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2 VASILIY A. PROKHOROV

1. INTRODUCTION

1.1. Rational approximation of a power series. Padé approximation.Let f be a function
analytic at the point = 0. We represent the functiofi in some neighborhood of the point
z = 0 by a convergent power series

(1.1) F2) =Y "
k=0

Denote byR, the radius of convergence of the power seffies| (1.1). Ihet= {z : |z| < Ry}
be the disk of convergence. Here and in what follows we assumeithat 1. One of the
classical constructive methods of approximation of analytic functions given by a power series
is the Padé approximation (see the monograph [3] and the references therein, and also [4], [8],
[9], [16], [17], [18]). This method is a method of rational approximation with free poles (there
is no restriction on poles). Padé approximants are locally the best rational approximants to a
given power series and constructed in terms of its coefficients. These approximants localize
the singular points of a function determined by the power series and enable us to obtain, under
certain conditions, an efficient analytic continuation of the power series beyond its circle of
convergence.

For any nonnegative integerdenote byP, the class of all polynomials of degree at most
n. Letn andm be nonnegative integers. The Padé approximant:| of type (n, m) of the
function f given by power serie§ (1.1) is the unique rational funcfiofin] = p/q,p € P,,, ¢ €
P,., g # 0, satisfying the following relation:

(1.2) (qaf —p)(z) = A"l

It is easy to see that polynomials

fnferl fnferQ QR fn+1
) =detll e o fam |
zm zm b 1

and
n

p(z) = S (ae,

k=0

where(qf)y is thek-th coefficient of the power series of the functigf, satisfy formula[(1.R).
The table{[n/m]};°,,—, is called the Padé table of the functign The sequencé[n/m]}2,,
where a nonnegative integer is fixed, is called then-th row of the Padé table.

In the present article we consider a constructive method of approximation of analytic func-
tions given by a power serigs (IL.1). The corresponding method is based on ideas of the theory
of Hankel operators. As Padé approximants, these approximants are rational functions and
constructed in terms of the coefficienfs of the power serieg (1.1). Fix nonnegative integers
n andm. There arem + 1 rational approximant®?/Q, P € P,, @ € P,,, Q # 0, of
the functionf given by power serie$ (1.1), satisfying the following relation on the unit circle

I'={z:]z| =1}

(Qf—P)(Z) _ Swzn—km-‘rl _|_Azn+m+2_|_ e
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where constants are singular numbers of the matrix

fn+m+1 fn+m cee fn—i—l
fn+m fnerfl s fn
fn+1 fn s fn—m+1

In this paper we define the Hankel operator,, , on the clas®,, of all polynomials of degree

at mostm and use singular numbers and eigenfunction®ef, ,, to obtain rational approxi-
mantsP/Q). The main results include the proof of an analogue of the AAK theorem([1], [2]
and an investigation of asymptotics of singular numbers of the Hankel opépator,, when

m is fixed andn — oco. Moreover, we study convergence of the corresponding rational approx-
imants tof under the same conditions:( is fixed andn — oo). The corresponding results are
analogues of classical theorems of Montessus de Ballore and Gonchar related to convergence
of rows of Padé approximants.

1.2. Convergence of rows of Padé approximants and Hadamard’s theoremLet m be a
positive integer. Denote by,, the maximal open disk with center at= 0 in which the
function f is meromorphic and has at most poles (counting multiplicities). LeR,, be the
radius ofD,,. Iteasytoseetha®y < Ry < Ry...,andDy C D; C Dy, C ....

The classical Montessus de Ballore’s theorem [13], [3] solves the problem of meromorphic
recovery of a functiory given by the power serief (1.1) in the case when the funcfibas
exactlym,m > 1, poles in the open disk,,,.

Montessus de Ballore’s theorem

Letm > 1. Suppose that a functiofi has exactlym polesay, ..., «a,, in the diskD,,.
Then the sequencdn/m|}:°, converges uniformly to the functiohon compact subsets of
Dy \{a1,...,a,} asn — oco. Moreover, for sufficiently large the Padé approximarit. /m]
has exactlyn poles and for each pole; of f of multiplicity/, [ > 1, exactlyl poles of[n/m]
converges te; asn — oo.

The general case was investigated by Gonchar [8] (for definitionammost uniform con-
vergence of rational functions see subsedtion 4.2).

