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2 VASILIY A. PROKHOROV

1. I NTRODUCTION

1.1. Rational approximation of a power series. Padé approximation.Let f be a function
analytic at the pointz = 0. We represent the functionf in some neighborhood of the point
z = 0 by a convergent power series

(1.1) f(z) =
∞∑

k=0

fkz
k.

Denote byR0 the radius of convergence of the power series (1.1). LetD0 = {z : |z| < R0}
be the disk of convergence. Here and in what follows we assume thatR0 > 1. One of the
classical constructive methods of approximation of analytic functions given by a power series
is the Padé approximation (see the monograph [3] and the references therein, and also [4], [8],
[9], [16], [17], [18]). This method is a method of rational approximation with free poles (there
is no restriction on poles). Padé approximants are locally the best rational approximants to a
given power series and constructed in terms of its coefficients. These approximants localize
the singular points of a function determined by the power series and enable us to obtain, under
certain conditions, an efficient analytic continuation of the power series beyond its circle of
convergence.

For any nonnegative integern denote byPn the class of all polynomials of degree at most
n. Let n andm be nonnegative integers. The Padé approximant[n/m] of type (n,m) of the
functionf given by power series (1.1) is the unique rational function[n/m] = p/q, p ∈ Pn, q ∈
Pm, q 6≡ 0, satisfying the following relation:

(1.2) (qf − p)(z) = Azn+m+1 + . . . .

It is easy to see that polynomials

q(z) = det(


fn−m+1 fn−m+2 . . . fn+1

. . . . . . . . . . . .
fn fn+1 . . . fn+m

zm zm−1 . . . 1

)

and

p(z) =
n∑

k=0

(qf)kz
k,

where(qf)k is thek-th coefficient of the power series of the functionqf , satisfy formula (1.2).
The table{[n/m]}∞n,m=0 is called the Padé table of the functionf . The sequence{[n/m]}∞n=0,
where a nonnegative integerm is fixed, is called them-th row of the Padé table.

In the present article we consider a constructive method of approximation of analytic func-
tions given by a power series (1.1). The corresponding method is based on ideas of the theory
of Hankel operators. As Padé approximants, these approximants are rational functions and
constructed in terms of the coefficientsfk of the power series (1.1). Fix nonnegative integers
n andm. There arem + 1 rational approximantsP/Q, P ∈ Pn, Q ∈ Pm, Q 6≡ 0, of
the functionf given by power series (1.1), satisfying the following relation on the unit circle
Γ = {z : |z| = 1}:

(Qf − P )(z) = sQ(z)zn+m+1 + Azn+m+2 + . . . ,
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ON SOME CONSTRUCTIVEMETHOD OFRATIONAL APPROXIMATION 3

where constantss are singular numbers of the matrix
fn+m+1 fn+m . . . fn+1

fn+m fn+m−1 . . . fn
...

...
.. .

...
fn+1 fn . . . fn−m+1

 .
In this paper we define the Hankel operatorDf,m,n on the classPm of all polynomials of degree
at mostm and use singular numbers and eigenfunctions ofDf,m,n to obtain rational approxi-
mantsP/Q. The main results include the proof of an analogue of the AAK theorem [1], [2]
and an investigation of asymptotics of singular numbers of the Hankel operatorDf,m,n, when
m is fixed andn→∞. Moreover, we study convergence of the corresponding rational approx-
imants tof under the same conditions (m is fixed andn→∞). The corresponding results are
analogues of classical theorems of Montessus de Ballore and Gonchar related to convergence
of rows of Padé approximants.

1.2. Convergence of rows of Padé approximants and Hadamard’s theorem.Let m be a
positive integer. Denote byDm the maximal open disk with center atz = 0 in which the
function f is meromorphic and has at mostm poles (counting multiplicities). LetRm be the
radius ofDm. It easy to see thatR0 ≤ R1 ≤ R2 . . . , andD0 ⊆ D1 ⊆ D2 ⊆ . . . .

The classical Montessus de Ballore’s theorem [13], [3] solves the problem of meromorphic
recovery of a functionf given by the power series (1.1) in the case when the functionf has
exactlym,m ≥ 1, poles in the open diskDm.
Montessus de Ballore’s theorem

Let m ≥ 1. Suppose that a functionf has exactlym polesα1, . . . , αm in the diskDm.
Then the sequence{[n/m]}∞n=0 converges uniformly to the functionf on compact subsets of
Dm \ {α1, . . . , αm} asn→∞. Moreover, for sufficiently largen the Padé approximant[n/m]
has exactlym poles and for each poleαj of f of multiplicity l, l ≥ 1, exactlyl poles of[n/m]
converges toαj asn→∞.

