ON THE CONSTANT IN A TRANSFERENCE INEQUALITY FOR THE VECTOR-VALUED FOURIER TRANSFORM

DION GIJSWIJT & JAN VAN NEERVEN

Received 19 January, 2016; accepted 16 February, 2016; published 17 May, 2016.

DELFt UNIvERSITY OF TECHNOLOGY, FACULTY EEMCS/DIAM, P.O. BOX 5031, 2600 GA DELFT, THE NETHERLANDS

URL: http://aw.twi.tudelft.nl/~neerven/
URL: http://homepage.tudelft.nl/64a8q/
J.M.A.M.vanNeerven@TUDelft.nl
D.C.Gijswijt@TUDelft.nl

ABSTRACT. The standard proof of the equivalence of Fourier type on \(\mathbb{R}^d \) and on the torus \(\mathbb{T}^d \) is usually stated in terms of an implicit constant, defined as the minimum of a sum of powers of sinc functions. In this note we compute this minimum explicitly.

Key words and phrases: Hausdorff-Young inequality, Fourier type, Transference.

2010 Mathematics Subject Classification 42B10 (46B20, 46E40).

ISSN (electronic): 1449-5910
© 2016 Austral Internet Publishing. All rights reserved.
1. Introduction

The motivation of this paper comes from a well-known transference result for the vector-valued Fourier transform. Let X be a complex Banach space. The Fourier transform of a function $f \in L^1(\mathbb{R}^d; X)$ is defined by

$$\mathcal{F}_{\mathbb{R}^d}f(\xi) := \int_{\mathbb{R}^d} e^{-2\pi i x \cdot \xi} f(x) \, dx, \quad \xi \in \mathbb{R}^d.$$

Likewise, the Fourier transform of a function $f \in L^1(\mathbb{T}^d; X)$ is defined by

$$\mathcal{F}_{\mathbb{T}^d}f(k) := \int_{\mathbb{T}^d} e^{-2\pi i k \cdot t} f(t) \, dt, \quad k \in \mathbb{Z}^d.$$

Proposition 1.1. Let X be a complex Banach space, fix $d \geq 1$ and $p \in (1, 2]$, and let $\frac{1}{p} + \frac{1}{q} = 1$. The following assertions are equivalent:

(i) $\mathcal{F}_{\mathbb{R}^d}$ extends to a bounded operator from $L^p(\mathbb{R}^d; X)$ into $L^q(\mathbb{R}^d; X)$;
(ii) $\mathcal{F}_{\mathbb{T}^d}$ extends to a bounded operator from $L^p(\mathbb{T}^d; X)$ into $\ell^q(\mathbb{Z}^d; X)$.

In this situation, denoting the norms of these extensions by $\varphi_{p,X}(\mathbb{R}^d)$ and $\varphi_{p,X}(\mathbb{T}^d)$, we have

$$\varphi_{p,X}(\mathbb{R}^d) \leq \varphi_{p,X}(\mathbb{T}^d) \leq C_q^{-d/q} \varphi_{p,X}(\mathbb{R}^d),$$

where C_q is the global minimum of the periodic function $x \mapsto \sum_{m \in \mathbb{Z}} \frac{|\sin(\pi(x + m))|}{\pi(x + m)}^q$, $x \in \mathbb{R}$.

This function, as well as several others considered below, have removable singularities. It is understood that we will always be working with their unique continuous extensions.

A complex Banach space X which has the equivalent properties (i) and (ii) is said to have Fourier type p; this notion has been introduced in [5]. Proposition 1.1 goes back to [4]; in its stated form the result can be found in [2,3]. Related results may be found in [1]. These references do not comment on the location of the global minimum. A quick computer plot (see Figure 1) suggests that the minimum is taken in the points $\frac{1}{2} + \mathbb{Z}$. To actually prove this turns out to be surprisingly difficult. This is the modest objective of the present note:

Proposition 1.2. For every real number $r \geq 1$, the function $f_r : [0, 1] \to \mathbb{R}$ defined by

$$f_r(x) := \sum_{m \in \mathbb{Z}} \left| \frac{\sin(\pi(x + m))}{\pi(x + m)} \right|^{2r}, \quad x \in [0, 1],$$

has a global minimum at $x = \frac{1}{2}$.