Gonchar’s theorem

Letm > 1. The sequencfn/m]}> , convergesr-almost uniformly inside,,, asn — oo.

Let n be a nonnegative integer. For an analytic functfogiven by a power serie§ (1.1) we
denote byk,, ., the symmetrien x m matrix constructed by the coefficients pf (1.1):

fn+m—1 fn+m—2 fn

(1 3) K . fn+m—2 fn+m—3 s fn—l

fn fnfl o e fnferl
(we setf;, = 0 for k < 0). We remark thaf<,, ; = f,, for all n. For any positive integer: let
I, = limsup | det(Kn,m)\l/”,

n—oo

and letly, = 1 for m = 0. The Hadamard's theorem [10],/ [5] states that the r&jican be
expressed in terms @f,.

Hadamard’s theorem

We have
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Here we assume thdt,, = oo, if [y,...,l,, # 0 andl,,; = 0. It directly follows from
Hadamard’s theorem that fot > 1
1

1.3. Auxiliary results. The AAK theorem. LetG = {z : |z| < 1} be the open unit disk with
the boundary™. We assume thdt is positively oriented with respect {@. Denote byl the
circle with center at the point = 0 and radiusk > 0. For any compact set’ in the complex
planeC and any continuous functiop on K denote by||¢||x the norm ofy in the uniform
metric onK:

el = max |o(2)].

Let L,(I'), 1 < p < oo, be the Lebesgue space of functignmeasurable oft, with the norm

ol = (s [leepas)

Denote by(y, 1), the inner product in the Hilbert spaég(I’) :

1 —
(o) = 5= [P0, o0 € La(r).
T Jr
Let L..(I") be the space of essentially boundedtiunctionsy, endowed with the norm

lelloo = ess Sup lp(t)| < co.

It easy to see that for anye P,,,

(1.5) [Ipll2 < [[plloe < (m + D]Ipl[2-

Let H,(G),1 < p < oo, be the Hardy space of analytic functions @n Here and in what
follows we considet{,(G) as a subspace of the spdcgl’) (see[[6], [12] for more details).
We represent.,(T') as the direct suni,(I') = Ho(G) @ Hy (G), where Hy (G) is the
orthogonal complement af»(G) in Ly(I'). We mention the following characteristic of the
subspacédfy (G):
Leta € Ly(T). Thena € Hy (G) if and only if there exists a functidne H,(G) such that

a(t) = @ = @ZZ—: a.e.on T.

Let a functiong be continuous of’. The Hankel operator, : Hy(G) — H; (G) with
symbolg is the composition of the operator of multiplication gnd the orthogonal projection
P_ from L,(T) onto Hy- (G):

Agp =P_(¢g), ¢ € Hy(G).

Note that4, is a compact operator.
Let A : X — Y be a compact linear operator, wheXeandY™ are the Hilbert spaces. For
any nonnegative integerdenote bys,, (A) then-th singular numbeof the operatorA:

$u(A) = inf[|A ~ K],

where the infimum is taken over all linear operatéis X — Y of rank at most:, and|| - ||
is the norm of the corresponding linear operator. We remark that the seq{iejieB}, n =

AJMAA Vol. 12, No. 1, Art. 4, pp. 1-15, 2015 AJMAA


http://ajmaa.org

ON SOME CONSTRUCTIVEMETHOD OF RATIONAL APPROXIMATION 5

0,1,2,..., coincides with the sequence of eigenvalues (counting multiplicity) of the operator
(A*A)Y/2 whereA* : Y — X is the adjoint ofA. The following formula is valid:
(1.6) sa(A) = inf [ ALx, I

where the infimum is taken over all subspacés, of codimensiom: of X (see [7], [11] for
more details).

Let g be continuous of’. The Adamyan-Arov-Krein theoreml[1],/[2] establishes a connec-
tion between a singular numbess(A,) of the Hankel operator, and the errors\,, of the
meromorphic approximation of in the spaced...(I") by functions from the clasMl,(G) =
R, + Hx(G), where

R.m={r=p/qg, p€P,(G),q € Py, ¢#0}

Let
A, = inf — h|so-
vty 171
The AAK theorem states that for all=0,1,2, ...,

sn(Ay) = A,

We note that in[[14] a generalization of the AAK theorem for multiply connected domains is
proved.

