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ABSTRACT. The system of nonlinear differential equations
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is under consideration, wheeog and/3; are positive constants apglt) andg; (¢) are continuous
regularly varying functions ofw, co). Two kinds of criteria are established for the existence of
strongly decreasing regularly varying solutions with negative indices of (A) with precise asymp-

totic behavior at infinity. Fixed point techniques and basic theory of regular variation are utilized
for this purpose.
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2 JAROSLAV JAROS, KUSANO TAKA §1, TOMOYUKI TANIGAWA

1. INTRODUCTION

In this paper we consider two-dimensional nonlinear differential systems of the form
(A) " =pi Oz + )y, Y= () + ga(t)y™,

under the assumption that

(8) o; andg,, i = 1,2, are positive constants;

(b) p;(t) andg;(t), i = 1,2, are continuous regularly varying functions fancc), a > 0.

By a positive solution of system (A) we mean a vector functioft), y(¢)) both components
of which are positive and satisfy (A) in some neighborhood of infinity, say ferl". We focus
our attention on those positive solutions of (A) both components of which are decreasing and
tend to zero ag — oco. Such solutions are referred to stsongly decreasing solutiores (A).
It is clear that a strongly decreasing solutiarit), y(t)) of (A) satisfies the system of integral
equations

z(t) = /too /Oo{pl(r)x(r)o“ + ql(r)y(r)ﬁl}drds,
(1.1) S

y(t) = /too /:O{pg(r)x(r)o‘2 + qg(r)y(r)52}drds

fort > T.

The aim of this paper is to establish the existence of strongly decreasing solutions of (A)
with precise asymptotic behavior &s— oo by solving [1.1) in the class of regularly varying
functions of negative indices. (For the definition of regularly varying functions see Sggttion 2.)
Fixed point technigues and basic theory of regular variation are utilized for this purpose.

We notice that there are two special cases of (A),diagonal systenfA4) and thecyclic
system(A.), whose strongly decreasing solutions can be thoroughly analyzed in the framework
of regular variation:

(Ag) " =pi(t)z™, Y =gy,

(A) " =aqt)y’, Y =pa(t)x™.

In fact necessary and sufficient conditions have recently been found for these two systems to
have regularly varying solutions with negative indices. Then one would expect that system (A)
which can be regarded as small perturbations @j @k of (A.) in a certain sense may possess
strongly decreasing solutions belonging to the same class of regularly varying functions. The
truth of this expectation will be verified in Sections 3 and 4 which are devoted to perturbed
systems of (4) and (A), respectively. Examples illustrating the main results will be presented

in Section 5.

2. REGULARLY VARYING FUNCTIONS

For the reader’s convenience we summarize here the definition and some basic properties of
regularly varying functions (in the sense of Karamata).

AJMAA Vol. 12, No. 1, Art. 1, pp. 1-16, 2015 AIJMAA


http://ajmaa.org

POSITIVE DECREASING SOLUTIONS OF SYSTEMS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS 3

Definition 2.1. A measurable functioif : [0, c0) — (0, o) is calledregularly varying of index

p e RIf

lim M =) forall A>0.

t—oo f(t)

The totality of regularly varying functions of indegxis denoted by RV{). We often use the

symbol SV to denote RW) and call members of S¥lowly varying functions Any function
f € RV(p) is expressed ag(t) = t’g(t) with g € SV, and so the class SV of slowly varying
functions is of fundamental importance in the theory of regular variation. One of the most
important properties of regularly varying functions is the followregresentation theorem

Proposition 2.1. f(t) € RV(p) if and only if f(¢) is represented in the form

(2.1) f(t) =c(t) exp{/t Eds}, t >t

to )
for somet, > 0 and for some measurable functios(¢) andd(¢) such that
tlim c(t) =co € (0,00) and tlim a(t) = p.
If in particular c(t) = ¢ in (2.1), thenf(¢t) is referred to as aormalizedregularly varying
function of indexp.