The general case was investigated by Gonchar [8] (for definition ofσ-almost uniform con-
vergence of rational functions see subsection 4.2).
Gonchar’s theorem

Letm ≥ 1. The sequence{[n/m]}∞n=0 convergesσ-almost uniformly insideDm asn→∞.
Let n be a nonnegative integer. For an analytic functionf given by a power series (1.1) we

denote byKn.m the symmetricm×m matrix constructed by the coefficients of (1.1):

(1.3) Kn.m =


fn+m−1 fn+m−2 . . . fn

fn+m−2 fn+m−3 . . . fn−1
...

...
...

...
fn fn−1 . . . fn−m+1


(we setfk = 0 for k < 0). We remark thatKn,1 = fn for all n. For any positive integerm let

lm = lim sup
n→∞

| det(Kn.m)|1/n,

and letl0 = 1 for m = 0. The Hadamard’s theorem [10], [5] states that the radiiRm can be
expressed in terms oflm.
Hadamard’s theorem
We have

Rm =
lm
lm+1

, m = 0, 1, . . . .
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4 VASILIY A. PROKHOROV

Here we assume thatRm = ∞, if l1, . . . , lm 6= 0 and lm+1 = 0. It directly follows from
Hadamard’s theorem that form ≥ 1

(1.4) lim sup
n→∞

| det(Kn,m)|1/n =
1

R0 . . . Rm−1

.

1.3. Auxiliary results. The AAK theorem. LetG = {z : |z| < 1} be the open unit disk with
the boundaryΓ. We assume thatΓ is positively oriented with respect toG. Denote byΓR the
circle with center at the pointz = 0 and radiusR > 0. For any compact setK in the complex
planeC and any continuous functionϕ onK denote by||ϕ||K the norm ofϕ in the uniform
metric onK:

||ϕ||K = max
z∈K

|ϕ(z)|.

LetLp(Γ), 1 ≤ p <∞, be the Lebesgue space of functionsϕ measurable onΓ, with the norm

‖ϕ‖p =

(
1

2π

∫
Γ

|ϕ(t)|p ds
)1/p

.

Denote by〈ϕ, ψ〉2 the inner product in the Hilbert spaceL2(Γ) :

〈ϕ, ψ〉2 =
1

2π

∫
Γ

(ϕψ)(t)ds, ϕ, ψ ∈ L2(Γ).

LetL∞(Γ) be the space of essentially bounded onΓ functionsϕ, endowed with the norm

‖ϕ‖∞ = ess sup
Γ

|ϕ(t)| <∞.

It easy to see that for anyp ∈ Pm,

(1.5) ||p||2 ≤ ||p||∞ ≤ (m+ 1)||p||2.

Let Hp(G), 1 ≤ p ≤ ∞, be the Hardy space of analytic functions onG. Here and in what
follows we considerHp(G) as a subspace of the spaceLp(Γ) (see [6], [12] for more details).

We representL2(Γ) as the direct sumL2(Γ) = H2(G) ⊕ H⊥
2 (G), whereH⊥

2 (G) is the
orthogonal complement ofH2(G) in L2(Γ). We mention the following characteristic of the
subspaceH⊥

2 (G):
Leta ∈ L2(Γ). Thena ∈ H⊥

2 (G) if and only if there exists a functionb ∈ H2(G) such that

a(t) =
b(t)

t
= b(t)

ids

dt
a.e. on Γ.

Let a functiong be continuous onΓ. The Hankel operatorAg : H2(G) → H⊥
2 (G) with

symbolg is the composition of the operator of multiplication byg and the orthogonal projection
P− fromL2(Γ) ontoH⊥

2 (G):

Agϕ = P−(ϕg), ϕ ∈ H2(G).

Note thatAg is a compact operator.
Let A : X → Y be a compact linear operator, whereX andY are the Hilbert spaces. For

any nonnegative integern denote bysn(A) then-th singular numberof the operatorA:

sn(A) = inf
K
‖A−K‖,

where the infimum is taken over all linear operatorsK : X → Y of rank at mostn, and‖ · ‖
is the norm of the corresponding linear operator. We remark that the sequence{sn(A)}, n =
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0, 1, 2, . . . , coincides with the sequence of eigenvalues (counting multiplicity) of the operator
(A∗A)1/2, whereA∗ : Y → X is the adjoint ofA. The following formula is valid:

(1.6) sn(A) = inf
X−n

‖A|X−n‖,

where the infimum is taken over all subspacesX−n of codimensionn of X (see [7], [11] for
more details).

