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2 S. S. IRAGOMIR

1. INTRODUCTION

For aLebesgue integrablinction f : [a,b] — C and a numbet € (a,b) we can naturally

ask how far the integrafff(t) dt is from the integralfff(t) dt. If f is nonnegative and
continuous ona, b], then the above question has the geometrical interpretation of comparing
the area under the curve generatedflat the right of the point with the area at the left of.

The pointz will be called amedian pointif

/:f(t)dt:/:f(t)dt

Due to the above geometrical interpretation, we can introducargeebalancegunction asso-
ciated to a Lebesgue integrable functipn[a, b] — C defined as

ABj (a,b, ) : [a,5] — C, AB; (a,b,) = [/f dt—/f dt]

Utilising the cumulative functiomotationF : [a, b] — C given by

:/jf(t)dt

AB; (a,b,) = %F(b)—F(:c), € o],

then we observe that

If fis aprobability densityi.e. f is nonnegative ang[f f(t)dt =1, then

1
ABy (a,b,x) :§—F(x), x € [a,b].

In this paper we obtain some inequalities concerning the area balance for functions of bounded
variation and Lipschitzian functions. Applications for differentiable functions and convex func-
tions are provided. Bounds for tdensen difference

f(a);f(b)_f(aTﬂLb)

with sharps constants are also established.
Jensen difference is closely related to the Hermite-Hadamard type inequalities where various

bounds for the quantities
fla)+ f(b 1 b
. 2 - b— a/ (t) dt

o (50

are provided, seée[1]-[6] andl[8]-[18].

and

2. PRELIMINARY RESULTS

The following representation result holds:
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Theorem 2.1.Let f : [a,b] — C be a function of bounded variation om b]. Then we have the
representation

a+b

(2.1) AB; (a,b,x) = ( —g;) f(2)

and
(2.2) AB; (a,b,2) = O . af () _ [ (1) : fla)
1 b
2 sl

for anyx € [a,b], where the integrals in the right hand side are taken in the Riemann-Stieltjes
sense.

Proof. We observe that sincé is of bounded variation, then the Riemann-Stieltjes integrals
involved in [2.1) and[(2]2) exist.
Utilising the integration by parts formula for the Riemann-Stieltjes integral, we have

T b
(2.3) / (t—a)df () + / (b—t)df (1

z(t—a)f<t)!§—/xf(t)dt+(b—t)f(t)li+/ o
(x —a) /f t)dt — (b — ) (:E)—f—/bf(t)dt

=2x—a-0)f(x)+2ABf(a,b,x)

foranyx € [a, b] .
Dividing (2.3) by2 and rearranging the equation, we dediice| (2.1).
Integrating by parts, we also have

(2.4) /It—x|df(t)=/z(x—t)df(t)Jr/ (t — ) df ()

T b
=(w—t)f(t)lii+/ f(t)dt+<t—x>f<t>|i—/ or

= —(z—a) f(a) + (b— ) f (b) — 2AB; (a,b, )
=bf (b) +af (a) = [f (b) + f (a)]x — 2AB; (a, b, z)
foranyz € [a,b].
Dividing (2.4) by2 and rearranging the equation, we ded{ice| (A2).

Corollary 2.2. Let f : [a,b] — R be a monotonic nondecreasing function|erb]. Then

bf (b) +af(a) f(b)+[(a)
2

(2.5) ;

x> ABy (a,b, )

> (a;b—x)f(x)

foranyx € [a, b] .
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In particular,
1

(2.6) :

0-alf 0~ (@) 2 45 (0. 57) 20

The constant is a best possible constant in the sense that it cannot be replaced by a smaller
quantity.

Proof. The inequalities|(2]5) follow from the representatigns|(2.1) (2.2) by taking into ac-
count thatf is monotonic nondecreasing.

