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ABSTRACT. In this paper, we propose a novel strategy for proving an important inequality for
a contraction integral equations. The obtained inequality allows us to express our iterative algo-
rithm using a "for loop" rather than a "while loop". The main tool used in this paper is the fixed
point theorem in the Lebesgue space. Also, a numerical example shows the efficiency and the
accuracy of the proposed scheme.
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1. I NTRODUCTION

Solutions of integral equations play a major role in the many fields of science and engineering
[14, 23]. Usually, physical events are modeled by a differential equation, an integral or an
integro-differential equation, or combinations them [6, 10]. Since few of these equations can
not be solved explicitly, it is often necessary to resort to numerical techniques [3, 18]. There
are several numerical methods for solving integral equations, such as Galerkin’s method [11],
collocation method[7], Taylor series [19], Legendre wavelets [20, 29], Jacobi polynomials [16],
homotopy perturbation [5, 13, 25], block-pulse functions [21], expansion [27, 28], and recently,
Chebyshev polynomials [9]. On the other hand, investigations on existence theorems for diverse
functional-integral equations have been presented in other references such as [1, 2, 5, 8, 12, 15,
17, 22, 24]. It seems that the method presented in this paper has a best stopping rule for iterative
algorithm in integral equation comparison with other researches.

The paper is organized as follows. In Section 2, by using the weighted norm method, a
contraction mapping is obtained. Thereafter in Section 3, by a simple technique, the stopping
rule for our iterative algorithm has been introduced. Finally, we report numerical results and
demonstrate the efficiency and the accuracy of the proposed scheme by considering a numerical
example in Section 4.

In this paper, we intend to prove the existence and the uniqueness of solutions of the nonho-
mogeneous nonlinear Volterra integral equations of the form

(1.1) x(t) = f(t) + ϕ
( ∫ t

0

F (t, s, x(s))ds
)
.

Here, we consider the following hypothesises:
(H.1) f ∈ Lp(I, R) for I := {t ∈ R : 0 ≤ t ≤ 1} andp > 1,
(H.2) F : T × R → R is measurable, whereT := {(t, s) ∈ I × I : t ≤ s}.
We further assume that:
(H.3) the functiont 7→

∫ t

0
F (t, s, f(s))ds belongs toLp(I, R);

(H.4) |F (t, s, x) − F (t, s, y)| ≤ L(t, s)|x − y|, x, y ∈ R, (t, s) ∈ T , whereL is a nonnegative
and measurable function for which

M(t) :=
( ∫ t

0

Lq(t, s)ds
) p

q
, t ∈ I,

1

p
+

1

q
= 1

exists and is integrable overI.
(H.5) ϕ is Lipschitz, that is, there existsα > 0 such that for allx, y ∈ R, |ϕ(x) − ϕ(y)| ≤
α|x− y|.

Remark 1.1. It is important to note that in the condition (H.5), the functionϕ is not necessary
to be linear. For exampleϕ(x) can be chosensin(x) or arctan(x).

There are many papers dealing with the existence and the uniqueness results for integral
equations. However, these equations are usually discussed in the space of continuous functions
[2, 12, 24]. In this note, we extend the Volterra integral equation and discuss its solutions inLp

spaces. To this end, we use the weighted norm method instead of the successive approximation
method. In the reminder of this section, we recall some basic results which we will need in this
paper.
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Let ω : I → R+, R+ = (0, +∞), be a continuous function.
Put

(1.2) ‖u‖p,ω =
(

sup
{

ω−1(x)

∫ x

0

|u(s)|pds; x ∈ I
}) 1

p
.

Note that forω ≡ 1 we obtain the classical norm‖u‖p which makesLp(I, R) become a Banach
space. In general, it is easy to see that (1.2) defines a norm for anyω. Indeed, multiplying the

Minkowski inequality by
(
ω(x)

)−1
p

we obtain

(
ω−1(x)

∫ x

0

|u(s) + v(s)|pds
) 1

p ≤
(
ω−1(x)

∫ x

0

|u(s)|pds
) 1

p

+
(
ω−1(x)

∫ x

0

|v(s)|pds
) 1

p
.

Now, taking the supremum with respect tox ∈ I, we obtain the triangle inequality

‖u + v‖p,ω ≤ ‖u‖p,ω + ‖v‖p,ω.