Let g be continuous onΓ. The Adamyan-Arov-Krein theorem [1], [2] establishes a connec-
tion between a singular numberssn(Ag) of the Hankel operatorAg and the errors∆n of the
meromorphic approximation ofg in the spaceL∞(Γ) by functions from the classMn(G) =
Rn,n +H∞(G), where

Rn,m = {r = p/q, p ∈ Pn(G), q ∈ Pm, q 6≡ 0}.
Let

∆n = inf
h∈Mn(G)

‖f − h‖∞.

The AAK theorem states that for alln = 0, 1, 2, . . . ,

sn(Ag) = ∆n.

We note that in [14] a generalization of the AAK theorem for multiply connected domains is
proved.

2. THE DISCRETE HANKEL OPERATOR

2.1. Definition. As above, we assume thatf is analytic inD0 = {z : |z| < R0}, R0 > 1. Fix
nonnegative integersn andm. For any polynomialα ∈ Pm we represent the productαf in the
open diskD0 as a sum of the power series:

(αf)(z) =
∞∑

j=0

(αf)jz
j,

where(αf)j is thej-th coefficient of the power series of the functionαf . We can rewrite the
last formula as

(2.1) (αf − β)(z) =
n+m+1∑
j=n+1

(αf)jz
j + zn+m+2c(z),

where

(2.2) β(z) =
n∑

j=0

(αf)jz
j.

and

(2.3) c(z) =
∞∑

j=0

(αf)j+n+m+2z
j.

Therefore, on the unit circleΓ we obtain that

(2.4)
(αf − β)(t)

tn+m+2
=
p(t)

t
+ c(t),

where

(2.5) p(t) =
m∑

j=0

(αf)j+n+1t
m−j.
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6 VASILIY A. PROKHOROV

We now define an operatorDf,m,n. Let H⊥
2,m(G) be a(m + 1)-dimensional subspace of

H⊥
2 (G) defined as follows:

H⊥
2,m(G) = {a ∈ L2(Γ) : a(t) =

b(t)

t
= b(t)

ids

dt
a.e. on Γ, b ∈ Pm}.

The operatorDf,m,n : Pm → H⊥
2,m(G) is the composition of the operator of multiplication by a

functionf/tn+m+2 and the orthogonal projectionPm fromL2(Γ) ontoH⊥
2,m(G):

Df,m,nα = Pm

(
αf

tn+m+2

)
, α ∈ Pm.

We have the following formula

(2.6) (Df,m,nα)(t) =
(αf − β)(t)

tn+m+2
− c(t), t ∈ Γ,

whereβ andc are given by (2.2) and (2.3), respectively. We remark that the functionc is analytic
in D0.

Let us consider an antilinear operatorBf,m,n : Pm → Pm that is defined by

Bf,m,nα = p, α ∈ Pm,

where the polynomialp is given by (2.5) (compare with [15], where the corresponding operator
Bg : H2(G) → H2(G) is defined for the Hankel operatorAg). We can now write

(2.7) Df,m,nα =
Bf,m,nα

t
= Bf,m,nα

ids

dt
on Γ.

By (2.4),
(αf − β)(t) = (Bf,m,nα)(t)tn+m+1 + tn+m+2c(t), t ∈ Γ,

and

(2.8)
(αf − β)(t)

tn+m+2
= (Bf,m,nα)(t)

ids

dt
+ c(t), t ∈ Γ.

2.2. Symmetric bilinear form. Define the bilinear symmetric form[u, v] for a pair of polyno-
mialsu, v ∈ Pm:

[u, v] =
1

2πi

∫
Γ

(uvf)(t)dt

tn+m+2
.

From (2.6) and (2.7) it may be concluded that

[u, v] = 〈v,Bf,m,nu〉2 = 〈u,Bf,m,nv〉2 ,(2.9)

and

(2.10) [u, v] =

〈
Df,m,nu, v

ids

dt

〉
2

=

〈
Df,m,nv, u

ids

dt

〉
2

.

Lemma 2.1. We have

(2.11) B2
f,m,n = D∗

f,m,nDf,m,n,

whereD∗
f,m,n : H⊥

2,m(G) → Pm is the adjoint ofDf,m,n.

Proof. Applying (2.7), we can assert that for anyu, v ∈ Pm,

〈Df,m,nu,Df,m,nv〉2 = 〈Bf,m,nv,Bf,m,nu〉2
and (see (2.9)), 〈

u,D∗
f,m,nDf,m,nv

〉
2

=
〈
u,B2

f,m,nv
〉

2
.