The inequality[(2.) follows by (2|5) for = £,
Consider the functiorf : [a,b] — R given by

0 ifxe [a,“TH’)
o]

1 ifxe [“Ter,b} )
This function is monotonic nondecreasing[aend]

Lo—a)[F0) ~ F@)] =5 ()

AB; (a,b,aTM) :%[ :bf(t)dt—/Qf(t)dt]

4[(-) 4o

which shows that the equality case is realized in the first inequalify ih (2.6). That proves the
sharpness of the constant

and

Remark 2.1. If f : [a,b] — R is monotonic nondecreasing and nonnegative (nonpositive) on
la,b] thenABy (a,b,x) > 0 forz € [a, “TH’} ([‘LTH’, b]) )
If f: [a,b] — R is monotonic nondecreasing(b) # — f (a) and

bf (b) + af (a)

@7 FO+ 7@
then
2.8) AB, (a, b, b; EZ; i?tf(é‘;)) <0

If f: [a,b] — R is monotonic nondecreasing arfda) > 0, then [2.7) holds and the
inequality [2.8) is valid.

3. BOUNDS FOR FUNCTIONS OF BOUNDED VARIATION

For a function of bounded variation : [a,0] — C we define theCumulative Variation
Function(CVF) V : [a,b] — [0, 00) by

Vi) =\ ),

the total variation ob on the intervala, t| with t € [a, b] .
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It is know that the CVF is monotonic nondecreasing[@rb] and is continuous in a point
c € [a,b] if and only if the generating functionis continuing in that point. 1¥ is Lipschitzian
with the constanL. > 0, i.e.

lv(t) —v(s)| < L[t — s| foranyt,s € [a,b]
thenV is also Lipschitzian with the same constant.

The following lemma is of interest in itself as well, séé [7] for a simple proof and related

results.
Lemma 3.1.Let f,u : [a,b] — C. If f is continuous ora, b] andw is of bounded variation on

[a, b] , then
nauo|< [ 17 |d( U)><tgl[a3§!f 0V

We can state the first results as follows:
Theorem 3.2.Let f : [a,b] — C be a function of bounded variation ¢, b]. Then

3.2) 'ABf (a,b, ) — (a;b _ x) f(2)

(3.1)

foranyx € [a, b] .
Proof. From the equality{ (2]1) and by Lemra3.1 we have

3.3) AB; (a,b,x) — (“b —x) f (2)
<1 /j(t—a)df(t)+[<b—t>df<t>\
s%{/j(t—a)df(t)'+ /:w—t)df(t)H

<1 [/j(t—a)d<\t/(f)> +/xb(b—t)d<\2(f)>]

foranyz € [a,b].
Since fort > = we have\/! (f) = V. (f) — V2 (f), then

t

Lo (i)-Fo-oio)
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and by 3.8) we have
a+b

ABf(a,b,x)—( . —a:)f(x)

<1 [/;@—a)d(\/(f)) +/:(b—t)d<\/(f)>]

a a

(3.4)

foranyz € [a,b].
Now, on utilizing the representation (2.1) for the CVf (f) we have

t

/j(t—a)d(\/(ﬁ) +/:(b—t)d<\t/(f)>]

a a

(3.5) %

x

= ABy.s) (a,b,x) — (a;b —I) V()

a

for anyz € [a, b], we deduce fron (3]4) the first inequality n (B.2).
Utilising the integration by parts formula for the Riemann-Stieltjes integral, we have

(3.6) /x(t—a)d<\/(f)>=(t—a)\/(f)' —/x (\/(f)) di
Z(I—a)\/(f)—/z<\/(f) it

and

(3.7) / (b—1)d (\/ <f>> — -1\ (f)

foranyz € [a,b].
Then

which proves the equality ifi (3.2).
SinceV/? (f) <V (f) fort € [a,z] andV/" (f) < \V° (f) fort € [x,0], then

/m<\/(f))dt+/ (\/(f))dts(m—a)\/(f)+(b—x)\/(f>

t T a T

for anyxz € [a, b] , which proves the second inequality jn (3.2).
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The last part is obvious by the max properties and the fact that #foe R we have

c+d+|c—d|

max {c,d} = 5

The details are omittedy

Corollary 3.3. With the assumptions of Theorem|3.2 we have the inequality

a+b a+b
(38) ’ABf (a, b, B )’ S ABVa(f) (a, b, T)

The constantg and } are best possible if (3.8).

