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ABSTRACT. For a given inverse semigroup, we introduce the notion of algebraic crossed
product by using a given partial action §f and we will prove that under some condition it is
associative. Also we will introduce the concept of partial semigroup algibkig (S), and we
show that the suitable quotient &fp,..(.S) is a kind of crossed product.
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1. INTRODUCTION

The notion of a partial crossed product of'&-algebra by the group of integers was defined
by R. Exel in [2]. Roughly, the automorphism used in the definition of a crossed product
of a C*-algebraA by the group of integers was replaced by an isomorphism between two
ideals of A, namely, partial automorphisms. K. McClanahan in [5] defined a partial crossed
product of aC*-algebra by a discrete group. The ideas involved were mostly straightforward
generalization of the definitions given in [2]. K. McClanahan used partial actions of groups
to define a partial crossed product. This motivates us to define the algebraic crossed products
by a partial action of an inverse semigrodp and we will discuss the associativity of this
construction. To define a partial semigroup algebra, we need some definitions and terminologies
that A. Buss and R. Exel defined in [1],namely, universal inverse semigfouf) and partial
action of an inverse semigroup. We will use the universal inverse semidroup) to define
a partial semigroup algebr& p,,.(S). Here, we will assume that the reader is familiar with
the inverse semigroups and the concepts of partial actions of inverse semigroups, multiplier
algebras, and partial representation. For a through treatment of these subjects the reader is
referred to[[1/ B[ 4,15,17]. In Sectidn 2, we will introduce the algebraic crossed product, and
we will discuss the conditions under which this construction is associative. In Séttion 3, to
prove our main result, the suitable quotient of the partial semigroup algebra is a sort of crossed
product, we need to define some partial action. To do this, we will show that we can define a
partial representation of an inverse semigréufsom a partial action of it and vice versa. At
the end, we will prove that the suitable quotientof,,.(S) is a sort of crossed product.

2. ALGEBRAIC CROSSEDPRODUCTS

Throughout this work, we will assume théis a unital inverse semigrougl is an associative
algebra, andv is a partial action ofS on A. Let a be a partial action of on an algebra.
Let L = {222“; as6s : as € X,}, the set of all formal finite sums, with the following
multiplication:

(asfss) : (bt(st) = O55(045* (as)bt>6st-
Note thato, (s (as)b;) is an element o, simply because

(o (a)by) € ag(Xoe [ X0) = X, [() X

Thus, the multiplication is well-defined, aridis an algebra with this multiplication. L&t be

the ideal ofL generated by the sé¢td, — ad;, : a € X, r < t}. Note that by[[l, Proposition
3.8] X, C X, if r < t. Now, we are at a position to introduce the algebraic crossed product
A %, S associated to a partial actianas we proposed in the beginning. the algebraic crossed
productA x, S is the algebra)%. Letd: L, — A x, S be the canonical homomorphism from
Lonto A x, S. We will denoted(a,é,) by a,d,.

With the aid of the following pivotal Theorem, we are able to answer the associativity ques-
tion of algebraic crossed product. We will show that the mentioned multiplication is associative
if for eachs € S the idealsX, associated to the partial actionare (L, R)-associative, that is,
whenL o R = Ro L for all multipliers (L, R), (L, R) of X,.

Theorem 2.1.1f « is a partial action of a unital inverse semigrowon an algebra4 such that
eachX; (s € 9) is (L,R)-associative, then the algebraic crossed produst,, S is associative.

Proof. The proof is a slight modification of [3, Theorem 3.4].

As a consequence of Theoflenj2.1, we have the following corollary.
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Corollary 2.2. Leta be a partial action of a unital inverse semigrogjpon an algebra4 such
that eachX; is an idempotent or non-degenerate idealdfor eachs € S. ThenA %, S is
associative.

Proof. This follows from the fact thatZ, R)-associativity is equivalent to the condition of the
Corollary and Theoref 2. .

Definition 2.1. We shall say that an algebré is strongly associative if for any unital inverse
semigroupsS and any partial action o on.4, namelya, the algebraic crossed produdtx,, S
is associative.

As a consequence of Corollgry P.2 we have:

Corollary 2.3. A semiprime algebra& is strongly associative.