From this we get (2.11).
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Let sk,m,n = sk,m,n(Df,m,n), k = 0, . . . ,m,

s0,m,n ≥ s1,m,n ≥ · · · ≥ sm,m,n,

be the singular numbers numbers ofDf,m,n, that are eigenvalues of(D∗
f,m,nDf,m,n)1/2, and let

Qk,m,n, k = 0, . . . ,m, be associated orthonormal polynomials (compare with [15]):

(2.12) Bf,m,nQk,m,n = sk,m,nQk,m,n

and

Df,m,nQk,m,n = sk,m,nQk,m,n

ids

dt
.

By (2.8) and (2.12),

(2.13)
(Qk,m,nf − Pk,m,n)(t)

tn+m+2
= sk,m,nQk,m,n(t)

ids

dt
+ Ck,m,n(t), t ∈ Γ,

where

Pk,m,n(t) =
n∑

j=0

(Qk,m,nf)jt
j

and

Ck,m,n(t) =
∞∑

j=0

(Qk,m,nf)j+m+n+2t
j.

From (2.13), using the Cauchy integral theorem, we obtain that for any polynomialα ∈ Pm,

(2.14) [α,Qk,m,n] =
1

2πi

∫
Γ

(αQk,m,nf)(t)dt

tn+m+2
=
sk,m,n

2π

∫
Γ

(αQk,m,n)(t) ds.

We can rewrite (2.14) in the form

(2.15) [α,Qk,m,n] = sk,m,n〈α,Qk,m,n〉2, α ∈ Pm.

So, the polynomialsQk,m,n are characterized by the double orthogonality conditions:

(2.16) [Qi,m,n, Qj,m,n] = si,m,nδij, 〈Qi,m,n, Qj,m,n〉2 = δij,

whereδij is the Kroneker symbol.

2.3. A symmetric matrix. Set

Qk,m,n(z) =
m∑

i=0

ai,kz
i.

Lettingα(t) = tl, l = 0, . . . ,m in (2.14), and taking into account that

(2.17)
1

2π

∫
Γ

titj ds = δij,

and

fi =
1

2πi

∫
Γ

f(t)dt

ti+1
,

we get

(2.18)
m∑

i=0

ai,kfn+m+1−(i+l) = sk,m,nal,k.

Let

Ak =

 a0,k
...

am,k

 .
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8 VASILIY A. PROKHOROV

By (1.3),Kn+1.m+1 is the following symmetric matrix constructed from the coefficientsfi:

Kn+1.m+1 =


fn+m+1 fn+m . . . fn+1

fn+m fn+m−1 . . . fn
...

...
. ..

...
fn+1 fn . . . fn−m+1

 .
Using (2.18) and (2.16), we can see that for allk = 0, . . . ,m, sk,m,n andAk are singular values
and singular vectors of the matrixKn+1,m+1:

Kn+1,m+1Ak = sk,m,nAk,

and vectorsA0, . . . , Am, are orthonormal

〈Ai, Aj〉 = δij,

where< u, v > is the inner product in the spaceCm+1.

2.4. An integral equation. Letϕ be any function in the Hardy spaceH1(G). We can represent
ϕ as a sum of its Taylor series:

ϕ(z) =
∞∑
i=0

ϕiz
i, z ∈ G.

Let

Sm(ϕ)(z) =
m∑

i=0

ϕiz
i

be them-th partial sum of the Taylor series ofϕ. By (2.15) and (2.17), forϕ ∈ H1(G),

(2.19) [Sm(ϕ), Qk,m,n] = sk,m,n〈ϕ,Qk,m,n〉2.
Let z ∈ G and

ϕ(t) =
1

1− zt
, t ∈ G.

Then

Sm(ϕ)(t) =
1− (zt)m+1

1− zt
, t ∈ G.

By (2.19) and (2.17),

sk,m,nQk,m,n(z) =
1

2πi

∫
Γ

(1− (zt)m+1)Qk,m,n(t)f(t)

(1− zt)tn+m+2
dt, z ∈ G.

2.5. Integral formulas for singular numbers. We now present some integral formulas for the
singular numberssk,m,n of our operatorDf,m,n which follow from (1.6) and (2.10).

