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ABSTRACT. In this paper, we propose a novel strategy for proving an important inequality for
a contraction integral equations. The obtained inequality allows us to express our iterative algo-
rithm using a "for loop" rather than a "while loop". The main tool used in this paper is the fixed

point theorem in the Lebesgue space. Also, a numerical example shows the efficiency and the
accuracy of the proposed scheme.
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1. INTRODUCTION

Solutions of integral equations play a major role in the many fields of science and engineering
[14,[23]. Usually, physical events are modeled by a differential equation, an integral or an
integro-differential equation, or combinations them([6, 10]. Since few of these equations can
not be solved explicitly, it is often necessary to resort to numerical technigues! [3, 18]. There
are several numerical methods for solving integral equations, such as Galerkin’s method [11],
collocation method]7], Taylor series [19], Legendre wavelets[[20, 29], Jacobi polynomials [16],
homotopy perturbation [5, 13, 25], block-pulse functions [21], expansicn [27, 28], and recently,
Chebyshev polynomials[9]. On the other hand, investigations on existence theorems for diverse
functional-integral equations have been presented in other references such as 1, 2,/5,/8, 12, 15,
17,[22]24]. It seems that the method presented in this paper has a best stopping rule for iterative
algorithm in integral equation comparison with other researches.

The paper is organized as follows. In Sectjion 2, by using the weighted norm method, a
contraction mapping is obtained. Thereafter in Sedtion 3, by a simple technique, the stopping
rule for our iterative algorithm has been introduced. Finally, we report numerical results and
demonstrate the efficiency and the accuracy of the proposed scheme by considering a numerical
example in Section|4.

In this paper, we intend to prove the existence and the uniqueness of solutions of the nonho-
mogeneous nonlinear Volterra integral equations of the form

(1.1) () = f(1) +g0</0tF(t,s,a:(s))ds>.

Here, we consider the following hypothesises:
H1)feLP(I,R)for:=={teR:0<t<1}andp > 1,

(H.2) F: T x R — Ris measurable, whefE := {(t,s) € I x [ : t < s}.

We further assume that:

(H.3) the functiort — | F'(t, s, f(s))ds belongs toL”(I, R);

(H.4) |F(t,s,z) — F(t,s,y)| < L(t,s)|lz — y|, z,y € R, (t,s) € T, whereL is a nonnegative
and measurable function for which

! z 11
M(t) = (/ Lt s)ds) "t e LT+ =1
0 p q
exists and is integrable ovér
(H.5) ¢ is Lipschitz, that is, there exists > 0 such that for alle,y € R, |¢(z) — ¢(y)] <
alz —yl.

Remark 1.1. It is important to note that in the condition (H.5), the functipins not necessary
to be linear. For example(x) can be chosesin(z) or arctan(x).

There are many papers dealing with the existence and the uniqueness results for integral
equations. However, these equations are usually discussed in the space of continuous functions
[2,[12,/24]. In this note, we extend the Volterra integral equation and discuss its solutibhs in
spaces. To this end, we use the weighted norm method instead of the successive approximation
method. In the reminder of this section, we recall some basic results which we will need in this
paper.
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Letw: I — R, ,R, = (0,+00), be a continuous function.
Put

(1.2) fullo = (sup { / lu(s)[Pds: 1})

Note that forv = 1 we obtain the classical norfn||, which makes.?(I, R) become a Banach
space. In general, it is easy to see that|(1.2) defines a norm fes.amgleed, multiplying the
-1

Minkowski inequality by(w(x)) " we obtain

(7@ [ Tuts) + ols)ras) %g @) [ lats)pas)”
1 x)/o o(s)lPds) P

Now, taking the supremum with respectitee 7, we obtain the triangle inequality
[u+ 0l < llullpew + 10]lpe-
It is clear that].|,, ., has the other norm properties. Moreover, the inequality
crflully < lullpew < co-flully
is true for
=1 =1
01:<sup{w( ) : xEI})p —<inf{w( ) : xEI})p

This means that the norfn||, ., is equivalent td|.||,..

2. A CONTRACTION MAPPING FOR THE INTEGRAL EQUATIONS IN LP(I,R)

In this section, we prove thak defined by the right hand side of the equatipn](1.1), is a
contraction with respect to the special noj, ., that is defined in the following theorem.

Theorem 2.1. Consider equation (1]1) satisfiying hypothesisBsl) — (H.5). LetF be an
operatoe defined by the right hand side of equatjon| (1.1) which is a contractiéf(ihR)
with respect to the norm.||,,...,, where\ is sufficiently large and, is defined by

(2.1) wi(z) = exp</\ /093 M(s)ds),M(s) = (/05 Lq(s,t)dt)g,)\ > 1.

The equation (1) has a unique solutieh € L?(I,R), which is the limit inL?(1,R) of the
sequence of iteratiofiF " }, for anyug in LP(1,R).
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Proof. First of all, one can observe th&(L?(I,R)) C LP(I,R). Now, by using Holder in-
equality we obtain

Fu(t) — Folt ) < ‘(p(/ F(t,s,u(s))ds) —gp(/{jF(t,s,v(s))ds) "

(/OtF(taSaU(s))ds — /Ot F(t,s,v(s))d5> ?