3. PARTIAL REPRESENTATIONS

Throughout this section, by we mean a partial representation of an inverse semigfonp
a unital algebrds. For simplicity hereafter, we will denote an elemepd, of A x, S by a,d,.

Lemma 3.1. Suppose that is a partial action ofS on an algebrad, whereX, (the range of
«) Is a unital algebra with the unit element. Thenthe map, : S > s+— 1,6, € A%, Sis
a partial representation.

Proof. First of all, note that since eacX, is unital, it is idempotent, hence, eadh is (L, R)-
associative, thusd x, S is associative by Theorem 2.1. To prove the Lemma;]etbe
elements ofS. Then

Ta($)Ta(8)Ta(t) = 150 1505.140;
= Oés*(ls.]_s)(ss*s.lt(st
(31) = (15* 15*5)58*8-1t6t-

The last equality is obtained from the fact that; is the unit element of the algebra, N X;.
Sincea is a partial action, the equality, (X, N X;) = X, N X implies that

(32) OCS<13*11}) = 1slst‘
By the definition of the multiplication, the right hand side[of {3.1) is equal to
(33) as*s<as*s<1s* 13*5)1t)55*st = as*s(ls*ls*slt>5s*st-

Note thatX,.- C X,., because
Xs* = Qg (Xs N Xs) = Xs* N Xs*s C Xs*s-

Thus, 141, = 14,1+ = 14. The foregoing computations and equatipn](3.2) gives that the
right hand side off (3]3) is equal to

(3.4) | P Y, pe
On the other hand,
Ta($)Ta(st) = 1gdgr. 150
= &s*(as(ls*)lst>5s*st
= Oés*(lslst)5s*st
(3.5) = 1o LoseOnst-
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Comparing|(3.4) and (3.5), one has thals*)m.(s)Ta(t) = Ta(s*)Ta(st). Fors,t € S, we
have

T ()T (t)To(t") = 15051404
= 045(15* 1t)5stt*
(3.6) = LslstLate Osr,
by using [3.2) and the fact thafl,, € X,,~. On the one hand, we have that
Ta(st)Ta(t") = 1s0sp- 1o 04
= Oést(l(st)*lt*)éstt*
= 1stlstt*5stt*-

The last equality is obtained by usirjg (3.2). Sin¢& < s, we have thatX .« C X, by [,
Proposition 3.8], thereforel, ;1«05 = 1514 1+0510+. Thus, the proof is complete if we
compare this equality with (3.6j

Definition 3.1. Two partial representations : S — B andxn’ : S — B’ are isomorphic if
there exists an isomorphism of algebyas 5 — B’ such that

m(s) = ¢(7'(s))

forall s € S.

Remark 3.1. It is easy to see that it and«’ are two isomorphic partial actions férthenn,,
andr,, are isomorphic partial representationssof

Our next goal is to define a partial action from a given partial representation of an inverse
semigroupS. To do this, letr : S — B be a partial representation §finto a /C-algebras.
Considering the elements = 7 (s)n(s*) for s € S, we have the following Lemma.

Lemma 3.2. Lets,t areinS. Then
(i) For givens,tin S, e, ande, are commuting and idempotent elements,

(il) andn(s)e; = egm(s).
Proof. Takings € S, one has that
gses = m(s)m(s")m(s)m(s*) = w(s)7(s*) = &5,

thuse, is idempotent. On the one hand, for € S we have

ea—w@ﬂfhw()
m(s)m(s"t)m (L")
m(s)m(s*t)m(t's)m (s )m(t")
(3.7) = W(SS*t) (t*s)m(s™tt").
Interchanging the role of andt, from the foregoing argument we have that
g5 = m(tt"s)mw(s*t)m(t" ss™)
= m(tt*s)m(s*t)m(t*s)m(s*t)m(t*ss™)
= m(tt"ss*t)m(t*s)m(s™tt" ss™)
= m(ss"tt ) (t*s)m(ss™tt")
= m(ss"t)m(t*s)m(s"tt") = eqey.
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For part (i), lets,t € S, then

m(s)e = w(s)m(t)m(t")
= m(s)m(s")m(s)m(t)m (")
= m(s)m(t)m(t")m(s)7(s")
(3.8) = 7(st)m(t*s")m(s) = egm(s).
|

Let .4 be the commutative subalgebra®fyenerated by ali, (s € S), and for a fixeds € S
setX, = e,4. Now, we can provide a partial action fromas follows:

Lemma 3.3. The mapsy] : X, — X, (s € S) defined byr] (a) = 7(s)an(s*) (a € X,-) are
isomorphisms ok -algebras which determine a partial actier of S on the algebraA.