Our proof has developed essentially by trial and error. We believe it is perfectly possible that a truly pedestrian proof can be given, but we failed to find one despite many hours of efforts. As a consequence of Proposition 1.2, we obtain the explicit estimate

$$\varphi_{p,X}(\mathbb{R}^d) \leq \varphi_{p,X}(\mathbb{T}^d) \leq \frac{\pi^d}{(2(2^q - 1)\zeta(q))^{d/q}} \varphi_{p,X}(\mathbb{R}^d),$$

noting that

$$\sum_{m \in \mathbb{Z}} \frac{1}{(\frac{1}{2} + m)^q} = 2(2^q - 1)\zeta(q).$$

For even integers $q = 2n$, the constant on the right-hand side may be evaluated explicitly in terms of the Bernoulli numbers. To further estimate this constant, recall that for any $x \in \ell^2(\mathbb{Z})$ the function $q \mapsto ||x||_q := (\sum_{m \in \mathbb{Z}} |x_m|^q)^{1/q}$ is decreasing on $[2, \infty)$ and $\lim_{q \to \infty} ||x||_q =$
ON THE CONSTANT IN A TRANSFERENCE INEQUALITY

Figure 1: A plot of f_r, where $r = 1.02^k$ for $k = 1, 2, 4, \ldots, 256$.

sup$_{t \in \mathbb{Z}} |x_i|$. Taking $x_m := \frac{1}{2} + m^{-1}$ we find $(\sum_{m \in \mathbb{Z}} |\frac{1}{2} + m^{-1}|^{1/q}) \geq 2$ for every $q \geq 2$, and hence in particular

$$\varphi_{p,X}(\mathbb{R}^d) \leq \varphi_{p,X}(\mathbb{T}^d) \leq (\frac{1}{2}\pi)^d \varphi_{p,X}(\mathbb{R}^d).$$

2. THE MAIN RESULT

The proof of the proposition is based on the following lemmas. The main idea is contained in the first lemma.

Lemma 2.1. Let $g : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be a non-decreasing convex function, and let $x_1, \ldots, x_n \in \mathbb{R}_+$ and $y_1, \ldots, y_n \in \mathbb{R}_+$ be such that

(i) $x_1 + \cdots + x_n \geq y_1 + \cdots + y_n$;

(ii) there exists $t \in \mathbb{R}_+$ such that

\bullet $x_i \leq y_i$ if $y_i < t$;

\bullet $x_i \geq y_i$ if $y_i \geq t$.

Then $g(x_1) + \cdots + g(x_n) \geq g(y_1) + \cdots + g(y_n)$.

Proof. We will prove the lemma by induction on n. The case $n = 1$ is clear: $x_1 \geq y_1$ implies that $g(x_1) \geq g(y_1)$ since g is non-decreasing. Suppose now that the lemma has been proved for $n = 1, \ldots, m - 1$.

If $x_i = y_i$ for some index $1 \leq i \leq m$, then we may remove x_i and y_i and apply the induction hypothesis.

If $x_i \geq y_i$ for every index $1 \leq i \leq m$, then again the result is immediate since g is non-decreasing. Therefore, we may assume that $x_i < y_i$ for some index $1 \leq i \leq m$. Then, by the first condition in the lemma, there is also an index j for which $x_j > y_j$. By the second condition in the lemma we then have $x_i < y_i < t \leq y_j < x_j$.

Let $t := \min(y_i - x_i, x_j - y_j)$ and define $x'_i := x_i + t$, $x'_j := x_j - t$, and $x'_k := x_k$ for all other indices. Then $x'_1, \ldots, x'_m, y_1, \ldots, y_m$ satisfy the conditions in the lemma (with the same t) and $x'_i = y_i$ or $x'_j = y_j$. Hence, by the induction hypothesis, we have

$$g(x'_1) + \cdots + g(x'_m) \geq g(y_1) + \cdots + g(y_m).$$
In view of parts (i) and (ii) of Lemma 2.3 we have

\[x_i \leq x'_i \leq x'_j \leq x_j, \]

we can write \(x'_i = \lambda x_i + (1 - \lambda)x_j \) for some \(\lambda \in [0, 1] \). Since \(x'_j = x_i + x_j - x'_i \), we have \(x'_j = (1 - \lambda)x_i + \lambda x_j \). By the convexity of \(g \) it follows that

\[
g(x'_i) + g(x'_j) \leq (\lambda g(x_i) + (1 - \lambda)g(x_j)) + ((1 - \lambda)g(x_i) + \lambda g(x_j)) = g(x_i) + g(x_j).
\]

Combining inequalities (2.1) and (2.2) we obtain the lemma for \(n = m \), thus completing the induction step. \(\square \)

In order to apply this lemma we need a number of technical facts. The first (cf. \([2, (6.14)] \)) is elementary and is left as an exercise.