It is clear that‖.‖p,ω has the other norm properties. Moreover, the inequality

c1.‖u‖p ≤ ‖u‖p,ω ≤ c2.‖u‖p

is true for

c1 =
(

sup{ω(x) : x ∈ I}
)−1

p
, c2 =

(
inf{ω(x) : x ∈ I}

)−1
p

.

This means that the norm‖.‖p,ω is equivalent to‖.‖p.

2. A CONTRACTION MAPPING FOR THE INTEGRAL EQUATIONS IN Lp(I, R)

In this section, we prove thatF defined by the right hand side of the equation (1.1), is a
contraction with respect to the special norm‖.‖p,ωλ

that is defined in the following theorem.

Theorem 2.1. Consider equation (1.1) satisfiying hypothesises(H.1) − (H.5). LetF be an
operatoe defined by the right hand side of equation (1.1) which is a contraction inLp(I, R)
with respect to the norm‖.‖p,ωλ

, whereλ is sufficiently large andωλ is defined by

(2.1) ωλ(x) = exp
(
λ

∫ x

0

M(s)ds
)
, M(s) =

( ∫ s

0

Lq(s, t)dt
) p

q
, λ > 1.

The equation (1) has a unique solutionu∗ ∈ Lp(I, R), which is the limit inLp(I, R) of the
sequence of iteration{Fnu0}, for anyu0 in Lp(I, R).
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Proof. First of all, one can observe thatF(Lp(I, R)) ⊂ Lp(I, R). Now, by using Hölder in-
equality we obtain∣∣∣Fu(t)−Fv(t)

∣∣∣p ≤ ∣∣∣ϕ( ∫ t

0

F (t, s, u(s))ds
)
− ϕ

( ∫ t

0

F (t, s, v(s))ds
)∣∣∣p

≤ αp
∣∣∣( ∫ t

0

F (t, s, u(s))ds−
∫ t

0

F (t, s, v(s))ds
)∣∣∣p

≤ αp
( ∫ t

0

L(t, s)|u(s)− v(s)|ds
)p

≤ αp
( ∫ t

0

Lq(t, s)ds
) p

q
.

∫ t

0

|u(s)− v(s)|pds

≤ αpM(t)

∫ t

0

|u(s)− v(s)|pds.

Then, by integrating with respect tot we have∫ x

0

∣∣∣Fu(t)−Fv(t)
∣∣∣pdt

≤
∫ x

0

(
αpM(t)

∫ t

0

|u(s)− v(s)|pds
)
dt

=

∫ x

0

[
αpM(t) exp

(
λ

∫ t

0

M(s)ds
)

exp
(
− λ

∫ t

0

M(s)ds
) ∫ t

0

|u(s)− v(s)|pds
]
dt

≤αp‖u− v‖p
p,ωλ

.

∫ x

0

M(t) exp
(
λ

∫ t

0

M(s)ds
)
dt

≤ αp

λ
‖u− v‖p

p,ωλ
exp

(
λ

∫ x

0

M(s)ds
)
.

Last inequality implies that

exp
(
− λ

∫ x

0

M(s)ds
)
.

∫ x

0

∣∣∣Fu(t)−Fv(t)
∣∣∣pdt ≤ αp

λ
‖u− v‖p

p,ωλ
,

which means that

‖Fu−Fv‖p
p,ωλ

≤ αp

λ
‖u− v‖p

p,ωλ
,

and

(2.2) ‖Fu−Fv‖p,ωλ
≤ Kλ.‖u− v‖p,ωλ

,

with Kλ = p

√
αp

λ
. It is clear that the operatorF is a contraction inLp(I, R) if λ is sufficiently

large. The final assertion of the theorem is an obvious consequence of Banach contraction
mapping principle.

3. M AIN RESULT

Let p > 1 be arbitrary. Supposeλ is the smallest positive integer number for whichF is a
contraction with respect to‖.‖p,ωλ

.
By using (2.2) form times,m ≥ 1 we obtain

‖Fmu1 −Fmu2‖p,ωλ
≤ Km

λ .‖u1 − u2‖p,ωλ
.