2. THE DISCRETE HANKEL OPERATOR

2.1. Definition. As above, we assume thAts analytic inDy = {z : |z] < Ry}, Ry > 1. Fix
nonnegative integers andm. For any polynomiaty € P, we represent the produetf in the
open diskD, as a sum of the power series:
(af)(2) =D (af);,
7=0
where(af); is the j-th coefficient of the power series of the functiari. We can rewrite the
last formula as

(2.1) (af = B)(2) = nfl(af)jzj + 2" 2e(z),
where -

(2.2) B(z) = i(afw-

and ”

(2.3) o) = f}(af>j+n+m+gzj.
Therefore, on the unit circlE we obtainjthoat

(2.4) (O‘i; :m@(t) = @ +e(t),

where

(2.5) p(t) = Zm;mtm
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We now define an operatdpy,,,. Let Hy, (G) be a(m + 1)-dimensional subspace of
H3-(G) defined as follows:
ids
dt

The operatoDy . ,, : P, — Him(G) is the composition of the operator of multiplication by a
function f /t"*™+2 and the orthogonal projectidn,, from L,(T') onto Hy,,(G):

af
Df,m,nOé = Pm (tn-‘r—mﬁ> s o € Pm

We have the following formula

H3,(G) ={a € Ly(T) : a(t) = @ = b(t) aeonT, beP,}

(2.6) (D mnct)(t) = % —c(t), teT,

whereg andc are given by[(2.2) andl (3.3), respectively. We remark that the funci®analytic
in Dyg.
Let us consider an antilinear operafeyf ,,, , : P,, — P,, that is defined by
Bf»m»na = p7 (OAS Pma

where the polynomiab is given by [(2.5) (compare with [15], where the corresponding operator
B, : Hy(G)) — H,(G) is defined for the Hankel operatdr,). We can now write

Bimna 1ds
(27) Df,mma = ‘ = Bf7m7n04 it on TI.
By 2.4),
(af = B)(t) = (Bpna) ()" 4 g tm 20yt €T,
and
(of =B)t) _ m——~7 s

2.2. Symmetric bilinear form. Define the bilinear symmetric forfa, v|] for a pair of polyno-

mialsu, v € P,,: w )t
1 uv f)(t)dt
I

R A
From (2.6) and[(2]7) it may be concluded that
(2.9) [u,v] = (U, Bfmat)y = (U, Bfmat),,
and
(2.10) [u,v] = <Df7m7nu,6 %>2 = <Df7m7nv,ﬂ Zj—:>2
Lemma 2.1. We have
(2.11) B}%’m’n = D;,m,an,m,m
whereD; . Hj,.(G) — P, is the adjoint ofDy ,, .

Proof. Applying (2.7), we can assert that for anyv € P,,,

(Dfmntts Dmnv)y = (Bfmnt, Brmnt)y
and (se€/(2]9)),
* 2
<u, Df7m7an,m,nv>2 = <u, Bf7m7nv>2 .
From this we gef{(Z2.11n
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Let Skmn = Sk,m,n(Df,m,n)7 k= 0, oo, m,
S0,m;n = > S1,m,n Z > Sm,m,n,

be the smgular numbers numbers[of,, ,, that are eigenvalues QD* Dfmn)l/2 and let

Qrmn, k=0,...,m, be associated orthonormal polynomials (compare with [15]):
(212) Bf,m,an,m,n = Sk,m,an,m,n
and g
— 1as
Df,m,an,m,n = Sk,m,n@]{;’m’n E
By (2.8) and[(2.12),
(Qkﬁn,nf - Pk,m,n)(t) —Zd

(213) frtm2 = Sk,m,an,m,n( ) dt Okmn( ) te F,
where .

Pk,m,n(t) = Z(Qk,m,nf)jtj

§j=0
and .
Ck:,m,n (t) = Z(Qk,m,nf)j+m+n+2tj-
=0
From (2.13), using the Cauchy integral theorem, we obtain that for any polynoraid?,,,,
1 (an,m,nf) (t)dt Sk,m,n -

(2.14) [, Q] = %/F PP = /F(an,m,n)(t) ds.
We can rewrite[(2.14) in the form
(215) [OJ, Qk,m,n] = 3k,m,n<aa Qk,m,n)?a (OAS Pm
So, the polynomialg);. .., , are characterized by the double orthogonality conditions:
(216) [szm@gmn]—szmn ij <sznaQymn> :5z’j7

whered,; is the Kroneker symbol.

