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2 M. RAISSOULI, M. RAMEZANI

1. INTRODUCTION AND BASIC NOTIONS

Let (E, H.||) be a real or complex normed space (Banach if necessary). We denbtethy
topological dual ofF and by(., .) the duality bracket betweel and £* i.e. z*(x) = (x,z")

forz € F andz* € E*. E*is (always) a Banach space for the so-called dual npfimdefined
by

*

[{z, 2%)

Va* € B ||z*||« = sup = sup |(z,z")| = sup |[(z,z")|.
w0 2l < =1

To avoid any confusion, elements bfwill be denoted byz, y, z and those ofe* by =*, y*, z*.
Except explicit mentionf* is endowed with the wedkopology.
Throughout this paper, we use the notation:

R := (—o00, ), R := (—00,00] = RU {0}, R = [~00,00] = RU {—00, cc}.
A map defined from¥ into R will be called a functional and denoted by a small letteif as
We denote by@E the set of all functionals defined frorfi into R. By functional map we
understand a mag R R (F' being another normed space), i€.is a map whose
variable is a functional. Here, we extend the structur® td R by setting, for allt € R,

—00<t< 00, —00+t=—00, 00+t =00, —00+ 00 =00 — 00 = OQ.

We also defined the so-called point-wise ordefondefined by,f < gifandonlyif f(z) <
g(x) forall z € E. We say thatb is point-wise increasing (resp. decreasing) if:

f<g = O(f) < (2)2(9)
and® is called point-wise convex (resp. concave) if:

((1—1t)f +1tg) < ()AL —1)Q(f) +t2(g)
for all real numbet € (0, 1).
The following remark worth to be mentioned.

Remark 1.1. Throughout this paper, the involved functionals can take infinite values. Accord-
ing to the previous definitions, the two equalitifs= g andf — g = 0 (resp. f < ¢g and
f — g < 0) are not always equivalent.

N.B. For the sake of simplicity for the reader, we restrict ourselves in what follows to the case
that £ is a real normed (Banach) space. The version related to the complex case can be stated
in a similar manner.

2. BACKGROUND M ATERIAL

In this section, we recall some definitions and properties about convex analysis that will be
needed throughout this paper.

The Fenchel conjugate ¢fc R” is f* € R~ defined by
(2.1) Vot e BF f*(z") = sup ((a:,a:*) - f(a:))

zeE
The mapf —— f* is then a functional map, defined froRi’ into EE*, so-called the Fenchel
duality map. It is well known that such functional map is point-wise decreasing and convex.
Furthermore f* is always convex and I.s.c, evenfifis not. ByI'((E) we denote the convex
cone of all convex, lower semi-continuous (l.s.c in short) and proper functionals defined from

Einto R (f is proper means thgt does not take the valueco and is not identically equal
to co). With this, f* € I'((£*) wheneverf is proper. For each > 0, we can easily see that
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(tf)*(z*) = tf*(a*/t) for all z* € E*. If we definef** : E — R by f* := (f*)* then,
f=f=ifandonlyif f € T'\(E). We always havg™ < f and f*** = f*.
The notationdlom f refers to the domain of defined by

dom f={x € E, f(x)< oo},
anddf(z) stands for the sub-differential gfatz € dom f defined through
e df(x)<=Vze E f(z)> f(x)+ (z —x,x").

It is well known thatdf(x) is (possibly empty) closed and convex subsebdf Further, we
have

(2.2) " € 0f(z) < f(a) + f'(a") = (z,27),
andif f € I'y(E), z* € Of (z) ifand only ifz € 0 f*(z*).
The directional derivative of in the directionh € E atx € dom f is defined by,/[[5]

(o) = g LE T I

provided this limit exists iR, If fis convex then such limit exists i.€.f(z, h) always exists
in R. If moreover, the map — df(x, h), for fixedz € dom f, is linear continuous then we
say thatf is G-differentiable at: and we write

(2.3) df (x,h) = V f(z)(h),
whereV f(z) denotes the so-called G-gradientfoltz. If f is convex and G-differentiable at

xthendf(z) = {Vf(z)}.

Finally, let f, g € RE. The inf-convolution off andyg is defined through
(2.4) Vee B fOg(z) = inf ( F) + g(z — y)).
yelR

It is well known that the binary laW] is commutative, associative and always satigffé€sg)* =
f* + g*. Under convenient assumption, the relationstyip+ ¢)* = f*Og* holds. For in-
stance, such equality is satisfied providgd) € T'o(E) andint(dom f) N dom g # 0,
whereint(dom f) denotes the topological interior @bm f. For other condition ensuring
(f +g9)* = f*0Og*, seel[1] for instance.