Lemma 2.2. \(f_1(x) = 1 \) for all \(x \in [0, 1] \).

Let \(h : \mathbb{R} \to \mathbb{R} \) be defined by

\[
h(x) := \sin^2(\pi x) = \left(\frac{\sin(\pi x)}{\pi x}\right)^2, \quad x \in \mathbb{R}.
\]

Lemma 2.3. Let \(r \geq 1 \). The following assertions hold on the interval \([0, 1] \):

(i) the function \(h(x) + h(x - 1) \) has a global minimum at \(x = \frac{1}{2} \);

(ii) for all \(m = 1, 2, 3, \ldots \), \(h(x + m) + h(x - (m + 1)) \) has a global maximum at \(x = \frac{1}{2} \);

(iii) the function

\[
h(x) + h(x - 1) - (h(x)^r + h(x - 1)^r)^{1/r}
\]

has a global maximum at \(x = \frac{1}{2} \);

(iv) for all \(m = 1, 2, 3, \ldots \) and \(r \geq 1 \),

\[
(h(x + m) + h(x - (m + 1)))^r - h(x + m)^r - h(x - (m + 1))^r
\]

has a global maximum at \(x = \frac{1}{2} \).

Assuming the lemmas for the moment, let us first show how the proposition can be deduced from them.

Proof of Proposition \(\square \)

Fix \(r \geq 1 \) and set, for \(x \in [0, 1] \),

\[
s_m(x) := h(x + m) + h(x - (m + 1)) \quad (m = 0, 1, 2, \ldots)
\]

and

\[
\tilde{s}_0(x) := ((h(x))^r + (h(x - 1))^r)^{1/r}.
\]

In view of part (iv) of Lemma 2.3 it suffices to prove that

\[
\tilde{s}_0^r + s_1^r + s_2^r + \cdots
\]

has a global minimum at \(x = \frac{1}{2} \).

Fix an arbitrary \(x \in [0, 1] \) and set

\[
x_m := s_m(x), \quad y_m := s_m(1/2) \quad (m = 0, 1, 2, \ldots)
\]

and

\[
\tilde{x}_0 := ((h(x))^r + h(x - 1)^r)^{1/r}, \quad \tilde{y}_0 := ((h(1/2))^r + h(-1/2)^r)^{1/r}.
\]

In view of parts (i) and (ii) of Lemma 2.3 we have

\[
(2.3) \quad x_0 \geq y_0, \quad x_i \leq y_i \quad (i = 1, 2, \ldots)
\]

Lemma 2.2 implies

\[
(2.4) \quad x_0 + x_1 + x_2 + \cdots = y_0 + y_1 + y_2 + \cdots
\]

By (2.3) and (2.4),

\[
(2.5) \quad x_0 + x_1 + \cdots + x_n \geq y_0 + y_1 + \cdots + y_n \quad (n = 0, 1, 2, \ldots)
\]
Part (iii) of Lemma 2.3 implies
\[x_0 - x_0 \geq \tilde{y}_0 - y_0. \]

By (2.5) and (2.6),
\[x_0 + x_1 + \cdots + x_n \geq \tilde{y}_0 + y_1 + \cdots + y_n \quad (n = 0, 1, 2, \ldots) \]
Finally, by (2.3) and (2.6),
\[x_0 \geq \tilde{y}_0. \]

A simple calculation shows that \(\tilde{y}_0 > \frac{4}{2\pi} \) and \(y_i < \frac{4}{2\pi} \) for \(i = 1, 2, \ldots \). Taking \(t = \frac{4}{2\pi} \) in Lemma 2.1 and \(g(x) := x^r \) now implies, by virtue of (2.3), (2.7), and (2.8), that
\[\tilde{x}_0^r + x_1^r + \cdots + x_n^r \geq \tilde{y}_0^r + y_1^r + \cdots + y_n^r \]
holds for every \(n \). Taking limits for \(n \to \infty \) completes the proof. \(\blacksquare \)

3. PROOF OF LEMMA 2.3

This section is devoted to the proof of Lemma 2.3, which is based on the following observations:

Lemma 3.1. On the interval \([0, 1]\):

(i) \(\frac{\cos(\frac{1}{2}\pi x)}{1 - x^2} \) takes a global maximum at \(x = 0 \);

(ii) \(\frac{(x^2 + 1)\cos^2(\frac{1}{2}\pi x)}{(1 - x^2)^2} \) takes a global minimum at \(x = 0 \).