2.3. A symmetric matrix. Set

m

Qk,m,n(z> = Z ai,kzi'

=0
Lettinga(t) =t,1 =0,...,min (2.14), and taking into account that

1 —
(2.17) — [ t'tV ds = 4y,
21 Jr
and
. f(t)dt
v 27T7/ T ti+1 ’
we get
(2.18) Z Uik frtma1—(i41) = SkmnQlk-
1=0
Let
ap,k
A =
A,k
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By (1.3), K\,11.m+1 is the following symmetric matrix constructed from the coefficiefats

fn+m+1 fn+m s fn+1
fn+m fnerfl s fn
Kn+1.m+1 = . . . .
fn+1 fn ce e fn—m-‘,—l

Using (2.18) and (2.16), we can see that forkad 0, ..., m, sy ., andAy are singular values
and singular vectors of the matri,, 1 ,,11:

Kn+1,m+1Ak = Sk,m,nA_k:a

and vectors4,, ..., A,,, are orthonormal
(A, Aj) =6
where< u, v > is the inner product in the spa€&s™*!.

iJ9

2.4. Anintegral equation. Lety be any function in the Hardy spaég (G). We can represent
© as a sum of its Taylor series:

Let .
Sm(9)(2) =) @i
=0
be them-th partial sum of the Taylor series of By (2.15) and|(2.17), fop € H,(G),

(219) [SWL(()O)a Qk,m,n] = Sk,m,n<90> Qk,m,n>2-
Letz € G and .
Then "
_ 1=y
Snl)t) =~ L—, teG.
By (2.19) and[(2.17),

L (UG 0unO) e

Sk,m,an,m,n(Z) = (1 — §t>tn+m+2

" 2mi

2.5. Integral formulas for singular numbers. We now present some integral formulas for the
singular numbers; ,,, ,, of our operatotD; ,,, , which follow from (1.6) and[(2.7)0).

Lemma 2.2. The following formulas hold for the singular numbeys,, ,,

B 1 (uv f)(t)dt
(2.20) S0,m,n = Sulg) |% /F t"+—m+2|
and
. 1 (wv f)(t)dt B
(2.21) Skmn = u1,...l,£lkfer{S£F \2—7” /r W!}, E=1,...,m,

where the suprema i(2.20) and (2.21) are taken over all polynomialg, v € P,,, ||u/2 = 1,
and [|v||s = 1, with the polynomials: in (2.21) satisfying the conditionsc u,u; >.= 0,
i=1,...,k
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3. AN ANALOGUE OF THE AAK THEOREM

3.1. Estimates of singular numbers. Sectior] 8 is devoted to the study of an analogue of the
AAK theorem for the operataDy; ,,, ,,. As above, letf be analytic in the open disk: : |z| <

Ro}, Ry > 1, and letn andm be nonnegative integers. According to the form[ila|(1.6), we can
write

D m,n
(3.1) smmn = _inf _ Dsmncllz

a€Pp,az20 a2

Denote byH, ,(G) and H, ,(G) the subspaces df»(G) and H..(G), consisting of analytic
functionsy from H,(G) and H..(G), respectively, such that

p(z) =Y o2
k=n

in some neighborhood of = 0 (each functiony has a zero of order at leastat = = 0).
According to the definition of the operatér; ,,, ,, and formula[(2.), the equality

"D e = (af — B—w)(t), teT,

holds for any polynomiakv € P,,, where € P,, andw € Hj,1m+2(G), are uniquely
determined by the relation
(3.2) [1Dfmanclle = llof = —wlla= inf leof = 5" = |2
B ePn,w/€H27n+m+2(G)
Let/ andk be nonnegative integers. Let us consider the following meromorphic approxima-
tion problem
(33) A”g = Al,k(f) = ll’lf f — T

Y
o0

‘ P+ w

where the infimum is over the collection pfc P;, ¢ € Py, ¢ #0, andw € Hu pym12(G).

Now we can state an analogue of the AAK theorem for the opetaigy ,,. Theoren| 3.1
says that then-th singular number of the operatar;,, ,, can be characterized as an error of
the best meromorphic approximation ffin the spacel .. (I") by functions(p + w)/q,p €
P,.,¢eP,, ¢#0, andw € Ho pym2(G).

Theorem 3.1.We have
(3.4) Smman(Dpmn) = Dpm.

