [7] S. S. DRAGOMIR, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. *Arch. Math.*, (Basel) **91** (2008), no. 5, pp. 450–460.

- [8] S. S. DRAGOMIR and I. GOMM, Bounds for two mappings associated to the Hermite-Hadamard inequality, *Aust. J. Math. Anal. Appl.*, **8**, No. 1 (2011), Art. 5, 9 pp., [Online: http://ajmaa.org/cgi-bin/paper.pl?string=v8n1/V8I1P5.tex].
- [9] S. S. DRAGOMIR, D. S. MILOŚEVIĆ and J. SÁNDOR, On some refinements of Hadamard's inequalities and applications, *Univ. Belgrad, Publ. Elek. Fak. Sci. Math.*, **4**(1993), pp. 21-24.
- [10] S. S. DRAGOMIR and C. E. M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
- [11] A. GUESSAB and G. SCHMEISSER, Sharp integral inequalities of the Hermite-Hadamard type. *J. Approx. Theory,* **115** (2002), no. 2, pp. 260–288.
- [12] E. KILIANTY and S. S. DRAGOMIR, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, *Math. Inequal. Appl.*, **13** (2010), no. 1, pp. 1–32.
- [13] M. MERKLE, Remarks on Ostrowski's and Hadamard's inequality, *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.*, **10** (1999), pp. 113–117.
- [14] C. E. M. PEARCE and A. M. RUBINOV, P-functions, quasi-convex functions, and Hadamard type inequalities, *J. Math. Anal. Appl.*, **240** (1999), no. 1, pp. 92–104.
- [15] J. PEČARIĆ and A. VUKELIĆ, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions. *Functional Equations, Inequalities and Applications*, pp. 105–137, Kluwer Acad. Publ., Dordrecht, 2003.
- [16] G. TOADER, Superadditivity and Hermite-Hadamard's inequalities, *Studia Univ. Babeş-Bolyai Math.*, **39** (1994), no. 2, pp. 27–32.
- [17] G.-S. YANG and M.-C. HONG, A note on Hadamard's inequality, *Tamkang J. Math.*, **28** (1997), no. 1, pp. 33–37.
- [18] G.-S. YANG and K.-L. TSENG, On certain integral inequalities related to Hermite-Hadamard inequalities, *J. Math. Anal. Appl.*, **239** (1999), no. 1, pp. 180–187.