Proof. We start by showing that
\[\sqrt{2} \sin(\frac{1}{4}\pi x) \geq x \quad \text{for all} \quad x \in [0, 1]. \]

To this end, consider \(f(x) := \sqrt{2} \sin(\frac{1}{4}\pi x) - x \). Observe that \(f'(x) = \frac{\pi\sqrt{2}}{4} \cos(\frac{1}{2}\pi x) - 1 \) is decreasing on \([0, 1]\), hence \(f \) is concave. Since \(f(0) = f(1) = 0 \) this implies that \(f(x) \geq 0 \) for \(x \in [0, 1] \), which proves the claim.

(i): The value at \(x = 0 \) of the given function equals 1, so it suffices to show that \(\cos(\frac{1}{2}\pi x) \leq 1 - x^2 \) for all \(x \in [0, 1] \). This follows from the double-angle formula for cosine and (3.1):
\[\cos(\frac{1}{2}\pi x) = 1 - 2\sin^2(\frac{1}{4}\pi x) \leq 1 - x^2. \]

(ii): The given function has value 1 at \(x = 0 \), hence it suffices to show that for all \(x \in [0, 1] \),
\[(x^2 + 1)\cos^2(\frac{1}{2}\pi x) \geq (1 - x^2)^2. \]

On the interval \([\frac{1}{2}, 1]\) we substitute \(x = 1 - y \). We then must prove that for \(y \in [0, \frac{1}{2}] \),
\[(2 - 2y + y^2)\sin^2(\frac{1}{2}\pi y) \geq (2y - y^2)^2. \]

Since \(2y \in [0, 1] \), we can use (3.1) to obtain \(\sqrt{2} \sin(\frac{1}{4}\pi \cdot 2y) \geq 2y \), and hence \(\sin^2(\frac{1}{2}\pi y) \geq 2y^2 \). This implies that
\[(2 - 2y + y^2)\sin^2(\frac{1}{2}\pi y) \geq (2 - 2y + y^2)(2y^2) = (y^2 + (2 - y)^2)y^2 \geq (2 - y)^2y^2 = (2y - y^2)^2, \]
which concludes the proof on the interval \([\frac{1}{2}, 1]\).
For $x \in [0, \frac{1}{2}]$ we have
\[
(x^2 + 1) \cos^2\left(\frac{1}{2}\pi x\right) \geq (x^2 + 1)\left(1 - \frac{\pi^2}{8}x^2\right)^2
\]
\[
= (x^2 + 1)(1 - \frac{\pi^2}{4}x^2 + \frac{\pi^4}{64}x^4)
\]
\[
\geq 1 + (1 - \frac{\pi^2}{4})x^2 + (\frac{\pi^4}{64} - \frac{\pi^2}{4})x^4
\]
\[
= 1 + (1 - \frac{\pi^2}{4})x^2 + (\frac{\pi^4}{64} - \frac{\pi^2}{4} - 1)x^4 + x^4
\]
\[
\geq 1 + [(1 - \frac{\pi^2}{4}) + \frac{1}{4}(\frac{\pi^4}{64} - \frac{\pi^2}{4} - 1)]x^2 + x^4
\]
\[
\geq 1 - 2x^2 + x^4
\]
\[
= (1 - x^2)^2,
\]
noting that $\frac{\pi^2}{64} - \frac{\pi^2}{4} - 1 < 0$ and $(1 - \frac{\pi^2}{4}) + \frac{1}{4}(\frac{\pi^4}{64} - \frac{\pi^2}{4} - 1) \approx -1.9537471 \ldots > -2$.

Proof of Lemma 2.3

(i): We have
\[
h(x) + h(x - 1) = \frac{\sin^2(\pi x)}{\pi^2 x^2} + \frac{\sin^2(\pi x)}{\pi^2 (x - 1)^2} = \frac{(2x^2 - 2x + 1) \sin^2(\pi x)}{\pi^2 x^2(x - 1)^2} =: g(x).
\]
We must show that
\[
f(x) := g(x + \frac{1}{2}) = \frac{8}{\pi^2} \frac{4x^2 + 1}{(4x^2 - 1)^2} \cos^2(\pi x)
\]
has a global minimum in $x = 0$ on the interval $[-\frac{1}{2}, \frac{1}{2}]$. But this follows from Lemma 3.1 and the fact that f is even.