< oﬂ”(/ot L(t, s)|u(s) — 'U(s)\ds)p

< ap</0t Lq(t,s)ds>§,/0t lu(s) — v(s)|Pds

< apM(t)/O lu(s) — v(s)|Pds.

Then, by integrating with respect tave have

J
T t

< / <osz(t) / |u(s)—v(s)|pds>dt
0

:/ [apM()eXp /M ds exp /M ds /]u — |pds]t
0

<af|lu—wv|P .. / M (t) exp /M ds dt

<a”

Fult) — Fo(t) ‘pdt

<—||u—v||pwexp )\/ M(s)ds :
0

Last inequality implies that

exp(—)\/OwM(s)ds)./Oz

which means that

(t) ~ Foo)| dt < & ju— ol

pwA?

[Fu—Follpo, < —Hu —vliy

pwx — p,wy?

and

(2.2) [Fu = Follpw, < K flu=vllpw,,

with K, = {/0‘—; It is clear that the operatdF is a contraction in.”(1,R) if X is sufficiently

large. The final assertion of the theorem is an obvious consequence of Banach contraction
mapping principley

3. MAIN RESULT

Letp > 1 be arbitrary. Supposg is the smallest positive integer number for whi€hs a
contraction with respect th ||, ., -
By using [2.2) form times,m > 1 we obtain

[F™ur — F gy, < K3 [ur — uzf[pw,-
Triangle inequality, yields

lur — usllpwy < [Jur — Furllpw, + [ Fur — Fugllpw, + || Fuz — uallpw, -
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So, we have

1
(3.1) [ur = ualpw, < — K,
In particular, ifu; andu, are the fixed points of, we get||u; — usl|, ., = 0. This shows that
the contraction mapping has at most one fixed point. For anye (LP(I,R),|.||,,), by
letting u; = F"u anduy = F™u in (3.7)) we find that

1
< 1oz (17 = P F) o + 17 = P (F) )

KTL K'ITL
< 1—||:fu s
Becaus® < K < 1, we haveK} — 0 asn tends to infinity. Henc§F"u — F™u||,., — 0as
n andm tend to infinity, that iSF™« is a cauchy sequence. Sinde (I, R), ||.||,.., ) iS a Banach
space, there exists' € L?(I,R) for which { #"u} converges ta*, which completes the proof.
The stopping rule : Now, by lettingm tend to infinity in the abovementioned inequality, the
following important inequality is obtained

(Il = Pl + 1z = Ftafp ).

1F" 0 = Fullpwy

(3.2) 177 = oy € = 1P =

Let us explain the importance of the inequality (3.2). Suppose we are willing to accept an
error ofe, i.e., instead of the actual fixed poiat of F, we will be satisfied with a poinF"u
satisfying || F"u — u*||,., < €, and suppose also that we start our iteration at some point
uo in LP(I,R). Since we needF"uy — u*||,., < € We just must takeV, so large that

1 g |7—“u0 Upl|pw, < €. NOw, the quantity| Fug — uo||,.., iS SOmething that we can compute
after the first iteration and we can then compute how la¥gdas to be by taking theg of the
above inequality and solving fav, (note thatiog( X)) is negative). The result is

log(e) +log(1 — K)) —log(83,)
log(K)) ’

wheres, = || Fuy — uol|pw,- From a practical programming point of view, this inequality al-
lows us to express our iterative algorithm with a "for loop" rather than a "while loop", but it has
another interesting interpretation. Suppose we take10~" in our stopping rule inequality.
What we see is that the growth of, with m is a constant plum, or in other words, to

get one more decimal digit of precision we have to do (approximaigi —; more iteration

steps. Stated differently, if we neéd, iterative steps to get: decimal digits of precision, then
we need anotheN, to double the precision tom digits.

Ny >

4. A NUMERICAL EXAMPLE

In this section, we present an example of classical integral and functional equations which are
particular cases of (1.1), and subsequently, for some initial guesses, the values of the parameters
have been calculated.

Example 4.1.( [26]) Consider the following linear Volterra integral equation

4.1) u(t) = f(t) — /0 sin(2(t — s))u(s)ds, tel.
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The exact solution is

t

ult) = F(t) % [ sin(v6(e = ) (5)ds.

In particular, for f(t) = cos(t), this solution becomes(t) = 0.6 cos(t) + 0.4 cos(y/6t). Now,
by takinge = 10", we guess that afte¥,, iterative stepsyn decimal digits of precision must be
obtained. In Tablg 4|1, for some initial guessgsthe values of the parameters are calculated.

L O [ e [pla[A] K [ By [N[IU —Unillpes |
cos(t) | 100 [ 2] 2|50 0.1414 | 0.0050 ] 5 | 2.5003¢ — 010

t 1077 1212]40[0.1581 [ 0.0739 [ 4 | 3.3858¢ — 006
1 1078[2[2[30]0.1825]0.0939 | 10 | 6.4212¢ — 017

Table 1: Numerical results for Examgle #.1.
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