Proof. Consider the functioif : [a,b] — R given by

{O if x € [a,“TH’)

1 ifxe [aTH’,b}.

ft) =

This function is of bounded variation da, b, \/° (f) = 1,

b

)
-+

(f) = 1foranyt € [a,a;rb>,

~<+

! a+b
\/ (f) =0foranyt e [T’b] :

and

/a (\/(f))dt+/m<\/(f))dt%(b—a).

t atb
2

Replacing this function in the inequali.8) we obtain in all terms the same quémﬁty a). n
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Theorem 3.4.Let f : [a,b] — C be a function of bounded variation d¢m b]. Then

39 'bf O af) SOLI@,

< % (b—2)\/ (f) = ABy, 5 (a.b, )

a

AL (e (1)

a

= b
g% (x—a)\/(f)Jr(b—x)\/(f)]

1 {[5<ba>+|w7+b
§§><

BAGER AL RAGIIEOE

foranyz € [a,b].

Proof. Taking the modulus in the equalify (2.2) and utilizing Lenima 3.1 we have

(3.10) 'bf(b);af(a) _f(b);f(@x_ABf (a,b,7)
:%/|t—x|df(t)‘§%/ !t—x!d<\/(f)>

t

:% [/:(x_t)d<\/(f)> +Lb(t—x)d<\2(f)>]

a

foranyz € [a,b].
Utilising the identity [2.2) for the CVR/,, (f) we also have

/ |t—l‘|d(\/(f)> Z%(b—x)(f)—ABv;m (a,b,2) >0

and the first inequality ir] (3]9) is proved.
Integrating by parts in the Riemann-Stieltjes integral we have

(3.11) /x (x—t)d <\/ (f)) = (z-1) (\/ (f))

T

+/:<t (f))dt

L)
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foranyx € [a, b] .

Making use of[(3.1l1) andl (3.112) we get the equality casg in (3.9).

Since\/;, is monotonic nondecreasing @n b] while \/” is nonincreasing in the same interval,
we have

t

/x(\/(ﬁ)dts(x—a)\/(f) and/ (\/(f))dts<b—x>\/<f>,

a

for anyx € [a, b], which gives the second inequality [n (B.9).
Using the properties of the maximum, we have

T b

(@ =a)\/ (N)+b—2)\/ (/)

a T

( max{x—a,b—x}\/l;(f)

| max {V (). V2 (H} 6 -a)
(Be-a+le— Vel

| Ve + i vEn - Vi) o -a)

for anyx € [a, b], and the proof is completa.

IN

Corollary 3.5. With the assumptions of Theorgm|3.4 we have

(3.13)

L= a)[F(8)~ f (a)] - AB; (b;b)‘

The constantg and} are best possible if (3.1.3).
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Proof. Consider the functiorf : [a,b] — R given by

0 ifz=a
o]

1 ifxe (“Tb,b}

This function is of bounded variation da, b, \/° (f

) =
t
\/ (f) = 1foranyt e [a,

a

and

a 2 t

[/*b (\t/(f)> dt+/aib (\b/(f)) dt] :%(b_a).

Replacing this function in the inequali 13) we obtain in all terms the same quaility a) . &

4. BOUNDS FORLIPSCHITZIAN FUNCTIONS
If v is Lipschitzianwith the constanL > 0, i.e.
lv(t) —v(s)] < L|t—s| foranyt,s € [a, b

then, it is well known that for any Riemann integrable function [a,b] — C the Riemann-
Stieltjes integrayab g (t) dv (t) exists and

/abga)dv(t)‘ <t [l

Theorem 4.1.1f f : [a,b] — C is Lipschitzian with the constatt > 0 on [a, b], then

(4.2) ‘ABf (a,b,z) — ( —x) f ()

1 |1 ) a+b\’
< L|>(b- -
<3 [4( a)+(m 5 )

(4.1)

a+b

foranyz € [a, b].
In particular, we have

4.3) ‘ABf (a b, a;b)‘ < éL (b—a)?.