Typical examples of slowly varying functions are: all functions tending to some positive
constants as — oo,

N N
H(logn ), o, €R, and eXp{H(logn t)ﬂn}, B, € (0,1),

n=1

wherelog,, t denotes thex-th iteration of the logarithm. It is known that the function

L(t) = exp{(logt)e cos (log t)o}, S (0, %),

is a slowly varying function which is oscillating in the sense that

n=1

limsup L(t) = oo and li{n inf L(t) = 0.

t—o00

The following result illustrates operations which preserve slow variation.

Proposition 2.2. Let L(t), L1(t), L2(t) be slowly varying. Ther,(¢)* foranya € R, Ly(t) +
Lo(t), Ly(t)Lo(t) and Ly (Lo(t)) (if Lo(t) — oo) are slowly varying.

A slowly varying function may grow to infinity or decay tbast — oo. But its order of
growth or decay is severely limited as is shown in the following

Proposition 2.3. Let f(¢) € SV. Then, for any > 0,
tlim t°f(t) = oo, tlim tef(t) =0.

A simple criterion for determining the regularity of differentiable positive functions follows.

Proposition 2.4. A differentiable positive functiofi(¢) is a normalized regularly varying func-
tion of indexp if and only if
im ¢

=0
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The following result called Karamata’s integration theorem is of highest importance in han-
dling slowly and regularly varying functions analytically, and will be used throughout Sections
3and 4.

Proposition 2.5. Let L(t) € SV. Then,

Mif o> —1,
/t s*L(s)ds ~ ! t*TUL(t), t — oo;
a a+1
(i) if @ < —1,
> 1
/t s*L(s)ds ~ _a—Hta+1L(t)’ t — o0;
(i) if o = —1,

S S

Kﬂ:/%M$®ESchd7Mﬂ:AmL@Mse$4

providedL(t)/t is integrable near the infinity in the latter case.

Here the symbol is used to mean the asymptotic equivalence between two positive func-
tions

ft) ~g(t), t— o0 = lim —= = 1.

If f(t) ~ g(t),t — oo, andg € RV(p), thenf € RV(p).

Given two positive functiong(¢) and ¢(t), we write f(t) =< ¢(t), t — oo, to denote that
there exist positive constantsand K such that: f(t) < ¢g(¢t) < K f(t) for all larget. Itis clear
that f(¢) ~ g(t), t — oo, implies f(t) < g(t), t — oo, but not conversely.

Definition 2.2. If f(t) < g(t),t — oo, andg € RV(p), thenf(t) is said to be aearly regularly
varying function of index.

It is known that2 + sin(loglog t) is slowly varying, but2 + sin(logt) is not. The latter is
nearly slowly varying since it holds that+ sin(logt) < 2 + sin(loglogt), t — oo. It follows
that, for anyp € R, t*(2 + sin(logt)) is nearly regularly varying, but not regularly varying, of
index p.

A vector function(z(t), y(t)) is said to beaegularly varying of indeXp, o) if x(t) andy(t)
are regularly varying of indicesando, respectively. Nearly regularly varying vector functions
can be defined analogously.

For the most complete exposition of theory of regular variation and its applications we re-
fer to the book of Bingham, Goldie and Teugels [1]. See also Seneta [16]. A comprehensive
survey of results up to 2000th on the asymptotic analysis of second order ordinary differential
equations by means of regular variation can be found in the monograph of [&}i Since
the publication of([15] there has been an increasing interest in the analysis of ordinary differ-
ential equations by means of regularly varying functions, and thus theory of regular variation
has proved to be a powerful tool of determining the accurate asymptotic behavior of positive
solutions for a variety of nonlinear differential equations of Emden-Fowler and Thomas-Fermi
types. See, for example, the papérs [4] - [14].
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3. PERTURBATIONS OF THE DIAGONAL SYSTEM (Ay)

We first show that useful information about the existence of strongly decreasing solutions can
be drawn for system (A) which is viewed as a small perturbation of the diagonal system

(Ag) 2 =p()e, Y =gty
which is in fact a set of two independent Thomas-Fermi differential equations. It is assumed
that

(3.1) a; < 1, By < 1,

and that, () andg.(t) are continuous regularly varying functions of indicgsandy.,, respec-
tively, expressed as

(3.2) pi(t) = tAlll(t)y q2(t) = t"2ms(2), l1,me € SV.