Lemma 2.2. The following formulas hold for the singular numberssk,m,n :

(2.20) s0,m,n = sup
u,v

| 1

2πi

∫
Γ

(uvf)(t)dt

tn+m+2
|

and

(2.21) sk,m,n = inf
u1,...,uk∈Pm

{sup
u,v

| 1

2πi

∫
Γ

(uvf)(t)dt

tn+m+2
|}, k = 1, . . . ,m,

where the suprema in(2.20)and (2.21)are taken over all polynomialsu, v ∈ Pm, ‖u‖2 = 1,
and ||v||2 = 1, with the polynomialsu in (2.21) satisfying the conditions< u, ui >2= 0,
i = 1, . . . , k.
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3. AN ANALOGUE OF THE AAK THEOREM

3.1. Estimates of singular numbers.Section 3 is devoted to the study of an analogue of the
AAK theorem for the operatorDf,m,n. As above, letf be analytic in the open disk{z : |z| <
R0}, R0 > 1, and letn andm be nonnegative integers. According to the formula (1.6), we can
write

(3.1) sm,m,n = inf
α∈Pm,α 6≡0

‖Df,m,nα‖2

‖α‖2

.

Denote byH2,n(G) andH∞,n(G) the subspaces ofH2(G) andH∞(G), consisting of analytic
functionsϕ fromH2(G) andH∞(G), respectively, such that

ϕ(z) =
∞∑

k=n

ϕkz
k

in some neighborhood ofz = 0 (each functionϕ has a zero of order at leastn at z = 0).
According to the definition of the operatorDf,m,n and formula (2.6), the equality

tn+m+2Df,m,nα = (αf − β − ω)(t), t ∈ Γ,

holds for any polynomialα ∈ Pm, whereβ ∈ Pm andω ∈ H2,n+m+2(G), are uniquely
determined by the relation

(3.2) ‖Df,m,nα‖2 = ‖αf − β − ω‖2 = inf
β′∈Pn,ω′∈H2,n+m+2(G)

‖αf − β′ − ω′‖2.

Let l andk be nonnegative integers. Let us consider the following meromorphic approxima-
tion problem

(3.3) ∆l,k = ∆l,k(f) = inf

∥∥∥∥f − p+ ω

q

∥∥∥∥
∞
,

where the infimum is over the collection ofp ∈ Pl, q ∈ Pk, q 6≡ 0, andω ∈ H∞,n+m+2(G).
Now we can state an analogue of the AAK theorem for the operatorDf,m,n. Theorem 3.1

says that them-th singular number of the operatorDf,m,n, can be characterized as an error of
the best meromorphic approximation off in the spaceL∞(Γ) by functions(p + ω)/q, p ∈
Pn, q ∈ Pm, q 6≡ 0, andω ∈ H∞,n+m+2(G).

Theorem 3.1.We have

(3.4) sm,m,n(Df,m,n) = ∆n,m.

Proof. With the help of (3.2) we can deduce that for anyα ∈ Pm, α 6≡ 0, β′ ∈ Pn, ω
′ ∈

H∞,n+m+2(G),

‖Df,m,nα‖2 ≤ ‖α‖2 ·
∥∥∥∥f − β′ + ω′

α

∥∥∥∥
∞
.

So, by (3.1) and (3.3),

(3.5) sm,m,n ≤ ∆n,m.

Let us now turn to the formula (2.13) fork = m

(3.6)
(Qm,m,nf − Pm,m,n)(t)

tn+m+2
= sm,m,nQm,m,n(t)

ids

dt
+ Cm,m,n(t), t ∈ Γ,

whereCm,m,n is analytic in{z : |z| < R0}, R0 > 1. It follows easily from (3.6) that the function

(Pm,m,n + tn+m+2Cm,m,n)/Qm,m,n
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10 VASILIY A. PROKHOROV

is analytic onΓ. Moreover,

(3.7)

∣∣∣∣f(t)− Pm,m,n(t) + tn+m+2Cm,m,n(t)

Qm,m,n

∣∣∣∣ = sm,m,n, t ∈ Γ.

We can conclude from this that the equality is attained in (3.5). This completes the proof.

Before stating and proving the next result of the paper, we note that by (2.21) the following
formula for them-th singular numbersm.m.n,m ≥ 1,holds:

(3.8) sm,m,n = inf
u∈Pm,||u||2=1

sup
v∈Pm,||v||2=1

∣∣∣∣ 1

2πi

∫
Γ

(uvf)(t)dt

tn+m+2

∣∣∣∣ .
Now we can proceed to estimates of the singular numbersk,m,n in terms of the errors of

meromorphic approximation for the general case whenk = 0, . . . ,m. Let us mention that for
k = m in formula (3.9) given below we obtain equality (3.4).

Theorem 3.2.For 0 ≤ k ≤ m we have

(3.9) ∆n+m−k,k ≤ sk,m,n ≤ ∆n−m+k,k.