(ii): For $m = 1, 2, 3, \ldots$ we have
\[
h(x + m) + h(x - (m + 1)) = \frac{[2x^2 - 2x + (m + 1)^2 + m^2] \sin^2(\pi x)}{\pi^2 [(x + m)^2(x - (m + 1))^2]} =: g_m(x).
\]
We must show that
\[
f_m(x) := g_m(x + \frac{1}{2}) = \frac{8}{\pi^2} \frac{4x^2 + 4m^2 + 4m + 1}{[(4x^2 - (2m + 1)^2)^2]} \cos^2(\pi x)
\]
has a global maximum in $x = 0$ on the interval $[-\frac{1}{2}, \frac{1}{2}]$. For this, it suffices to check that the functions
\[
\frac{4x^2 + 1}{(4x^2 - M^2)^2} \cos^2(\pi x) \quad \text{and} \quad \frac{1}{(4x^2 - M^2)^2} \cos^2(\pi x)
\]
are decreasing on $[0, \frac{1}{2}]$ for each $M \geq 3$, or equivalently, that
\[
\frac{\sqrt{x^2 + 1}}{M^2 - x^2} \cos\left(\frac{1}{2}\pi x\right) \quad \text{and} \quad \frac{1}{M^2 - x^2} \cos\left(\frac{1}{2}\pi x\right)
\]
are decreasing on $[0, 1]$ for each $M \geq 3$. It suffices to prove this for the first function, since this will immediately imply the result for the second function.

Straightforward algebra shows that the derivative of the function
\[
\psi_M(x) := \frac{\sqrt{x^2 + 1}}{M^2 - x^2} \cos\left(\frac{1}{2}\pi x\right)
\]
has a zero at x if and only if
\[
2(x^2 + 2 + M^2) \cos\left(\frac{1}{2}\pi x\right) = \pi(M^2 - x^4 + (M^2 - 1)x^2) \sin\left(\frac{1}{2}\pi x\right).
\]
But,
\[2x(M^2 + 2 + x^2) \cos(\frac{1}{2} \pi x) \leq 2x(M^2 + 2 + x^2) \]
and, since \(0 \leq x \leq 1 \),
\[\pi(M^2 - x^4 + (M^2 - 1)x^2)x \leq \pi(M^2 - x^4 + (M^2 - 1)x^2) \sin(\frac{1}{2} \pi x), \]
while also, using that \(M \geq 3 \) and \(0 \leq x \leq 1 \),
\[2(M^2 + 2 + x^2) \leq 2(M^2 + 2 + (M^2 - 1)x^2) \leq \pi(M^2 - x^4 + (M^2 - 1)x^2) \]
since \(2(M^2 + 2) < \pi(M^2 - 1) \) for \(M \geq 3 \). It follows that the derivative of \(\psi_M \) has no zeros on \((0, 1]\), and then from
\[\psi_M(0) = \frac{1}{M^2} > 0 = \psi_M(1) \]
it follows that \(\psi_M \) is decreasing on \([0, 1]\).