Proof. With the help of [(3.R) we can deduce that for amyc P,,,a # 0,3 € P,, ' €
Hoo,n+m+2(G)y
B+

-

[1Dgmncll2 < el -

o

So, by (3:1) and33),
(3.5) Smmm <= Dnm.
Let us now turn to the formulé (2.L3) fér=m

(Qm,m,nf - Pm,m,n)(t) o ——ids

(3.6) PR = Smna@mmn(t) - + Cnma(t), t €T,

whereC,, .., is analyticin{z : |z| < Ry}, Ry > 1. It follows easily from (3.6) that the function
(Pm,m,n + tn+m+20m,m,n)/Qm7m7n
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is analytic onl". Moreover,

(3.7) pio) - Dl o S Cnmnll)

We can conclude from this that the equality is attainedl in (3.5). This completes the proof.

’ = Smmn, t €1

Before stating and proving the next result of the paper, we note that by (2.21) the following
formula for them-th singular numbes,,, ,,,.,, m > 1,holds:

2 [ Gen

(3.8) Smanan = inf et |27 Jp gnm2

wePm[|ull2=1 yeP,, | |v][2=1

Now we can proceed to estimates of the singular nunspgr,, in terms of the errors of
meromorphic approximation for the general case when 0, ..., m. Let us mention that for
k = m in formula [3.9) given below we obtain equalify (3.4).

Theorem 3.2.For 0 < k& < m we have

(3.9) Apim—tk < Skmmn < Ap_mtk k-
Proof. We first prove the inequalities

(3.10) Skomn < Dpemgkk, k=0,...,m,

confining ourselves to the case > 1 andk > 1; the caseé: = 0 can be treated analogously.
Fixanyq € Py,q #0,p € Py andw € Hy o m2(G). Using formula|(2.21) we get

1 / (uquf)(t)dt

tn+m+2

(311) Sk,m,n < sup -
2mi

u,v

Y

where the supremum if (3]11) is taken over all polynomiats P,,_j,v € P,,, ||ug||s = 1
and||v||s = 1. Since

L/ (uguf)()dt _ 1 [ (ug)()(f = (P +w)/a)()

2714 tn+m+2 2711 I tn+m+2

t,

with help of [3.11), we obtain that
ptw
q

Then from the last relation and (8.3) we get the required inequflity|(3.10).
We now proceed to the proof of the inequalities

Sk,m,n S Hf -

e}

A’nJrTTL*k,k S Sk7m7n, k’ - O, .« .. ’m.

As above, the arguments will be based on the form{ilas](2.20] and (2.21). We confine ourselves
to the case wheh > 1. Since for anyuy, ..., u; € P,, there exists, € P, u # 0, such that

<u,u; >=0,i=1,...,k we get, by[(2.2]1),
1 / (w0 ) ()t | _
r

21

(3.12) inf

S
uEPk,HuHQ:l UekaHvlbzl

By formula (3.8), the expression on the left-hand sidg of (3.12}tis singular number of the
operatorDy j, ,+m—r- Applying now Theorem 3]1 we get the desired inequality

fn+m+2 ‘ = Skmon:

An-l—m—k,k S Sk,m,n»

which completes the proof of the theorem.
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4. ASYMPTOTICS OF THE SINGULAR NUMBERS AND CONVERGENCE OF RATIONAL
APPROXIMANTS

4.1. Asymptotics of singular numbers. In this subsection we fix nonnegative integersind
k, 0 < k < m, and investigate asymptotics of the singular numbgrs,, asn — oc.
Now we formulate one of our main results.

Theorem 4.1.Foranyk, 0 < k < m,we have

mo_ 1

4.1 1 ! .
( ) lflrisogp Sk,m,n Rk

Proof. We first prove that for any, 0 < k <m,

4.2 I A Qe

“2) msup s <

Without loss of generality we can assume that & < m. We choose and fix < R < Ry,
close enough t&, such that all poles of in Dy, are inside of the circl€r = {z : |z| = R}. Let
u € P, ||ull> = 1, be any polynomial with zeros at poles pin D, (counting multiplicities).
Let us estimate the following integral

S / (uv ) ()dt

2mi grtm+2 7

wherev € P,, and||v|]» = 1. Since the function.f is analytic in the open disky, by the
Cauchy integral theorem,

I—L/ (wv f)(t)dt

- 27 fntm+2

Therefore, we get

[lulleg 1ol g L/ 1rx
(43) |I‘ < Rn+m+1 ’

By the Bernstein-Walsh lemma for estimating the growth of polynomials (see, for example,
[19]), we obtain that

(4.4) ollry < [lv|[ R™
and
(4.5) ullry < |[ullR™.