3. SOME NEEDED LEMMAS

In what follows, if £/ is a (real) Hilbert space then we identify/ with E via Riesz-Frechet
representation theorem. In this case, the bracket dualityis identified with the inner product
of E. We denote by (F) the set of all self-adjoint positive invertible operators actingkbn

The two following lemmas, which will be needed later, may be stated.

Lemma 3.1. Let £ be a real Hilbert space and” € B™*(FE). Let f be the real function
generating by, i.e.
Ve e B fz) = fr(z) = %(Tx,:c), (f = fr, inshort).

Then the following assertions hold true:

(@) fr is convex if and only ifl" is (self-adjoint) positive. If moreovel € B™*(FE) then
(fr)* = fr1.

(b) df (xz,h) = (h,Tx) forall z,h € E and sodf(z) = {Tx} for everyz € E.

(c) If g = fs, whereS € B™*(E), thenfOg = fr,/s, where

T//S = (T +5)"
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is the so-called parallel sum @f and S.
Proof. It is not hard to establish it as an exercise. See alsd [2, 4], for instance.

Lemma 3.2. Let £ be a normed space and> 1 be a real number. We set

1
VeeE  f(z) = Z—)||33||p-

Then the following assertions hold:
(a) For all z* € E* we have

*

p
* 9

Fa) =l

wherep* denotes the conjugate pfdefined byl /p + 1/p* = 1.
(b) If moreoverE is a (real) Hilbert space therf is G-differentiable at every € E for p > 2,
at eachx # 0 for p < 2, with

Vf(@)(h) = [|l=[P~*(h, z).
Proof. For (a), see [3]. For (b), it is a simple exercise which we leave to the repder.
4. POINT-WISE DIRECTIONAL DERIVATIVE OF f +—— f*

We start this section by stating the following definition.

Definition 4.1. Let f, g € R". Fora* € E*, we set

(gl (2) = Tim O @) = [

t10 t

)

provided this limit exists iR. In this case|f, g]. is the point-wise directional derivative of the
Fenchel duality map in the directignat f.

The following result asserts the existence ffy]. when convenient assumptions grandg
are added.

Theorem 4.1.Let f : £ — R be such thatf* is proper andg : £ — R. Then, for all
x* € dom f*,[f, g]«(z*) exists inR, with

t>0 t

To prove this theorem, we need the following lemma.

Lemma4.2. Let f, g be as in Theorem 4.1. Then, for all € dom f*, the map
(f +tg)"(«") — f*(z7)
t

(4.2) (0,00) >t +—

is monotone increasing, i.e.
(f +tag)(@") = fr(x%)  (f +t29)"(2") = f*(27)

ty - to '
Proof. Lett; > t, > 0. Sincedom f = E then we can write, for alt* € E*,

(f+10)" @) = £ @) = (F( + 1) + (1= 2)F) @) = £,
This, with the fact that the map—— f* is point-wise convex and < ¢,/t; < 1, yields

(F +tg) @) = @) < 27 +0g) @) + (1= )1 @) = F)

t1 >ty > 00—
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We then deduce, after simple manipulation, that
(f +tag)*(@”) = f*(x7) _ (f+tig)"(z") = [*(z7)
to - t1 ’
provided thatt* € dom f*. The desired result is obtainegl.

Since the mayg (4}2) is monotone increasing then

Ut = )

t>0 t

always exists iR, for all z* € dom f*, and so
po 1) @) = @) L tg) (@) — f ()
t10 t t>0 t

from which Theorem 4]1 follows.
The following corollary is immediate from the equalify (4.1).

bl

Corollary 4.3. Let f, g be as in Theoremn 4.1. Then the inequality
(4.3) [f:9)u(a”) < (f +9)"(27) — f*(27)
holds for allz* € dom f*.
Theorem 4.4.Let f, g : E — R with f* is proper. Then for alk* € dom f* we have
(4.4) fa) = (f —9)" (@) < [f, glu(z).
Proof. The following identity
= (i)~ g)

144 141

is obviously satisfied for alt > 0 and all f, g with dom g = E. Again by virtue of the
point-wise convexity off — f*, we deduce for alt* € E*
1 t

P < ) @) + 5 (F = 9)7 (@)
It follows that

@) + /(") < (f +tg)" (") + t(f — 9)" (@),
or equivalently, withe* € dom f*,

tf*(@®) —t(f —9)" (&%) < (f +tg)"(«") — [ ("),
or again

Pt~ (f - gy (e < LTI 2T,
We then deduce the desired inequality by letting0 point-wisely. The proof is so completg.