Proof. For simplicity, leta™ = a. We show thatA is invariant under the map — 7 (s)an(s*)
for eachs € S. SinceA is spanned by elements of the foem...c;, with ¢;...t,, € S. For such
elements, one has that

m(s)ey...e0,m(s") = €gy..Est,m(S)T(5T)
= Eg,.Es1,Es €A
Thus,n(s)An(s*) C A. Now, fors € S,
as(eg) = m(s)esgm(s™)
= 7(s)m(s)m(s)m(s")
= £464 = E,.
Consequently, for the elements of the forgas,, ...c;,, One has that
T(s)egrery e, (™) = EsseEsty---Est, T(S)T(5)
= E€5Es5*Esty---Est, € Xs-

Since X, is spanned by the elements of the forme,, ..., with ¢,...¢,, € S, we have that
as » X — X,. Moreover, it is a homomorphism of algebras. Indeed, taking elements
EgeEty...Er, ANAD = €426, ..., IN X, We see that

as(a)ags(b) = m(s)egey .6, m(s")T(S)EgrEpy .6, T(ST)

= T(8)EsEty---Et, E Eg+Epy -, T(ST)

= m(s)abr(s*) = as(ab).
Obviously, fors € S, ¢, is the identity ofX, anda,(e+) = &5, thus,a, is @ homomorphism of
algebras. Observe that ferc S we haveo,(a,-(g,)) = e, By induction, we shall prove that
(5 O (g (E4E4,-+-E, ) = EEqy---Ey, . FOrM =1,

Q5 0 g (564, ) = as(m(8™)eser, m(5s))

= Qs(Es*5E5+1,€5+)

= T(S)esEgrsEsrt, T(S™)

=7(s)m(s)m(s)m(s*s)m(s*s)m(s™ty)mw(t]s)m(s¥)

= m(s)m(s*)m(ss"s)m(s*s)m(s"t,)mw(t]s)m(s")

— r(s)r(s") () (s Y (b () () ()

= €4E4, -
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Now, suppose that far < k the statement is true. Leje,,...c,, be any element oX,. Then

Qs O Qgr (E5E¢,...E1y ) = Qs O Qlgr (E5E4, ...E1,_, EsEL,)

= (5 0 Qgr (E5E4 ... Ety_, ) Ols O Qg (EsEL, ),

so, the induction hypothesis implies that
Qs O Qgr (E5E¢, ...E1, ) = EsELy---Et,-

Since X is spanned by such elements, we deduce dhat o, is the identity map onX,.
Interchanging the role of and s*, we see thaty,« o « Is the identity map onX,-, hence,
ot = a,, thus,a, is an isomorphism. Let,t € S and write an element € X,. N X, as

S

a = eeg.bwWith b € A. So,
as(a) = m(s)egebm(s™)
= €45+ E5tT(5)b(5¥)
= €555 Em(8)bm(s") € Xy,
where in the last step we have used the facttfiat.An(s*) C A. This givesa (X N X;) C

X, N X, Takingr € X, N X, write z asx = e,e4,b with b € A. Moreover, we can assume
thatb = ¢4,...e;, with ¢,...t,, € S. Note that

eqies = m(st)m(t*s*)m(s)m(s™)
= 7(st)m(t*)m(s")m(s)m(s")
=m(s)m(t)m(t*)m(s*)m(s)m(s")
= ag(eegr).
On the other hand, we have that
T = E5E5E4 ---Eu,
= eseuqm(8)T(s™)EsEL, - E8,,
= 56T (8)EgesEsrty -Egr, T(ST)
= (1850 )s(EssEsvty -+-Esvt,,)
= Q56485+ Egr €514y ---Esrt,, ) -

From the fact that,c g e €504, ... €571, € XN Xy, We haver € a4 (X-NX,), and we deduce
thatQ{S(XS* N Xt) = XS N Xst- Leta € a/t_1<Xt N XS*> - Xt* N Xt*s*- Thenet*a = agy = a,
Sso,

as o ag(a) = ay(m(t)ar(t”)) =

7(st)epam(t*s”)

ag(a)

Thereforeq is a partial action ob on A. 1

Remark 3.2. As in the previous case, it is easy to see tatnda”™ are isomorphic partial
actions ifr andn’ are isomorphic representations.
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Given an inverse semigroup, let7 : S — B be a partial representation Sfinto 5, and
let J be the ideal of5 generated by all elements of the forms) — «(t) wheres,t € S and
s < t. Define the magr : S — 5 by 7(s) = ®(n(s)), where® : B — & is the quotient map.
Obviously,7 is a partial representation 6fon ‘—j.