(iii): Proceeding as in (i), we have
\[h(x) + h(x - 1) - ((h(x))^r + (h(x - 1))^r)^{1/r} \]
\[= \frac{1}{\pi^2} \left[\frac{1}{x^2} + \frac{1}{(1 - x)^2} - \left(\frac{1}{x^{2r}} + \frac{1}{(1 - x)^{2r}} \right)^{1/r} \right] \sin^2(\pi x) =: g(x). \]
We must show that
\[f(x) := g(\frac{1}{2} + x) = \frac{1}{\pi^2} \left[\left(\frac{1}{2} - x \right)^2 + \left(\frac{1}{2} + x \right)^2 - \left(\left(\frac{1}{2} - x \right)^{2r} + \left(\frac{1}{2} + x \right)^{2r} \right)^{1/r} \right] \cos^2(\pi x) \]
has a global maximum in \(x = 0 \) on the interval \([-\frac{1}{2}, \frac{1}{2}]\). The function \(f \) is even, and by Lemma 3.1, \(\cos^2(\pi x)/(\frac{1}{4} - x^2)^2 \) takes its maximum at \(x = 0 \). It thus remains to show that on the interval \([0, \frac{1}{2}]\) the function
\[\phi_r(x) := \left(\frac{1}{2} - x \right)^2 + \left(\frac{1}{2} + x \right)^2 - \left(\left(\frac{1}{2} - x \right)^{2r} + \left(\frac{1}{2} + x \right)^{2r} \right)^{1/r} \]
is decreasing on \([0, \frac{1}{2}]\). The derivative of this function equals
\[\phi'_r(x) = 4x - 2\left(\left(\frac{1}{2} - x \right)^{2r} + \left(\frac{1}{2} + x \right)^{2r} \right)^{1/r-1} \left(\left(\frac{1}{2} + x \right)^{2r-1} - \left(\frac{1}{2} - x \right)^{2r-1} \right). \]
To show that \(\phi'_r(x) \leq 0 \) we must show that
\[\left(\left(\frac{1}{2} + x \right)^{2r} + \left(\frac{1}{2} - x \right)^{2r} \right)^{1/r-1} \left(\left(\frac{1}{2} + x \right)^{2r-1} - \left(\frac{1}{2} - x \right)^{2r-1} \right) \geq 2x \]
for \(x \in [0, \frac{1}{2}] \), or, after substituting \(a = \frac{1}{2} + x \) and \(b = \frac{1}{2} - x \), that
\[a^{2r-1} - b^{2r-1} \geq (a - b)(a^{2r} + b^{2r})^{1-1/r} \]
for all \(a \in [\frac{1}{2}, 1] \). In view of
\[(a^{2r} + b^{2r})^{1-1/r} = \left((a^{2r} + b^{2r})^{1/(2r)} \right)^{2r-2} \]
\[\leq \left((a^{2r-1} + b^{2r-1})^{1/(2r-1)} \right)^{2r-2} = (a^{2r-1} + b^{2r-1})^{1-1/(2r-1)}, \]
with \(p := 2r - 1 \) it suffices to show that
\[a^p - b^p \geq (a - b)(a^p + b^p)^{1-1/p} \]
for all \(a \geq b \geq 0 \). We can further simplify this upon dividing both sides by \(b^p \). In the new variable \(x = a/b \) we then have to prove that
\[x^p - 1 \geq (x - 1)(x^p + 1)^{1-1/p} \]
for all \(x \geq 1 \).
Using that \((1 + y)^\alpha \leq 1 + \alpha y\) for \(y \geq 0\) and \(0 \leq \alpha \leq 1\), we have
\[
(x - 1)(x^p + 1)^{1-1/p} = (x^p - x^{p-1})(1 + x^{p-1})^{1-1/p} \leq (x^p - x^{p-1})[1 + (1 - \frac{1}{p})x^{-p}].
\]
Therefore it remains to prove that for \(x \geq 1\) and \(p \geq 1\) we have
\[
x^p - 1 \geq (x^p - x^{p-1})[1 + (1 - \frac{1}{p})x^{-p}],
\]
or, multiplying both sides with \(x\), that
\[
x^{p+1} - x \geq x^{p+1} - x^p + (1 - \frac{1}{p})(x - 1).
\]
that is, we must show that
\[
f_p(x) := x^p \geq x + (1 - \frac{1}{p})(x - 1) =: g_p(x).
\]
Now
\[
f'_p(x) = px^{p-1}, \quad g'_p(x) = 2 - \frac{1}{p}.
\]
It follows that \(f'_p(x) \geq g'_p(x) \geq 0\) for \(x \geq 1\), since \(p \geq 2 - \frac{1}{p}\) (multiply both sides by \(p\)). Together with \(f_p(1) = g_p(1)\) it follows that \(f_p(x) \geq g_p(x)\) for \(x \geq 1\) and \(p \geq 1\). This concludes the proof of (iii).