Taking into account now (4.4) and (4.5), we can conclude ffon) (4.3) that

I < [ulloo [0l loo 1 f]lrs

Rn—m+1 ’
and, by (1.5),
[[ull2][v]]2]] f I
|I| < (m_|_ 1)2 ’ HQRUn’TiUl HFR _ (m+ 1)2R’n’n1;1:1'

It remains to observe that the last inequality and formula for singular nunjber$ (2.21) imply that

. 1
lim sup 3,16/:1 n < =
N—00 FLLLS) R

Passing to the limit a® — R, on the right-hand side of the last inequality, we obtgin|(4.2).
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Sinces; ., ¢ = 0,...,m are singular numbers of matriX,, ,, ,,,+1, we can write the fol-
lowing formula for the product of the singular numbers:

(46) det n+1, m+1 H 31 m,n-

Using (4.6) and[(1]4), we get
1

li =R R
1£rlﬂs()1ip H Simmn R,
From this, by[(4.R), we obtain |mmed|ate-4.1). Thus, Thedrerh 4.1 is proved.

4.2. Convergence of rational approximants. In subsections 4/2—4.3 we investigate the con-
vergence of the rational approximarits,,, .,/ Qk.m.» t0 f with k£ andm fixed and as. — oc.
First we definer convergence of a sequence of rational functions introduced by Gonchar (see
[8] and [9]).

A sequence of rational functiods,, } convergesr-almost uniformlyinside an open séf as
n — oo to a functiong : U — C, if for any compact sei’ c U and for any= > 0 there exists
anopensel., o(U.) < ¢, such that the sequenge, } converges uniformly tg on K \ U. as

n — oo. By definition,
=inf ) d,

where the infimum is taken over all coverifi/; } of U. by open diskW;} with the diameter
d;. Let us mention some consequences (see [8]land [9] for more details).

Let a sequence of rational functioqs, } convergesr-almost uniformly inside a domaiti
asn — oo to a functiong : U — C. Then

1. if each rational function-, has at mostn, m > 0, poles inU then the functiory is
meromorphic i/ and has at most: poles inU. Moreover, ifg has a pole of ordet, [ > 1 at
the pointa € U then at least poles ofr,, tend toa asn — oo;

2. if each function,, has at mostn poles inU and the functiory has exactlyn poles inU,
then the poles of,, in U tend to poles of (each pole ofy attracts as many poles of, as an
order of a pole ofj). Moreover, the sequende,, } convergences uniformly on compact subsets
of a domainlU’ asn — oo, where the domaify’ obtained by deleting fror&¥ poles ofg.

Fix nonnegative integerrsandm, 0 < k£ < m. For anys > 0 we set

Us = Uzoonn,s?
wherelU,, ., n = 1,2,..., ise/6mn*-neighborhood of the set of zeros;. ,, of Q. ., andU .
is ¢ /6m-neighborhood of the set of poles of f in D,,. Itis easy to see that(U.) < «.
We represent)y. ., ,, in the form

Qkmn(2) = Chmn H (2 — Wjkn) H (

z

—1).

laj k,nl<1 o, k,n | >1 Qikn
Since||Qrmnll2 = 1, by (1.5), we get
1
|Ckmm| > = o
and, then, for any compact sktin the complex plan€,
(4.7) 100 Qg n| > Con™ o
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whereC; andC;, are positive constants, independent:.oMoreover, it follows from([(1.p) and
the normalization|Qx ,,.»||2 = 1 that

| Qkmnlloo < m+ 1.

Using now the Bernstein-Walsh lemma for estimating the growth of polynomials, we obtain
that for any compact set in the complex plan€,

where(' is a positive constant, independentof

4.3. Convergence theorem.In this section we state and prove one of the main results of the
paper related to convergence of the rational approximants.

Theorem 4.2. Fix a positive integerm and an integerk, 0 < k£ < m. The sequence
Py nn/Qr.m.n CONVerges-almost uniformly insidé, asn — oo.

Let us mention the result that is an analogue of the Montessus de Ballore’s theorem.