The constant is best possible irf (4.3).
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Proof. Taking the modulus in the equality (2.1) and utilizing the propérty| (4.1) we have

(4.4) AB; (a,b,z) — (“*b —x) f (@)
<s|[e-awo+ [ o-naw

|| easw+| [ e-naw]

oL V (z—a)dt+/:<b—t)dt]

_ iL [(z — a)? + (b— )]

IN
—_

IA

foranyz € [a,b)].
Since
1 1 AN
5 [(z —a)*+ (b —)°] :Z(b—a)Q—ir (x— a—2|— )
for anyx € [a, ], then by [4.4) we deduce the desired inequality|(4.2).

Consider the functiorf : [a,b] — R, f(t) = t. The functionf is Lipschitzian with the
constant = 1 and

a+b

a-+b 1] 2
AB b, — tdt — tdt
f(a 2 ) 2 /;b /a ]

o )]

(]
(\]
(\V]

I
I>—‘ ] =
o>
no
+
Do
)
N
IS
o |+
o>
~~_
(V)

(b—a) :

If we replace this function irj (4}3), then we obtain in both sides the same qutity a)”
The following result also holds:

Theorem 4.2.1f f : [a,b] — C is Lipschitzian with the constatt > 0 on [a, b], then
b ) +af @ _FOI@, yp 0

1 b\?
Z(b—a)2+(x—a; )

(4.5)

foranyx € [a, b] .
In particular, we have

L 0=l 0 - F@] - a8y (00,57 | < gL - o

The constant is best possible irf (4.6).

(4.6)
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Proof. Taking the modulus in the equality (2.2) and utilizing the propérty| (4.1) we have

b +af(@) FO+F@, p 0y
2 2 T

/ab]t—x]df ‘< L/ it — 2| dt
L/ (z —t dt+/:(t—:1:)dt]
= L[z —a)’+ (b—2)’]

)2+<x—“;b)2

for anyxz € [a, b] and the inequality| (4]5) is proved.
Consider the functiorf : [a,b] — R, f(t) = t. The functionf is Lipschitzian with the

constant = 1 and, utilizing the calculation in Theorgm #.1 we have

N | — »-l>|>—k [\DI»—‘ er—t

h

e
—
=
|
<

1 a-+b

Lo—a) ) - @) - ABf(ab )
1 2 1 2 2

:Z(b_a> _§<b_a) :g(b—a).

Replacing this functi06) we get in both sides the same qu@([bty— a)’

5. APPLICATIONS FOR DIFFERENTIABLE FUNCTIONS

The following approximation for differentiable functions can be stated:

Proposition 5.1. Letg : [a,b] — C be a differentiable function and such that the derivage
is of locally bounded variation ofu, b) . Then we have the representation

(5.1) 9($)=M+<x—a;b) g (x)

AJMAA Vol. 13, No. 1, Art. 5, pp. 1-20, 2016 AJMAA
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and the bound

(5.2) \gm e (R T

<L
LVe(e)+3{Vi) - Ve (@] 6 -0
If ¢’ is Lipschitzian with the constaif > 0 on (a, b) , then we also have
a)+g(b a+b\ |,
5 WERCETICNY RS pr
1|1 ) a+b\’

< = —(ph — _

_2K 4(b a)+(x 2)
Proof. Since ABy (a,b,z) = $F (b) — F (z), whereF (z) := [ f (t) dt, then by [2.1) we
have

1 a+b

(5.4) Fle)=3F )~ (5= —¢) ()

! [/:<t_a>df<t>+/:<b—t>df<t>}
foranyz € [a, b] .

If we choose in[(54)Y = ¢’ and perform the required calculations, we get the representation
G.D.
The inequality[(5.R) follows fron] (3}2) whil¢ (5.3) follows froi (4.4).