Proof. We first prove the inequalities

(3.10) sk,m,n ≤ ∆n−m+k,k, k = 0, . . . ,m,

confining ourselves to the casem ≥ 1 andk ≥ 1; the casek = 0 can be treated analogously.
Fix anyq ∈ Pk, q 6≡ 0, p ∈ Pn−m+k andω ∈ H∞,n+m+2(G). Using formula (2.21) we get

(3.11) sk,m,n ≤ sup
u,v

∣∣∣∣ 1

2πi

∫
Γ

(uqvf)(t)dt

tn+m+2

∣∣∣∣ ,
where the supremum in (3.11) is taken over all polynomialsu ∈ Pm−k, v ∈ Pm, ||uq||2 = 1
and||v||2 = 1. Since

1

2πi

∫
Γ

(uqvf)(t)dt

tn+m+2
=

1

2πi

∫
Γ

(uqv)(t)(f − (p+ ω)/q)(t)

tn+m+2
dt,

with help of (3.11), we obtain that

sk,m,n ≤
∥∥∥∥f − p+ ω

q

∥∥∥∥
∞
.

Then from the last relation and (3.3) we get the required inequality (3.10).
We now proceed to the proof of the inequalities

∆n+m−k,k ≤ sk,m,n, k = 0, . . . ,m.

As above, the arguments will be based on the formulas (2.20) and (2.21). We confine ourselves
to the case whenk ≥ 1. Since for anyu1, . . . , uk ∈ Pm there existsu ∈ Pk, u 6≡ 0, such that
< u, ui >2= 0, i = 1, . . . , k, we get, by (2.21),

(3.12) inf
u∈Pk,||u||2=1

sup
v∈Pk,||v||2=1

∣∣∣∣ 1

2πi

∫
Γ

(uvf)(t)dt

tn+m+2

∣∣∣∣ ≤ sk,m,n.

By formula (3.8), the expression on the left-hand side of (3.12) isk-th singular number of the
operatorDf,k,n+m−k. Applying now Theorem 3.1 we get the desired inequality

∆n+m−k,k ≤ sk,m,n,

which completes the proof of the theorem.
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4. ASYMPTOTICS OF THE SINGULAR NUMBERS AND CONVERGENCE OF RATIONAL

APPROXIMANTS

4.1. Asymptotics of singular numbers. In this subsection we fix nonnegative integersm and
k, 0 ≤ k ≤ m, and investigate asymptotics of the singular numberssk,m,n asn→∞.

Now we formulate one of our main results.

Theorem 4.1.For anyk, 0 ≤ k ≤ m, we have

(4.1) lim sup
n→∞

s
1/n
k,m,n =

1

Rk

.

Proof. We first prove that for anyk, 0 ≤ k ≤ m,

(4.2) lim sup
n→∞

s
1/n
k,m,n ≤

1

Rk

.

Without loss of generality we can assume that1 ≤ k ≤ m. We choose and fix1 < R < Rk

close enough toRk such that all poles off inDk are inside of the circleΓR = {z : |z| = R}. Let
u ∈ Pm, ||u||2 = 1, be any polynomial with zeros at poles off in Dk (counting multiplicities).
Let us estimate the following integral

I =
1

2πi

∫
Γ

(uvf)(t)dt

tn+m+2
,

wherev ∈ Pm and ||v||2 = 1. Since the functionuf is analytic in the open diskDk, by the
Cauchy integral theorem,

I =
1

2πi

∫
ΓR

(uvf)(t)dt

tn+m+2
.

Therefore, we get

(4.3) |I| ≤ ||u||ΓR
||v||ΓR

||f ||ΓR

Rn+m+1
.

By the Bernstein-Walsh lemma for estimating the growth of polynomials (see, for example,
[19]), we obtain that

(4.4) ||v||ΓR
≤ ||v||∞Rm

and

(4.5) ||u||ΓR
≤ ||u||∞Rm.

Taking into account now (4.4) and (4.5), we can conclude from (4.3) that

|I| ≤ ||u||∞||v||∞||f ||ΓR

Rn−m+1
,

and, by (1.5),

|I| ≤ (m+ 1)2 ||u||2||v||2||f ||ΓR

Rn−m+1
= (m+ 1)2 ||f ||ΓR

Rn−m+1
.

It remains to observe that the last inequality and formula for singular numbers (2.21) imply that

lim sup
n→∞

s
1/n
k,m,n ≤

1

R
.

