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ABSTRACT. For a given inverse semigroupS, we introduce the notion of algebraic crossed
product by using a given partial action ofS, and we will prove that under some condition it is
associative. Also we will introduce the concept of partial semigroup algebraKPar(S), and we
show that the suitable quotient ofKPar(S) is a kind of crossed product.
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1. I NTRODUCTION

The notion of a partial crossed product of aC∗-algebra by the group of integers was defined
by R. Exel in [2]. Roughly, the automorphism used in the definition of a crossed product
of a C∗-algebraA by the group of integers was replaced by an isomorphism between two
ideals ofA, namely, partial automorphisms. K. McClanahan in [5] defined a partial crossed
product of aC∗-algebra by a discrete group. The ideas involved were mostly straightforward
generalization of the definitions given in [2]. K. McClanahan used partial actions of groups
to define a partial crossed product. This motivates us to define the algebraic crossed products
by a partial action of an inverse semigroupS, and we will discuss the associativity of this
construction. To define a partial semigroup algebra, we need some definitions and terminologies
that A. Buss and R. Exel defined in [1],namely, universal inverse semigroupPr(S) and partial
action of an inverse semigroup. We will use the universal inverse semigroupPr(S) to define
a partial semigroup algebraKPar(S). Here, we will assume that the reader is familiar with
the inverse semigroups and the concepts of partial actions of inverse semigroups, multiplier
algebras, and partial representation. For a through treatment of these subjects the reader is
referred to [1, 3, 4, 5, 7]. In Section 2, we will introduce the algebraic crossed product, and
we will discuss the conditions under which this construction is associative. In Section 3, to
prove our main result, the suitable quotient of the partial semigroup algebra is a sort of crossed
product, we need to define some partial action. To do this, we will show that we can define a
partial representation of an inverse semigroupS from a partial action of it and vice versa. At
the end, we will prove that the suitable quotient ofKPar(S) is a sort of crossed product.

2. ALGEBRAIC CROSSEDPRODUCTS

Throughout this work, we will assume thatS is a unital inverse semigroup,A is an associative
algebra, andα is a partial action ofS onA. Let α be a partial action ofS on an algebraA.
Let L = {

∑finite
s∈S asδs : as ∈ Xs}, the set of all formal finite sums, with the following

multiplication:
(asδs) · (btδt) = αs(αs∗(as)bt)δst.

Note thatαs(αs∗(as)bt) is an element ofXst simply because

αs(αs∗(as)bt) ∈ αs(Xs∗

⋂
Xt) = Xs

⋂
Xst.

Thus, the multiplication is well-defined, andL is an algebra with this multiplication. LetI be
the ideal ofL generated by the set{aδr − aδt : a ∈ Xr, r ≤ t}. Note that by [1, Proposition
3.8]Xr ⊆ Xt if r ≤ t. Now, we are at a position to introduce the algebraic crossed product
A×α S associated to a partial actionα as we proposed in the beginning. the algebraic crossed
productA×α S is the algebraL

N
. Let Φ : L1 → A×α S be the canonical homomorphism from

L ontoA×α S. We will denoteΦ(asδs) by asδs.
With the aid of the following pivotal Theorem, we are able to answer the associativity ques-

tion of algebraic crossed product. We will show that the mentioned multiplication is associative
if for eachs ∈ S the idealsXs associated to the partial actionα are (L,R)-associative, that is,
whenL ◦ Ŕ = Ŕ ◦ L for all multipliers(L,R), (Ĺ, Ŕ) of Xs.

Theorem 2.1. If α is a partial action of a unital inverse semigroupS on an algebraA such that
eachXs (s ∈ S) is (L,R)-associative, then the algebraic crossed productAoα S is associative.

Proof. The proof is a slight modification of [3, Theorem 3.4 ].

As a consequence of Theorem2.1, we have the following corollary.

AJMAA, Vol. 13, No. 1, Art. 14, pp. 1-8, 2016 AJMAA

http://ajmaa.org


PARTIAL SEMIGROUPALGEBRAS ASSOCIATED TOPARTIAL ACTIONS 3

Corollary 2.2. Letα be a partial action of a unital inverse semigroupS on an algebraA such
that eachXs is an idempotent or non-degenerate ideal ofA for eachs ∈ S. ThenA oα S is
associative.

Proof. This follows from the fact that(L,R)-associativity is equivalent to the condition of the
Corollary and Theorem 2.1.