Remark 5.1. If g is a differentiable function and such that the derivatiis of locally bounded
variation on(a, b) , then by the inequality (5/2) we have

g(a);rg(b)_g(aTer)‘

< ABy, ) (C% b b)

[““(? el

b

(b—a) \/

a

(5.5)

»-I>I>—‘

AJMAA Vol. 13, No. 1, Art. 5, pp. 1-20, 2016 AIJMAA
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The constant is best possible in the first inequalify (5.5).
Indeed, if we consider the functign: [a,b] — R, g (t) = t* theng’ (t) = 2t and

while

(b—a)?  (b—a)® (b—a)
: T T

Replacing these values in the first inequality[in [5.5) we get in both sides the same quantity
(b—a)?

1

Remark 5.2. If ¢ is Lipschitzian with the constait” > 0 on (a, b) , then we also have

I e

The constant is best possible irj (56).
Indeed, if we takey : [a,b] — R, g (t) = t?, theng’ () = 2t which is Lipschitzian with the
constantk’ = 2. Moreover,

F«w;gw)_g(a;b)%:w;gf

and replacing i6) we get in both sides the same quaﬁﬁ&@i.

Proposition 5.2. Letg : [a,b] — C be a differentiable function and such that the derivagje
is of locally bounded variation ofu, b) . Then we have the representation

(5.7) g(o) = LD 90 b tagla) gO)+g (@,

- 2 2 2
1 b
45 [ le=sldg
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and the bound

(5.8) \g

VL@ + 5 VE @) - Vi@ - a).
If ¢’ is Lipschitzian with the consta# > 0 on (a, b) , then we also have
o () — g(a)+g()  by'()+ag'(a) g Ob)+g (a)$’

(5.9)

2 2 2

foranyz € [a,b].
Proof. By the equality[(2.R) we have

b (D) +af (@), fB)+F (@),

(5.10) Fla)=2F @) - .

2 2
1 b
+§/ |t — | f (t) dt

foranyz € [a,b].
If we choose in[(5.70f = ¢’ and perform the required calculations, we get the representation

G2
The rest follows from[(319) and (4.5§.

Remark 5.3. If g is a differentiable function and such that the derivatiis of locally bounded
variation on(a, b) , then by the inequality (5/8) we have

(5.12) ‘1 (b—a)lg (b) — ¢ (a)] - M "o (GTM) ‘

b
1 a-+b
<1 (b-0)\/ (¢) - By ( b T)

a

[/a2 \:/(d)) dt + /ib (\i/ (g’)> dt]

2
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The constant is best possible in the first inequality 11).
Indeed, if we consider the functian: [a,b] — R, g (t) = t* we have

0=l o) - @) - LTI g (1)

and

[ (\/ <g’>> e [ (\/ <g'>) i
_ /az(t—a)dt+2/:b(b—t)dt

2

)
o

Lo-aP=1p-ap,

1 2
— Z(h—
( a) 4 2

4
which gives in the both sides of the first inequality[in (3.11) the same quantity- o)’

Remark 5.4. If ¢’ is Lipschitzian with the constart > 0 on (a, b) , then we also have

) (a) +g(b) a+b
(512) L0l ) - o @] - 20 4 (210

4
<1r@p-ay
=3 a) .
The constant is best possible iff (5.12).
We observe that the equality is realized [in ($.12) if we take the funetiona,b] — R,

g (t) = t*. The details are omitted.

6. APPLICATIONS FOR CONVEX FUNCTIONS

Suppose thaf is an interval of real numbers with interibrand f I — Ris a convex
function on/. Thenf is continuous omand has finite left and right derivatives at each point of
i. Moreover, ifz,y €l andz < y, thenf’ (z) < fi(z) < f2 (y) < £ (y) which shows that
both f” and f! are nondecreasing function nit is also known that a convex function must
be differentiable except for at most countably many points.

For a convex functiory : I — R, the subdifferential off denoted byof is the set of all

functionsy : I — [—o0, 00| such thatp <I> C Rand
fx)>f(a)+(xr—a)p(a) foranyz,ac .