Corollary 4.3. Let a functionf have exactlyn polesas, ..., «a,, in the diskD,,, m > 1.
Then the sequend®,, ., ../ Q.m.m.n CONvVerges uniformly to the functighon compact subsets of
Dy, \ {a1,...,a,} asn — oo. Moreover, for sufficiently large the polynomial),,, .., has
exactly degreen and for each poley; of f of multiplicity/, [ > 1, exactly! zeros ofQ),,, . »
converge tay; asn — oo.

Proof. Let ¢(z) = [;(z — «;)"s, where the product is taken of the potesof f in D1 (;

is the order of a pole;). Note that a functiorf” = ¢ f is analytic inD,,,1; andg € P,,,. We
selectR, 1 < R < R,,+1, close toR,,;1 such that the open digkr = {z : |z| < R} contains
all poles of f in D,,,1. We assume that the boundary, of Gy is positively oriented with
respect taz. Using the Cauchy integral formula afd (2.1) foe= Qy. ., aNd3 = Py ., WE
get

(Qk,m,nF - qu,m,n - qu,m,n)<Z> _ L/ (Qk,m,nF - qu,m,n)(t>dt = G
pnm2 2mi Jr, trtmt2(f — 2) ’ o
where
n+m-+1 '
Tk,m,n(Z) - Z (Qk,m,nf)jzj'
j=n+1
Consequently, for € Gp,
Pmn Tmn 2 mnF_ Tmn tdt
(49)  (f- e likenyg) [ a1
Qk,m,n 27TZ(QQk7m,n)(Z) Tr grm+ (t - Z)

We represent the right-hand side as a difference of two integrals:

Zn+m+2 (Qk " nF) (t)dt
I — 9 9
) = g ) / prmia(— ) G
and
Znm2 (qTy ) (t)dt
I = —_— .
2,n(2) ZWZ(QQk7m7n)<Z) /I‘R tn+m+2 (t — Z) , < € GR
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Let K be any compact set i, N G. Setr = ||z||x. We choose an arbitrary small positive
¢. Denote byU. the corresponding open set. Let us estimate the first intéggaBy (4.7) and

@.9),

n TL

1@rmanllee
>~ V15~

Rn rnlnK\U |kan| R

(in what followsC', C1, . . ., will denote positive quantities not dependentrgn Consequently,

lettingn — oo and thenkR — R, .1, we get

(4.10) limsup [|1,[0, < —— < 1.
n—oo Rm+

To get an estimate of the second intedkal, we first remark that on the unit circlg

Tkz,m,n (t) = Sk,m,an,m,n (t)tn+m+1 .

1m0, <

So,
|Tk,m,n(t)| = Sk,m,n|Qk,m,n<t)’7 tel,
and
T mnll2 = Skmnl|@rmnll2 = Skmn-
SinceT}, ,.,/2" " is a polynomial of degree at most, using the
Bernstein-Walsh lemma for estimating the growth of polynomials and inequdlities (1.5), we get

Tk,mn Tkmn m m m
41 i e < 105 o B < (A D[ Tomanl 2R = (m 4 1) stmn B™.

Therefore,

|| Themn /" Irg
minK\Ug |Qk’,m,n|

Hence, letting: — oo, by (4.1), we obtain that

(4.12) lim sup ]|]27n||}</<LU < S
n—00 € Rk;

Let us estimatéy, ,, ,/Qk.m.» ONK \ U.. We have

k,m.,n ST ming\p.
By the maximum principle of analytic functions,
||Tk’,m,n/zn+1||K < ||Tk,m,n/zn+1||FR'

Using now [(4.1]1) and (4.13), we get

2m

20|\ < Ca < C31" g m

(4.13) < C’4r"n2m| |T;€,m,n/z"Jrl ||k

T m,n n m
I Q’Z v < Csr™n”™ s mn.
Consequently, letting — oo, we obtain (see als@.l)) that
kmn 1/n
(4.14) hgisongQ mnHK/\U = R— <1

Now we can estimatélf — P mn/Qkmnllx\v.. Using formula[(4.p) and estimatgs (4.10),
(4.12), and[(4.14), we get
lim sup Hf - Pk,m,n/@k,m,n“i(/(LU S R_ < 1.

Thus, since was arbitrary, we can conclude that

Pk:,m,n/QkJmn - f
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o-almost uniformly insideD, asn — oc.
|
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