Definition 2.1. We shall say that an algebraA is strongly associative if for any unital inverse
semigroupS and any partial action ofS onA, namelyα, the algebraic crossed productAoα S
is associative.

As a consequence of Corollary 2.2 we have:

Corollary 2.3. A semiprime algebraA is strongly associative.

3. PARTIAL REPRESENTATIONS

Throughout this section, byπ we mean a partial representation of an inverse semigroupS on
a unital algebraB. For simplicity hereafter, we will denote an elementasδs of Aoα S by asδs.

Lemma 3.1. Suppose thatα is a partial action ofS on an algebraA, whereXs (the range of
αs) is a unital algebra with the unit element1s. Then the mapπα : S 3 s 7→ 1sδs ∈ Aoα S is
a partial representation.

Proof. First of all, note that since eachXs is unital, it is idempotent, hence, eachXs is (L,R)-
associative, thus,A oα S is associative by Theorem 2.1. To prove the Lemma, lets, t be
elements ofS. Then

πα(s∗)πα(s)πα(t) = 1s∗δs∗ .1sδs.1tδt

= αs∗(1s.1s)δs∗s.1tδt

= (1s∗1s∗s)δs∗s.1tδt.(3.1)

The last equality is obtained from the fact that1s1t is the unit element of the algebraXs ∩Xt.
Sinceα is a partial action, the equalityαs(Xs∗ ∩Xt) = Xs ∩Xst implies that

αs(1s∗1t) = 1s1st.(3.2)

By the definition of the multiplication, the right hand side of (3.1) is equal to

(3.3) αs∗s(αs∗s(1s∗1s∗s)1t)δs∗st = αs∗s(1s∗1s∗s1t)δs∗st.

Note thatXs∗ ⊆ Xs∗s because

Xs∗ = αs∗(Xs ∩Xs) = Xs∗ ∩Xs∗s ⊆ Xs∗s.

Thus,1s∗1s∗s = 1s∗s1s∗ = 1s∗. The foregoing computations and equation (3.2) gives that the
right hand side of (3.3) is equal to

1s∗1s∗stδs∗st.(3.4)

On the other hand,

πα(s∗)πα(st) = 1s∗δs∗ .1stδst

= αs∗(αs(1s∗)1st)δs∗st

= αs∗(1s1st)δs∗st

= 1s∗1s∗stδs∗st.(3.5)
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Comparing (3.4) and (3.5), one has thatπα(s∗)πα(s)πα(t) = πα(s∗)πα(st). For s, t ∈ S, we
have

πα(s)πα(t)πα(t∗) = 1sδs.1tδtt∗

= αs(1s∗1t)δstt∗

= 1s1st1stt∗δstt∗ ,(3.6)

by using (3.2) and the fact that1s1st ∈ Xstt∗. On the one hand, we have that

πα(st)πα(t∗) = 1stδst.1t∗δt∗

= αst(1(st)∗1t∗)δstt∗

= 1st1stt∗δstt∗ .

The last equality is obtained by using (3.2). Sincestt∗ ≤ s, we have thatXstt∗ ⊆ Xs by [1,
Proposition 3.8], therefore,1st1stt∗δstt∗ = 1s1st1stt∗δstt∗. Thus, the proof is complete if we
compare this equality with (3.6).

Definition 3.1. Two partial representationsπ : S 7→ B andπ′ : S 7→ B′ are isomorphic if
there exists an isomorphism of algebrasφ : B 7→ B′ such that

π(s) = φ(π′(s))

for all s ∈ S.

Remark 3.1. It is easy to see that ifα andα′ are two isomorphic partial actions forS thenπα

andπα′ are isomorphic partial representations ofS.

Our next goal is to define a partial action from a given partial representation of an inverse
semigroupS. To do this, letπ : S 7→ B be a partial representation ofS into aK-algebraB.
Considering the elementsεs = π(s)π(s∗) for s ∈ S, we have the following Lemma.

Lemma 3.2. Lets, t are inS. Then

(i) For givens, t in S, εs andεt are commuting and idempotent elements,
(ii ) andπ(s)εt = εstπ(s).