Passing to the limit asR→ Rk on the right-hand side of the last inequality, we obtain (4.2).
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Sincesi,m,n, i = 0, . . . ,m are singular numbers of matrixKn+1,m+1, we can write the fol-
lowing formula for the product of the singular numbers:

(4.6) det(Kn+1,m+1) =
m∏

i=0

si,m,n.

Using (4.6) and (1.4), we get

lim sup
n→∞

m∏
i=0

s
1/n
i,m,n =

1

R0 . . . Rm

.

From this, by (4.2), we obtain immediately (4.1). Thus, Theorem 4.1 is proved.

4.2. Convergence of rational approximants. In subsections 4.2–4.3 we investigate the con-
vergence of the rational approximantsPk,m,n/Qk,m,n to f with k andm fixed and asn → ∞.
First we defineσ convergence of a sequence of rational functions introduced by Gonchar (see
[8] and [9]).

A sequence of rational functions{rn} convergesσ-almost uniformlyinside an open setU as
n→∞ to a functiong : U → C, if for any compact setK ⊂ U and for anyε > 0 there exists
an open setUε, σ(Uε) < ε, such that the sequence{rn} converges uniformly tog onK \Uε as
n→∞. By definition,

σ(Uε) = inf
∑

i

di,

where the infimum is taken over all covering{Wi} of Uε by open disks{Wi} with the diameter
di. Let us mention some consequences (see [8] and [9] for more details).

Let a sequence of rational functions{rn} convergesσ-almost uniformly inside a domainU
asn→∞ to a functiong : U → C. Then

1. if each rational functionrn has at mostm,m ≥ 0, poles inU then the functiong is
meromorphic inU and has at mostm poles inU . Moreover, ifg has a pole of orderl, l ≥ 1 at
the pointa ∈ U then at leastl poles ofrn tend toa asn→∞;

2. if each functionrn has at mostm poles inU and the functiong has exactlym poles inU ,
then the poles ofrn in U tend to poles ofg (each pole ofg attracts as many poles ofrn as an
order of a pole ofg). Moreover, the sequence{rn} convergences uniformly on compact subsets
of a domainU ′ asn→∞, where the domainU ′ obtained by deleting fromU poles ofg.

Fix nonnegative integersk andm, 0 ≤ k ≤ m. For anyε > 0 we set

Uε = ∪∞n=0Un,ε,

whereUn,ε, n = 1, 2, . . . , is ε/6mn2-neighborhood of the set of zerosαj,k,n of Qk,m,n andU0,ε

is ε/6m-neighborhood of the set of polesαj of f in Dm. It is easy to see thatσ(Uε) < ε.
We representQk,m,n in the form

Qk,m,n(z) = ck,m,n

∏
|αj,k,n|≤1

(z − αj,k,n)
∏

|αj,k,n|>1

(
z

αj,k,n

− 1).

Since||Qk,m,n||2 = 1, by (1.5), we get

|ck,m,n| >
1

C1

,

and, then, for any compact setK in the complex planeC,

(4.7) min
K\Uε

|Qk,m,n| > C2n
−2m,
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whereC1 andC2 are positive constants, independent ofn. Moreover, it follows from (1.5) and
the normalization||Qk,m,n||2 = 1 that

||Qk,m,n||∞ ≤ m+ 1.

Using now the Bernstein-Walsh lemma for estimating the growth of polynomials, we obtain
that for any compact setK in the complex planeC,

(4.8) ||Qk,m,n||K ≤ C,

whereC is a positive constant, independent ofn.

4.3. Convergence theorem.In this section we state and prove one of the main results of the
paper related to convergence of the rational approximants.

Theorem 4.2. Fix a positive integerm and an integerk, 0 ≤ k ≤ m. The sequence
Pk,m,n/Qk,m,n convergesσ-almost uniformly insideDk asn→∞.

Let us mention the result that is an analogue of the Montessus de Ballore’s theorem.

Corollary 4.3. Let a functionf have exactlym polesα1, . . . , αm in the diskDm, m ≥ 1.
Then the sequencePm,m,n/Qm,m,n converges uniformly to the functionf on compact subsets of
Dm \ {α1, . . . , αm} asn → ∞. Moreover, for sufficiently largen the polynomialQm,m,n has
exactly degreem and for each poleαj of f of multiplicity l, l ≥ 1, exactlyl zeros ofQm,m,n

converge toαj asn→∞.