(iv): Fix \(m \geq 1\). For \(x \in [-\frac{1}{2}, \frac{1}{2}]\) we have
\[
\begin{align*}
(h(x + \frac{1}{2} + m) + h(x + \frac{1}{2} - (m + 1)))^r - h(x + \frac{1}{2} + m)^r - h(x + \frac{1}{2} - (m + 1))^r \\
= \left[\left(\frac{1}{(x + (m + 1))^2} + \frac{1}{(x - (m + \frac{1}{2}))^2}\right)^r - \left(\frac{1}{(x + (m + \frac{1}{2}))^2}\right)^r - \left(\frac{1}{(x - (m + \frac{1}{2}))^2}\right)^r\right] \\
\times \pi^{-2r} (\cos^2(\pi x))^r.
\end{align*}
\]
We must show that this function has a global maximum on \([-\frac{1}{2}, \frac{1}{2}]\) at \(x = 0\). Since by Lemma 3.1 \(\cos(\pi x)/(1 - 4x^2)\) has a global maximum at \(x = 0\), it suffices to prove that
\[
[((a + x)^{-2} + (a - x)^{-2})^r - (a + x)^{-2r} - (a - x)^{-2r}] \cdot (1 - 4x^2)^{2r}
\]
has a global maximum at \(x = 0\), where we have written \(a := m + \frac{1}{2} \geq \frac{3}{2}\). Since the function \(x \mapsto x^r\) is convex, we have \(\frac{1}{2}(a + x)^{-2r} + \frac{1}{2}(a - x)^{-2r} \geq \left(\frac{1}{2}(a + x)^{-2} + \frac{1}{2}(a - x)^{-2}\right)^r\) and hence
\[
2^{1-r}((a + x)^{-2} + (a - x)^{-2})^r - (a + x)^{-2r} - (a - x)^{-2r} \leq 0
\]
with equality for \(x = 0\). Therefore, it suffices to show that
\[
(1 - 2^{1-r})((a + x)^{-2} + (a - x)^{-2})^r(1 - 4x^2)^{2r}
\]
has a global maximum at \(x = 0\). It is enough to show that the function \(g(x) := ((a + x)^{-2} + (a - x)^{-2})(1 - 4x^2)^2\) is decreasing on \([0, \frac{1}{2}]\).
Computing the derivative of \(g\) we find
\[
g'(x) = -16x(1 - 4x^2)((a + x)^{-2} + (a - x)^{-2}) + (1 - 4x^2)^2(-2(a + x)^{-3} + 2(a - x)^{-3})
\]
\[
= (1 - 4x^2)(a + x)^{-3}(a - x)^{-3}k(x),
\]
In terms of the digamma function ψ, we have

\[k(x) = -16x(a^2 - x^2)((a + x)^2 + (a - x)^2) + (1 - 4x^2)(2(a + x)^3 - 2(a - x)^3) \]
\[= -16x \cdot 2(a^4 - x^4) + (1 - 4x^2) \cdot 4x \cdot (3a^2 + x^2) \]
\[= 4x[-8(a^4 - x^4) + (1 - 4x^2)(3a^2 + x^2)] \]
\[= 4x[4x^4 + (1 - 12a^2)x^2 + (3a^2 - 8a^4)] . \]

Since $a > \sqrt{3}$, the function $p(y) := 4y^2 + (1 - 12a^2)y + (3a^2 - 8a^4)$ has a positive and a negative root. The sum of the two roots equals $\frac{12a^2 - 1}{4}$ and therefore the positive root is larger than $3a^2 - \frac{1}{4} \geq \frac{20}{4}$. It follows that p is negative on $[0, \frac{1}{4}]$ and hence that $g'(x) = (1 - 4x^2)(a + x)^{-3}(a - x)^{-3} \cdot 4x \cdot p(x^2) \leq 0$ on $[0, \frac{1}{4}]$, which finishes the proof.

Added in proof. After this paper had been accepted for publication, Tom Koornwinder sent us the following interesting proof for the case that the parameter r in Proposition 1.2 is integral. With his kind permission we reproduce it here.

We consider $f_r(x)$ on $(0, 1)$. In terms of the Hurwitz zeta-function $\zeta(s, q)$ (see [6, Eq. 25.11.1]) we have

\[f_r(x) = \pi^{-2r} \sin^{2r}(\pi x) (\zeta(2r, x) + \zeta(2r, 1 - x)), \quad r = 1, 2, \ldots \]

In terms of the digamma function $\psi(z) = \Gamma'(z)/\Gamma(z)$ (see [6, Eq. 25.11.12]) this can be rewritten as

\[f_r(x) = \frac{\pi^{-2r} \sin^{2r}(\pi x)}{(2r - 1)!} \left(\frac{d}{dx} \right)^{2r-1} (\psi(x) - \psi(1 - x)) . \]

Applying the reflection formula $\psi(1 - z) - \psi(z) = \pi \cot(\pi z)$ (see [6, Eq. 5.5.4]) we obtain

\[f_r(x) = -\frac{\pi^{1-2r} \sin^{2r}(\pi x)}{(2r - 1)!} \left(\frac{d}{dx} \right)^{2r-1} \cot(\pi x) . \]

Substitution of $t = \pi x$ simplifies this expression to

\[\frac{(2r - 1)!}{\sin^{2r} t} \cdot f_r(t/\pi) = - \left(\frac{d}{dt} \right)^{2r-1} \cot t . \]