Proof. Takings ∈ S, one has that

εsεs = π(s)π(s∗)π(s)π(s∗) = π(s)π(s∗) = εs,

thusεs is idempotent. On the one hand, fors, t ∈ S we have

εsεt = π(s)π(s∗)π(t)π(t∗)

= π(s)π(s∗t)π(t∗)

= π(s)π(s∗t)π(t∗s)π(s∗t)π(t∗)

= π(ss∗t)π(t∗s)π(s∗tt∗).(3.7)

Interchanging the role ofs andt, from the foregoing argument we have that

εtεs = π(tt∗s)π(s∗t)π(t∗ss∗)

= π(tt∗s)π(s∗t)π(t∗s)π(s∗t)π(t∗ss∗)

= π(tt∗ss∗t)π(t∗s)π(s∗tt∗ss∗)

= π(ss∗tt∗t)π(t∗s)π(ss∗tt∗)

= π(ss∗t)π(t∗s)π(s∗tt∗) = εsεt.
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For part (ii ), let s, t ∈ S, then

π(s)εt = π(s)π(t)π(t∗)

= π(s)π(s∗)π(s)π(t)π(t∗)

= π(s)π(t)π(t∗)π(s)π(s∗)

= π(st)π(t∗s∗)π(s) = εstπ(s).(3.8)

LetA be the commutative subalgebra ofB generated by allεs (s ∈ S), and for a fixeds ∈ S
setXs = εsA. Now, we can provide a partial action fromπ as follows:

Lemma 3.3. The mapsαπ
s : Xs∗ 7→ Xs (s ∈ S) defined byαπ

s (a) = π(s)aπ(s∗) (a ∈ Xs∗) are
isomorphisms ofK-algebras which determine a partial actionαπ of S on the algebraA.

Proof. For simplicity, letαπ = α. We show thatA is invariant under the mapa 7→ π(s)aπ(s∗)
for eachs ∈ S. SinceA is spanned by elements of the formεt1 ...εtn with t1...tn ∈ S. For such
elements, one has that

π(s)εt1 ...εtnπ(s∗) = εst1 ...εstnπ(s)π(s∗)

= εst1 ...εstnεs ∈ A
Thus,π(s)Aπ(s∗) ⊆ A. Now, fors ∈ S,

αs(εs∗) = π(s)εs∗π(s∗)

= π(s)π(s∗)π(s)π(s∗)

= εsεs = εs.

Consequently, for the elements of the formεs∗εt1 ...εtn, one has that

π(s)εs∗εt1 ...εtnπ(s∗) = εss∗εst1 ...εstnπ(s)π(s∗)

= εsεss∗εst1 ...εstn ∈ Xs.

SinceXs∗ is spanned by the elements of the formεs∗εt1 ...εtn with t1...tn ∈ S, we have that
αs : Xs∗ 7→ Xs. Moreover, it is a homomorphism of algebras. Indeed, taking elementsa =
εs∗εt1 ...εtn andb = εs∗εr1 ...εrn in Xs∗, we see that

αs(a)αs(b) = π(s)εs∗εt1 ...εtnπ(s∗)π(s)εs∗εr1 ...εrnπ(s∗)

= π(s)εs∗εt1 ...εtnεs∗εs∗εr1 ...εrnπ(s∗)

= π(s)abπ(s∗) = αs(ab).

Obviously, fors ∈ S, εs is the identity ofXs andαs(εs∗) = εs, thus,αs is a homomorphism of
algebras. Observe that fors ∈ S we haveαs(αs∗(εs)) = εs. By induction, we shall prove that
αs ◦ αs∗(εsεt1 ...εtn) = εsεt1 ...εtn. Forn = 1,

αs ◦ αs∗(εsεt1) = αs(π(s∗)εsεt1π(s))

= αs(εs∗sεs∗t1εs∗)

= π(s)εs∗εs∗sεs∗t1π(s∗)

= π(s)π(s∗)π(s)π(s∗s)π(s∗s)π(s∗t1)π(t∗1s)π(s∗)

= π(s)π(s∗)π(ss∗s)π(s∗s)π(s∗t1)π(t∗1s)π(s∗)

= π(s)π(s∗)π(s)π(s∗)π(t1)π(t∗1)π(s)π(s∗)

= εsεt1 .
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Now, suppose that forn < k the statement is true. Letεsεt1 ...εtk be any element ofXs. Then

αs ◦ αs∗(εsεt1 ...εtk) = αs ◦ αs∗(εsεt1 ...εtk−1
εsεtk)

= αs ◦ αs∗(εsεt1 ...εtk−1
)αs ◦ αs∗(εsεtk),

so, the induction hypothesis implies that

αs ◦ αs∗(εsεt1 ...εtk) = εsεt1 ...εtk .