We end this section by stating a result summarizing the elementary properties of the binary
functional map(f, g) — [f, g]«-

Proposition 4.5. Let f, g be as in Theorefn 4.1 and> 0 be a real number. Then the following
assertions hold:

(b) [f: 91 + gl < [f91]« + [f, 92)« (91 @and g, are asg).
(c) The functional mag — [f, g]., for fixed f, is point-wisely convex.
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(d) [Mf, gl = £[f, gl--A, where we setf.\)(x) = Af(z/)).
(e) If E is areal Hilbert space then

[fr. fsle = = fr-1s7-1,
whereT € B**(E) and S is a self-adjoint operator of.

Proof. The first three statements follow from the fact that the directional derivative is sub-linear
in its second component. The proof of (d) and (e) is simple and therefore omittedihere.

5. IMPROVED BOUNDS FOR [f, g].

Inequalities [(4.8) and (4.4) are not the best possible and we will give in this section some
improvements of them. We begin by stating the following result.

Theorem 5.1.Let f, g be as in Theorein 4.1. Then the inequality

(5.1) [/ 9l(2") = —g(x)

holds for allz € E such tha¥f(z) # 0 andz* € df(x). Further, inequality[(5.]L) refine§ (4.4).
Proof. By (2.1) we can write, for alk € E andz* € E*,

(5.2) (f +tg)"(2%) = [ (%) = (%, 2) = f(x) —tg(x) — f7(z7).

Letz € F be such thadf(z) # (). If we takex* € df(z) then(z*,z) = f(x) + f*(z*), by
(2.7). Substituting this ir] (512), with the conditiaiom f = E, the desired inequality follows

after a simple manipulation.
We now prove thaf (5]1) is a refinement of (4.4). Indeed;foe 9 f (), (2.) yields

(f —9)" (") = (&%, 2) = f(2) + g(x) = (2%, 2) — fz) = f*(z") + [ (z7) + g().
If 2* € df(x) then again[(2]2) implies thdt:*, z) — f(z) — f*(z*) = 0 and so the desired
result follows, so completes the progf.

Corollary 5.2. Let f,g be as in Theorern 4.1. Assume that furtlfee I'((E). Then the
inequality

5.3 — inf x) < [f,g]«(x*

(5:3) \nt | g@) <[f9)(x")

holds for allz* € dom f*.

Proof. Sincef € I'y(E) then the condition* € J0f(z) is equivalent tor € Jf*(z*). We can
then say tha{ (5]1) holds for all € 9f*(z*), whenever:* € dom f* is given. With this, [(5.]L)
means that the real map—— —g(x) is upper bounded bjf, g].(z*) on the se® f*(z*). It

follows that

sup  (—g(x)) < [f, gl(z"),
€D f*(z*)

from which (5.3) follows, so completing the proaf.

Now, a question arises from the above:5.3) the best possible? That s, df, 9)&'51%@
for which (5.3) remains an equality? The following example answers affirmatively this latter
guestion.

Example 5.1. Assume that is a real Hilbert space. With the notation of Lemmal 3.1, let us
take f = fr andg = fs, whereT € B**(E) and S is self-adjoint. It is easy to see that (detail
is simple and therefore omitted here)

— inf z) =—g(T'2%) = — fro1gp—1(z"),
xe@f*(x*)g() 9( ) fr-1sp-1(z7)

which, with Propositiof 415,(e), implies that (p.3) is an equality.
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Now, we state a result that gives a point-wise upper bound, of..

Theorem 5.3. Let f, g be as in Theorerh 4.1. Assume that furttiey € I'((E). Then the
inequality

(5.4) Fogl@) < inf (9 (1) +df @t —27)
holds for allz* € dom f*. Further, [5.4) refineq (4]3).
Proof. By our assumption[ (24) yields