Triangle inequality, yields

‖u1 − u2‖p,ωλ
≤ ‖u1 −Fu1‖p,ωλ

+ ‖Fu1 −Fu2‖p,ωλ
+ ‖Fu2 − u2‖p,ωλ

.
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So, we have

(3.1) ‖u1 − u2‖p,ωλ
≤ 1

1−Kλ

(
‖u1 −Fu1‖p,ωλ

+ ‖u2 −Fu2‖p,ωλ

)
.

In particular, ifu1 andu2 are the fixed points ofF , we get‖u1 − u2‖p,ωλ
= 0. This shows that

the contraction mappingF has at most one fixed point. For anyu ∈ (Lp(I, R), ‖.‖p,ωλ
), by

lettingu1 = Fnu andu2 = Fmu in (3.1) we find that

‖Fnu−Fmu‖p,ωλ
≤ 1

1−Kλ

(
‖Fnu−Fn(Fu)‖p,ωλ

+ ‖Fmu−Fm(Fu)‖p,ωλ

)
≤ Kn

λ + Km
λ

1−Kλ

‖Fu− u‖p,ωλ
.

Because0 < Kλ < 1, we haveKn
λ → 0 asn tends to infinity. Hence‖Fnu−Fmu‖p,ωλ

→ 0 as
n andm tend to infinity, that isFnu is a cauchy sequence. Since(Lp(I, R), ‖.‖p,ωλ

) is a Banach
space, there existsu∗ ∈ Lp(I, R) for which{Fnu} converges tou∗, which completes the proof.
The stopping rule : Now, by lettingm tend to infinity in the abovementioned inequality, the
following important inequality is obtained

(3.2) ‖Fnu− u∗‖p,ωλ
≤ Kn

λ

1−Kλ

‖Fu− u‖p,ωλ
.

Let us explain the importance of the inequality (3.2). Suppose we are willing to accept an
error of ε, i.e., instead of the actual fixed pointu∗ of F , we will be satisfied with a pointFnu
satisfying‖Fnu − u∗‖p,ωλ

< ε, and suppose also that we start our iteration at some point
u0 in Lp(I, R). Since we need‖Fnu0 − u∗‖p,ωλ

< ε, we just must takeNλ so large that
K

Nλ
λ

1−Kλ
‖Fu0−u0‖p,ωλ

< ε. Now, the quantity‖Fu0−u0‖p,ωλ
is something that we can compute

after the first iteration and we can then compute how largeNλ has to be by taking thelog of the
above inequality and solving forNλ (note thatlog(Kλ) is negative). The result is

Nλ >
log(ε) + log(1−Kλ)− log(βλ)

log(Kλ)
,

whereβλ := ‖Fu0 − u0‖p,ωλ
. From a practical programming point of view, this inequality al-

lows us to express our iterative algorithm with a "for loop" rather than a "while loop", but it has
another interesting interpretation. Suppose we takeε = 10−m in our stopping rule inequality.
What we see is that the growth ofNλ with m is a constant plus m

| log(Kλ)| , or in other words, to

get one more decimal digit of precision we have to do (approximately)1| log(Kλ)| more iteration
steps. Stated differently, if we needNλ iterative steps to getm decimal digits of precision, then
we need anotherNλ to double the precision to2m digits.

4. A NUMERICAL EXAMPLE

In this section, we present an example of classical integral and functional equations which are
particular cases of (1.1), and subsequently, for some initial guesses, the values of the parameters
have been calculated.

Example 4.1. ( [26]) Consider the following linear Volterra integral equation

(4.1) u(t) = f(t)−
∫ t

0

sin(2(t− s))u(s)ds, t ∈ I.
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The exact solution is

u(t) = f(t)− 2√
6

∫ t

0

sin(
√

6(t− s))f(s)ds.

In particular, for f(t) = cos(t), this solution becomesu∗(t) = 0.6 cos(t) + 0.4 cos(
√

6t). Now,
by takingε = 10−m, we guess that afterNλ iterative steps,m decimal digits of precision must be
obtained. In Table 4.1, for some initial guessesu0, the values of the parameters are calculated.

U0 ε p q λ Kλ βλ Nλ ‖U∗ − UNλ
‖p,ωλ

cos(t) 10−6 2 2 50 0.1414 0.0050 5 2.5003e− 010
t 10−4 2 2 40 0.1581 0.0739 4 3.3858e− 006
1 10−8 2 2 30 0.1825 0.0939 10 6.4212e− 017

Table 1: Numerical results for Example 4.1.
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