SinceXs is spanned by such elements, we deduce thatαs ◦ αs∗ is the identity map onXs.
Interchanging the role ofs and s∗, we see thatαs∗ ◦ αs is the identity map onXs∗, hence,
α−1

s = αs∗, thus,αs is an isomorphism. Lets, t ∈ S and write an elementa ∈ Xs∗ ∩ Xt as
a = εs∗εtb with b ∈ A. So,

αs(a) = π(s)εs∗εtbπ(s∗)

= εss∗εstπ(s)bπ(s∗)

= εstεss∗εstπ(s)bπ(s∗) ∈ Xst,

where in the last step we have used the fact thatπ(s)Aπ(s∗) ⊆ A. This givesαs(Xs∗ ∩Xt) ⊆
Xs ∩Xst. Takingx ∈ Xs ∩Xst, write x asx = εsεstb with b ∈ A. Moreover, we can assume
thatb = εt1 ...εtn with t1...tn ∈ S. Note that

εstεs = π(st)π(t∗s∗)π(s)π(s∗)

= π(st)π(t∗)π(s∗)π(s)π(s∗)

= π(s)π(t)π(t∗)π(s∗)π(s)π(s∗)

= αs(εtεs∗).

On the other hand, we have that

x = εsεstεt1 ...εtn

= εsεstπ(s)π(s∗)εsεt1 ...εtn

= εsεstπ(s)εs∗sεs∗t1 ...εs∗tnπ(s∗)

= αs(εtεs∗)αs(εs∗sεs∗t1 ...εs∗tn)

= αs(εtεs∗εs∗sεs∗t1 ...εs∗tn).

From the fact thatεtεs∗εs∗sεs∗t1 ...εs∗tn ∈ Xs∗∩Xt, we havex ∈ αs(Xs∗∩Xt), and we deduce
thatαs(Xs∗ ∩Xt) = Xs ∩Xst. Let a ∈ α−1

t (Xt ∩Xs∗) ⊆ Xt∗ ∩Xt∗s∗. Thenεt∗a = aεt∗ = a,
so,

αs ◦ αt(a) = αs(π(t)aπ(t∗)) = π(s)π(t)aπ(t∗)π(s∗)

= π(s)π(t)aεt∗π(t∗)π(s∗)

= π(s)π(t)aεt∗π(t∗s∗)

= π(s)π(t)εt∗aπ(t∗s∗)

= π(st)εt∗aπ(t∗s∗)

= αst(a)

Therefore,α is a partial action ofS onA.

Remark 3.2. As in the previous case, it is easy to see thatαπ andαπ′ are isomorphic partial
actions ifπ andπ′ are isomorphic representations.
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Given an inverse semigroupS, let π : S → B be a partial representation ofS into B, and
let J be the ideal ofB generated by all elements of the formπ(s) − π(t) wheres, t ∈ S and
s ≤ t. Define the map̃π : S → B

J
by π̃(s) = Φ(π(s)), whereΦ : B → B

J
is the quotient map.

Obviously,π̃ is a partial representation ofS on B
J

.

Proposition 3.4. Let π : S → B be a partial representation ofS into B and suppose that
π̃ : S → B

J
is the partial representation mentioned above. Consider the subalgebraA ⊆ B

J
and

partial actionαπ̃ as in Lemma 3.3. Then the mapφπ̃ : Aoαπ̃S 3
∑

s∈S asδs 7→
∑

s∈S as
˜π(s) ∈

B
J

is a homomorphism ofK-algebras such thatφπ̃ ◦ παπ̃ = π̃.

Proof. One can easily prove that the mapφπ̃ is well-defined. Sinceasδs (s ∈ S) spanL, it is
enough to show that

φπ̃(asδs · btδt) = φπ̃(asδs) · φπ̃(btδt).

By the definition ofφπ̃, we have

φπ̃(asδs · btδt) = φπ̃(απ̃
s (απ̃

s∗(as)bt)δst) = απ̃
s (απ̃

s∗(as)bt)π̃(st).