Since $(d/dt) \cot t = -1/\sin^2 t$, we have $f_1(t/\pi) = 1$. Also, we obtain the following recursion relation:

\[(3.2) \quad \frac{(2r + 1)!}{\sin^{2r+2} t} \cdot f_{r+1}(t/\pi) = - \left(\frac{d}{dt} \right)^{2r+1} \cot t = (2r - 1)! \left(\frac{d}{dt} \right)^2 \frac{f_r(t/\pi)}{\sin^{2r} t} . \]

A small computation shows that

\[\left(\frac{d}{dt} \right)^2 \frac{f_r(t/\pi)}{\sin^{2r} t} = \left(\frac{d}{dt} \right) \left[\sin^{-2r} t \left(\frac{d}{dt} \right) f_r(t/\pi) - 2r \cos t (\sin^{2r-1} t) f_r(t/\pi) \right] \]
\[= (\sin^{-2r} t) \left(\frac{d}{dt} \right)^2 f_r(t/\pi) - 4r \cos t (\sin^{2r-1} t) \left(\frac{d}{dt} \right) f_r(t/\pi) \]
\[+ (2r(2r + 1) \cos^2 t \sin^{-2r-2} t + 2r \sin^{-2r} t) \cdot f_r(t/\pi) . \]
Hence, (3.2) implies that
\[
\frac{(2r+1)!}{(2r-1)!} f_{r+1}(t/\pi) = (\sin^2 t) \left(\frac{d}{dt} \right)^2 f_r(t/\pi) - 4r(\cos t)(\sin t) \left(\frac{d}{dt} \right) f_r(t/\pi) + (2r(2r+1) \cos^2 t + 2r \sin^2 t) \cdot f_r(t/\pi).
\]
(3.3)

Set \(y := \cos^2 t \) and \(D := d/dy \). So \(d/dt = -2(\sin t \cos t)D \) and
\[
\left(\frac{d}{dt} \right)^2 = \frac{d}{dt}(-2 \sin t \cos t)D \\
= -2(\cos^2 t - \sin^2 t)D - (2 \sin t \cos t) \left(\frac{d}{dt} \right) D \\
= -2(\cos^2 t - \sin^2 t)D + (4 \sin^2 t \cos^2 t)D^2 \\
= (-4y + 2)D + 4y(1 - y)D^2.
\]

Equation (3.3) can therefore be rewritten as
\[
\frac{(2r+1)!}{(2r-1)!} f_{r+1}(t/\pi) = \left[4y(1 - y)^2D^2 + ((8r - 4)y + 2)(1 - y)D + 2r(2ry + 1) \right] f_r(t/\pi) \\
= \left[4y(r - yD)^2 + 8(r - yD)yD + 2yD + 2r + 4yD^2 + 2D \right] f_r(t/\pi).
\]
(3.4)

Observe that \((r - yD)y^k = (r - k)y^{k+1} \). Hence, if \(p = p(y) \) is a polynomial of degree \(n < r \) with nonnegative coefficients, then the same holds for \((r - yD)p \). The recursion (3.4) and the fact that \(f_1(t/\pi) = 1 \) now imply that \(f_r(t/\pi) \) is a polynomial in \(y \) of degree \(r - 1 \) with nonnegative coefficients. The first few are given explicitly by
\[
f_1(t/\pi) = 1 \\
f_2(t/\pi) = \frac{1}{3} + \frac{2}{3} \cos^2 t \\
f_3(t/\pi) = \frac{2}{15} + \frac{11}{15} \cos^2 t + \frac{2}{15} \cos^4 t \\
f_4(t/\pi) = \frac{17}{315} + \frac{4}{7} \cos^2 t + \frac{38}{105} \cos^4 t + \frac{4}{315} \cos^6 t \\
f_5(t/\pi) = \frac{62}{2835} + \frac{1072}{2835} \cos^2 t + \frac{484}{945} \cos^4 t + \frac{247}{2835} \cos^6 t + \frac{2}{2835} \cos^8 t
\]

For integers \(r \), Proposition 1.2 is an immediate consequence.

For half-integers \(r = n + \frac{1}{2} \) one could observe that the identity
\[
\psi^{(2n)}(x) = -(2n)! \sum_{m=0}^{\infty} \frac{1}{(x+m)^{2n+1}}
\]
allows one to express the inequality of Proposition 1.2 in terms of the polygamma functions \(\psi^{(2n)} \). We have not been able, however, to use this fact to give a simpler proof in that case.

REFERENCES