It is also well known that iff is convex on/, thendf is nonempty,f’, fi € Jf and if
p € df, then

fL(x) <e¢(x)< f (x) foranyz e i

In particular,p is a nondecreasing function.
If fis differentiable and convex dnthendf = {f’}.
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Utilising these notations, we can state, for a convex funcfian/ — R anda,b ef with
a < b, the following identities

6.1) R e (R 11

_% [/:(t—a)dgo(t)+/:(b—t)dso(t)]

and

(6.2) o) = f(a);f@ by (b)gw (a) so(b);rso(a)x
1

b
+§/ [t —x|dp(t).

If f is differentiable and convex dnthen we can replace by f'. .
We have the following inequalities for a convex functipn I — R anda, b €l with a < b
andy € Jf:

f@)+g®) ,(a+b
(6.3) OST—f( ! )
S%/ W)—@(a;b)‘dtsﬁ(b—a)[w(b)—w(a)],
and
©4) 05 0-al®) - o] - KT (120

s%[/ (o) - e (@)de+ [ [w(b)—@(t)]dt]-

a+b
2

The constant is best possible irf (6/.3) and (p.4).

If o is Lipschitzian with the constarit’ > 0, then

(6.5) ng(a);g(b)_f(a;—b)SéK(b—a)Q,

and

66) 0 0=l - o] - LTI (120
SéK(b—a)Q.

The constant is best possible in both inequaliti¢s (6.5) ahd|(6.6).
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7. APPLICATIONS FOR MEANS
Consider the functiotf, : [a, b] — (0, co0) defined byf, (t) = t” with p € R\ {—1}. Then

Apr a,b, ) (/ tPdt — / tpdt>

1 <bp+1 — b+l o apﬂ)
2

p+1 p+1
1

— 5 1 [A (bzoJrl7 aerl) - xp+1}

for z € [a,b], whereA (c, d) := <t is thearithmetic-mearof the nonnegative numbersd.
If f_1:[a,b] — (0,00) is defined byf_, (t) = t~!, then

AB; , (a,b,z) = (/ dt—/ dt)
=5 [hl (i) “In (aﬂ ~In [G(z’b)} ,

for z € [a,b], whereA (¢, d) := v/cd is thegeometric-meanof the positive numbers d.
Forp > 1 we havef, (t) = pt’~' and since

sup | f ()] = pb*~!

t€la,b]

then f) is Lipschitzian with the constarit, = pb*~'.
From the inequality{ (4]2) we get
1

(7.1) | [A (P aP ™) — 2Pt — [A(a,b) — z] 2P

< [{ 0= 4o A,

while from (4.5) we have

(7.2) ’A (0P @) — AP, aP) x — ]ﬁ [A (P aP ) — Pt

< %pbp_l E (b—a)’+ [z — Ala, b)ﬂ

foranyz € [a,b].
Similar inequalities may be obtained forc (0,1)\ {—1}.
If we takex = A (a,b) in (7.7) and[(7.R), then we get

(7.3) 0< AW artt) — AP (q,0) < é (p+ 1)L (b—a)
and
(7.4) 0<A (bp+1,ap+1) — A (b, d") A(a,b)

_ 5 j— - [A (bp—&-l, ap—l—l) o Ap—l—l (CL, b)]

< S (- af
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We also have’ , (t) = —t~2 and since
, 1
sup [f2, (1)] = &
t€la,b]
then from the inequality (412) we get
b
(7.5) ‘m {G (a,5)

T

<5 [}1 (b—a) +[x — A(a,b)]2]

] —[A(a,b) — 2]zt

while from (4.5) we have

(7.6) ‘1 —H'(a,b)z —In [%} ‘

e 2 2
< | Z(b= _
< o [0 0F + - A
for anyz € [a,b]. Here H (a,b) := % denotes thénarmonic-mearof the positive numbers
a,b> 0.

If we takex = A (a,b) in (7.5) and[(7.), then we get

(7.7) 0<In {?;EZZ;] gé(§—1>2
and |
(7.8) 0<1—H "(a,b) A" (a,b) — In EEZZH < % (g - 1)2.

Disclaimer: Unless otherwise indicated the views expressed in this paper are my views only
and not the views of the DST-NRF Centre of Excellence in the Mathematical and Statistical
Sciences.
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