Sinceαπ̃
s (απ̃

s∗(as)bt) ∈ Xs andεs is the identity element ofXs,

απ̃
s (απ̃

s∗(as)bt)π̃(st) = απ̃
s (απ̃

s∗(as)bt)εsπ̃(st)

= απ̃
s (απ̃

s∗(as)bt)εsπ̃(s)π̃(t)

= π̃(s)(απ̃
s∗(as)bt)π̃(s∗)π̃(s)π̃(t)

= π̃(s)(απ̃
s∗(as)bt)εs∗π̃(t)

= π̃(s)απ̃
s∗(as)btπ̃(t)

= π̃(s)π̃(s∗)asπ̃(s)btπ̃(t)

= asπ̃(s)btπ̃(t) = φπ̃(asδs)φπ̃(btδt).

For an inverse semigroupS, let Pr(S) be the universal semigroup associated toS. We will
refer the reader to [1] for more details about Pr(S).

Definition 3.2. LetS be an inverse semigroup. We will denote the semigroup algebraKPr(S)
byKpar(S), and we will call it partial semigroup algebra.

Obviously, the canonical mapιS : S 3 s 7→ [s] ∈ Kpar(S) is a partial homomorphism ofS.

Remark 3.3. Suppose thatπ : S → B is a partial homomorphism ofS in B. Then by [1,
Proposition 2.20], there exists a unique semigroup homomorphismπ∗ : Pr(S) → B such that
π∗ ◦ ιS = π. Now defineψ : Kpar(S) 3 Σs∈Pr(S)ass 7→ Σs∈Pr(S)asπ

∗(s) ∈ B. Obviously,
ψ is a homomorphism andψ ◦ ιS = π. On the other hand, ifψ : Kpar(S) → B is an algebra
homomorphism, thenψ ◦ ιS is a partial representation ofS in B.

Theorem 3.5.Let ιS be the partial representation as mentioned above. Considering the partial
representatioñιS and the commutative subalgebraA of Kpar(S)

J
generated by all elements̃εs =

ι̃S(s)ι̃S(s∗) defined in Proposition 3.4, we will prove thatA×αι̃S S is isomorphic toKpar(S)

J
.

Proof. By Lemma 3.1,παι̃S : S 3 s 7→ ε̃sδs ∈ A oαι̃S S is a partial representation ofS on
Aoαι̃S S. Now, by Remark 3.3, there existsψ : Kpar(S) → Aoαι̃S S such thatψ ◦ ι̃S = παι̃S ,
i.eψ([s]) = ε̃sδs. Fors ∈ S, we have

φι̃S
◦ ψ([s]) = φι̃S

(ε̃sδs) = ε̃sι̃S(s) = [s][s∗][s] = [s].

AJMAA, Vol. 13, No. 1, Art. 14, pp. 1-8, 2016 AJMAA

http://ajmaa.org


8 BAHMAN TABATABAIE SHOURIJEH AND SAHAR MOAYERI RAHNI

Consequently,φι̃S
◦ ψ = idKpar(S). By definition ofJ , an element ofJ has the form[s] − [t]

wheres ≤ t. So,ψ([s] − [t]) = ε̃sδs − ε̃tδt wheres ≤ t, but this is an element of the ideal
generated by the elements of the formaδr−aδk wherer ≤ k anda ∈ Xr. So,ψ factors through
the quotientKPar(S)

J
, so,φι̃S

is a surjective homomorphism. On the other hand, by the definition
Xs, for eachs ∈ S, is spanned by the element of the form̃εsε̃t1 . . . . .ε̃tn. Fors ∈ S, we have

ε̃sδsε̃s∗δs∗ = αι̃S
s (αι̃S

s∗(ε̃s)ε̃s∗)δss∗

= αι̃S
s (ι̃S(s∗)ε̃sι̃S(s)ε̃s∗)δss∗

= αι̃S
s ([s∗][s][s∗][s]ε̃s∗)

= αι̃S
s (ε̃s∗)δss∗

= [s]ε̃s∗ [s
∗] = ε̃sδss∗ = ε̃sδ1.

Thus,

ψ ◦ φι̃S
((ε̃sε̃t1 . . . . .ε̃tn)δs) = ψ(ε̃sε̃t1 . . . . .ε̃tn [s])

= ψ([s][s∗][t1][t
∗
1]...[tn][t∗n][s])

= ε̃sδsε̃s∗δs∗ ...ε̃tnδtn ε̃tnδt∗n ε̃sδs

= ε̃sδ1ε̃t1δ1...ε̃tnδ1ε̃sδs

= ε̃sε̃t1 ...ε̃tnδs.

Thus,ψ ◦ φι̃S
is also the identity map, by consequence,φι̃S

is an isomorphism.
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