(F o)) = (1o () @) < (PO () @) = int (1) +10 (5.
It follows that the inequality

(F +19)" (") < £ + 1" ()

holds for allz* € dom f*,y* € E* andt > 0. Settingz* — y* = tz* we then obtain
(f +1tg)"(@") = f1(2") < fHa" —t27) = [7(27) + tg7(27).
Dividing by ¢ > 0 and letting thert | 0 we then have
[ gle(27) < g7 (%) + df* (2", —=27)
for all z*, z* € E*. This means that the map —— ¢*(z*) + df*(z*, —z*), for fixedz* € E*,

is lower bounded byf, g].(z*). The inequality[(5.4) follows.
We now establish thaft (5.4) refings (4.3). In fact, sifités convex then

S ) = P

t>0 t

It follows that

inf (g°(=") +df* (e, =) < ik (g°(=") + £ = ) = £ ).

z*eE* z*eE*
Now, if we write

inf (g(=") + (2" = =) = g Of (a") = FOg (") = (f +9)" (")

z*eE*
we then deduce the desired refinement, so completes the groof.

As for Examplé 5.11, the following one shows that inequality|(5.4) is the best possible.

Example 5.2. Let E, f, g be as in the previous example. With Lenimg 3.1, we have for all
¥, 2 e F

df*(z*, —2") = —(T'2*, 2*) and g*(z*) = fs1(2") = %(S‘lz*,z*)
The second side df (5.4) becomes

— sup ((T’lx*,z*> — %(Slz*,z*>) = —(fs) (T'2%) = — (T 'a")

z*ek
1 1
= —§<ST_ISL’*,T_1I*> = —§<T_IST_1x*,x*> = — fr-157-1(x%),
and so|(5.14) is here an equality.

AJMAA Vol. 13, No. 1, Art. 19, pp. 1-9, 2016 AJMAA


http://ajmaa.org

8 M. RAISSOULI, M. RAMEZANI

We can also deduce from this example, as well as from the previous one, that the functional
results presented here contain those related to positive bounded linear operators.

We now state the following corollary which summarizes the previous results.

Corollary 5.4. Let f, g be as in Theorem 5.3. Then the following double inequality

(5.5) ~ nfg() <[l < inf (") +df* (', —2))

holds for allz* € dom f*. Further {5.5) gives the best possible point-wise boundg,af ...

Proof. It is sufficient to combine Corollary 5.2 and Theorgm|5.3, together with Example 5.1
and Examplé 5]2a

We end this paper by stating the following corollary which, under convenient hypothesis,
gives an explicit form off, g|...

Corollary 5.5. Let E be a real Hilbert space and let g be as in Theoremm 5.3. Assume tlfat
is G-differentiable at:* € E. Then we have

(5.6) £, gle(z®) = —g(V f*(2")).
Proof. If f*is G-differentiable at* then
df*(z*, —=27) = =V [ (2")(2") = =(V ("), "),

whereV f*(x*) denotes the representant\df *(z*) guaranteed by Riesz-Frechet theorem. If
we identify V f*(x*) andV f*(z*) via such representation, the right side5.5) becomes

inf (g"(=") +df* (2", —2")) = inf (g"(=") = (V(2"),2")

z*eb* z*eFE

= —sup ((Vf*(2%),2") = g'(z")) = =g (VF*(a") = (V' (")),

z*elb
sinceg € ['o(F). Again, f* is G-differentiable at:* implies
Of(z") ={Vf(a")}

and so the left side of (5.5) is equaltgy(V f*(z*)). The desired result follows, so completes
the proof.g

Remark 5.1. Under the hypotheses of the previous corolldry,|(5.6) is equivalent to
(f +tg)"(x") = f*(2") = tg(Vf*(x")) +t el . 9)(z7),

wheree(f, g)(z*) tends to0 ast | 0. This gives an expansion approximating (point-wisely)
(f +tg)* at orderl in t.

Finally, we state the following examples.

Example 5.3. Let E be a real Hilbert space and” € B™*(E). Let us takef = fr and
g9 = 1-I” with p > 1. Following Lemml we havéf*(z*) = T~'z* and so ) gives

1 1 .
Vo' e B |fr L] @) = =T
p * p
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Example 5.4. Let E be a real Hilbert space and let, g be given by
1 1
VeeE  f(z)= Z—?Hxll”, 9(x) = 5HxH",

wherep, ¢ > 1. Hypotheses of Theordm b.3 are here satisfied. According to Lémma 32, (5.6)
yields (after a simple manipulation)

x Liwp 1 . Ly oo
ot € B[S Sl (@) = = flat 1.
p - q A q

Example 5.5. With the same notation as in the previous examples, we left to the reader the task
for checking that

* 1 * * — *
Ve B [P Ss] () = s,
whereS is a self-adjoint operator of.
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