Proposition 3.4.Letw : S — B be a partial representation of into 5 and suppose that
R is the partial representation mentioned above. Consider the subalgelﬂa@ and
partlal actlona asin Lemm3 Thenthemap: Ax,=S 33 _qads— Y s m(s) €

|s a homomorphism df-algebras such thab.. o 7,z = 7.

Proof. One can easily prove that the map is well-defined. Sinced; (s € S) spanL, it is
enough to show that

¢ﬁ(as5s : btét) = ¢ﬁ(as5s) : ¢ﬁ(bt5t)-

By the definition of¢-, we have

0z (as0; - 0,80) = ¢z (af (o (as)be)dst) = af (o (as)b)7(st).
Sincea™ (a7, (a,)b;) € X, ande, is the identity element ok,
al (ol (as)b) 7 (st) = al (o (as)by)es7(st)

= a7 (al.(as)br)es (s)7 (t)

(5)(077 (as)b)7(s")7(s)7(t)
7(s)(af (as)be)es-7(t)
(s)a (as)bem (t)
(s)7(s")asm(s)be(t)
= a7 ()b (t) = @z (as0s) Pz (bide).

=R

|
=R

|
=R
®

For an inverse semigrou, let Pr(S) be the universal semigroup associatedtoWe will
refer the reader to [1] for more details about®r(

Definition 3.2. Let S be an inverse semigroup. We will denote the semigroup algelita(S)
by K,.-(5), and we will call it partial semigroup algebra.

Obviously, the canonical mag : S 3 s — [s] € K,..(S5) is a partial homomorphism df.

Remark 3.3. Suppose thatr : S — B is a partial homomorphism of in B. Then by [1,

Proposition 2.20], there exists a unique semigroup homomorphismPr(S) — B such that
o1y = m. Now definey : Ko (S) 3 Ysepr(s)ass — Eseprsyasm(s) € B. Obviously,

1 is @ homomorphism and o 1 = 7. On the other hand, if : K,,.(S) — Bis an algebra
homomorphism, thety o 5 is a partial representation 6fin 5.

Theorem 3.5.Let:s be the partial representation as mentioned above. Considering the partial
representationy and the commutative subalgeh#aof ”‘”‘ generated by all elements =

rs(s)rs(s*) defined in Prop05|t|o.4, we will prove thétxabs S is isomorphic to%().

Proof. By Lemma[3.1l7,5 : S 5 s — &0, € A x5 S is a partial representation ¢f on
A x5 S. Now, by Remark 3]3, there exists: K., (S) — A %,z S such thaw) o iy = 7.,
i.ey([s]) = £:65. Fors € S, we have

Pz 0 P([s]) = 05 (€:0s) = Eutis(s) = [s][s™][s] = [s]-
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Consequentlyp,-, o ¢ = id,,,(s)- By definition of J, an element of/ has the forms| — [t]
wheres < t. So,¢([s] — [t]) = €05 — €:0; Wheres < t, but this is an element of the ideal
generated by the elements of the fartp — ad, wherer < k anda € X,.. So, factors through

the quotient*2=%) /50,6 - is a surjective homomorphism. On the other hand, by the definition
X, for eachs € S, is spanned by the element of the fofgay, . . . .. e;, . Fors € S, we have

€045+ 0gx = af(ag:i(és)eg*)éss*
Us(8)Ests(8)Esw)0ssr

[s][s][s"][sles~)

— ots
= a4

U~ A/~

Thus,

= ([s][s"][t][t1].- - [ta) (£ ) [s])
= E30465+05%...61,04,61,0p: 50
= E4016¢,01...€1,01E505

= E4&¢...1,05s.

Thus,y o ¢, is also the identity map, by consequengg, is an isomorphismg
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