Proof. Let q(z) =
∏

j(z − αj)
µj , where the product is taken of the polesαj of f in Dm+1 (µj

is the order of a poleαj). Note that a functionF = qf is analytic inDm+1 andq ∈ Pm+1. We
selectR, 1 < R < Rm+1, close toRm+1 such that the open diskGR = {z : |z| < R} contains
all poles off in Dm+1. We assume that the boundaryΓR of GR is positively oriented with
respect toGR. Using the Cauchy integral formula and (2.1) forα = Qk,m,n andβ = Pk,m,n, we
get

(Qk,m,nF − qPk,m,n − qTk,m,n)(z)

zn+m+2
=

1

2πi

∫
ΓR

(Qk,m,nF − qTk,m,n)(t)dt

tn+m+2(t− z)
, z ∈ GR,

where

Tk,m,n(z) =
n+m+1∑
j=n+1

(Qk,m,nf)jz
j.

Consequently, forz ∈ GR,

(4.9) (f − Pk,m,n + Tk,m,n

Qk,m,n

)(z) =
zn+m+2

2πi(qQk,m,n)(z)

∫
ΓR

(Qk,m,nF − qTk,m,n)(t)dt

tn+m+2(t− z)
.

We represent the right-hand side as a difference of two integrals:

I1,n(z) =
zn+m+2

2πi(qQk,m,n)(z)

∫
ΓR

(Qk,m,nF )(t)dt

tn+m+2(t− z)
, z ∈ GR,

and

I2,n(z) =
zn+m+2

2πi(qQk,m,n)(z)

∫
ΓR

(qTk,m,n)(t)dt

tn+m+2(t− z)
, z ∈ GR.
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14 VASILIY A. PROKHOROV

LetK be any compact set inDk ∩ GR. Setr = ||z||K . We choose an arbitrary small positive
ε. Denote byUε the corresponding open set. Let us estimate the first integralI1,n. By (4.7) and
(4.8),

||I1,n||K\Uε ≤ C
rn

Rn

||Qk,m,n||ΓR

minK\Uε |Qk,m,n|
≤ C1

rn

Rn
n2m

(in what followsC,C1, . . . , will denote positive quantities not dependent onn). Consequently,
lettingn→∞ and thenR→ Rm+1, we get

(4.10) lim sup
n→∞

||I1,n||1/n
K\Uε

≤ r

Rm+1

< 1.

To get an estimate of the second integralI2,n, we first remark that on the unit circleΓ,

Tk,m,n(t) = sk,m,nQk,m,n(t)tn+m+1.

So,
|Tk,m,n(t)| = sk,m,n|Qk,m,n(t)|, t ∈ Γ,

and
||Tk,m,n||2 = sk,m,n||Qk,m,n||2 = sk,m,n.

SinceTk,m,n/z
n+1 is a polynomial of degree at mostm, using the

Bernstein-Walsh lemma for estimating the growth of polynomials and inequalities (1.5), we get

(4.11) ||Tk,m,n

zn+1
||ΓR

≤ ||Tk,m,n

zn+1
||∞Rm ≤ (m+ 1)||Tk,m,n||2Rm = (m+ 1)sk,m,nR

m.

Therefore,

||I2,n||K\Uε ≤ C2
rn||Tk,m,n/t

n+1||ΓR

minK\Uε |Qk,m,n|
≤ C3r

nsk,m,nn
2m.

Hence, lettingn→∞, by (4.1), we obtain that

(4.12) lim sup
n→∞

||I2,n||1/n
K\Uε

≤ r

Rk

< 1.

Let us estimateTk,m,n/Qk,m,n onK \ Uε. We have

(4.13) || Tk,m,n

Qk,m,n

||K\Uε ≤
rn+1||Tk,m,n/z

n+1||K
minK\Uε |Qk,m,n|

≤ C4r
nn2m||Tk,m,n/z

n+1||K .

By the maximum principle of analytic functions,

||Tk,m,n/z
n+1||K ≤ ||Tk,m,n/z

n+1||ΓR
.

Using now (4.11) and (4.13), we get

|| Tk,m,n

Qk,m,n

||K\Uε ≤ C5r
nn2msk,m,n.

Consequently, lettingn→∞, we obtain (see also (4.1)) that

(4.14) lim sup
n→∞

|| Tk,m,n

Qk,m,n

||1/n
K\Uε

≤ r

Rk

< 1.

Now we can estimate||f − Pk,m,n/Qk,m,n||K\Uε. Using formula (4.9) and estimates (4.10),
(4.12), and (4.14), we get

lim sup
n→∞

||f − Pk,m,n/Qk,m,n||1/n
K\Uε

≤ r

Rk

< 1.

Thus, sinceε was arbitrary, we can conclude that

Pk,m,n/Qk,m,n → f
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σ-almost uniformly insideDk asn→∞.
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