Our discussions essentially depend on the fact that complete analysis can be made of the exis-
tence and asymptotic behavior of strongly decreasing reglarly varying solutions of the diagonal

system (A).
Proposition 3.1. Let conditions(3.1)) and (3.7) be satisfied. Then, systg#y) has regularly
varying solutiongz(t), y(¢)) with negative indexp, o) if and only if
(3.3 A < —2, oy < —2,
in which case ando are defined by
A+ 2 o + 2
P=1-ar 77 1-8y
and any such solution enjoys one and the same asymptotic behavior
(3.5) wt) ~ X1, yt)~Y(D),  t— oo,
whereX (t) € RV(p) andY (t) € RV(p) are given by

S O e R TO N e
X““‘h—ma—px th—mu—pﬂ ’

(3.4)

(3.6)

The proof of this proposition can be found in the paper [14].

Of particular importance in proving the main result is the fact tkiat) andY (¢) satisfy the
asymptotic relations
(3.7)

/too /SOO p1(r) X (r)*drds ~ X(t), /too /soo @ (r)Y (r)P2drds ~ Y (t), s

The elementary proof of (3.7) is left to the reader. Here and throughout we assume that

(3.8) pi € RV(\), ¢ € RV(1,), 1=1,2,
and

One of our main results now follows.
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Theorem 3.2. Assume tha3.8), [3.1)and (3.3) hold. Let the negative constanisand o be
given by(3.4) and consider the functionX () andY (¢) defined by{3.7). Suppose that

@ ()Y () p() X ()™

(3.10) Sm p (X () P W B

=0,

Then, systerfA) possesses strongly decreasing regularly varying solutio(s, y(¢)) of index
(p, o) whose asymptotic behavior is governed by the unique for@ufx

Proof. In view of @) there exist$’ > a such that

/ / pi(r) X (r)*drds < 2X(t),
/ / @)Y (r)P2drds < 2Y (1),

fort > T. Leth, H, k and K be positive constants such that

(3.11)

(3.12) h<9 Ter, H>4Tw, k<2 Tm, K>4Tm,
and choosé” > a large enough so that in addition {o (3.11) the following inequlaities hold
a)Y ()% he p()X(t)2 kP2
3.13 < , < , t>T.
( ) p ()X () — Kh @)Y (t)%2 — He:
which is possible because ¢f (3]10).
Let us now define the integral operators
Faa)®) = [ [ {norr + e Jards
(3.14)
Gea)®) = [ [ {mlrder) + ) pards,
fort > T, and let it act on the set
(3.15)

W = {(x,y) € O[T, 00)% : hX (1) < 2(t) < HX(1), kY (1) <y(t) < KY(t), t> T}.
Finally we consider the mapping : W — C|T', 00)? defined by

(3.16) (@,y)(1) = (F(o,y)(0), 6@ n0), t=T

It can be shown thad is a self-map onV and send3/V into a relatively compact subset of
C|T, 00).
(i) ©(W) C W. Let(z,y) € W. Using [3.18), we see that for> T
@ ()yt)” )
pi(t)a(t)

B1 B1
< pt)olt)” (14 72 < oy ety

pwmwwmmWWzm@wa+
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and hence that

Flz,y)(t) < 2/ / pr(r)x(r)*drds

<2Ha1/ / p(r) X (r)*drds < AHY X (t) < HX(t),
and
(z,y)(t) < 2/ / ¢ (r)y(r)*2drds
< 2[(52/ / @(r)Y (r)2drds < 4K%Y (t) < KY (1)

fort > T, where[(3.1l1) and (3.12) have been used. On the other hand, we easily find that

/ / p(r ) drds

hc”/ / p1(r) X (r)**drds > halX( ) > hX(t),
and

/ / @ (r)y(r)P2drds

k@/ / @ (r)Y (r)2drds > 2/&23/( ) > kY ()

fort > T It follows thath X (t) < F(z,y)(t) < HX(t) andkY (t) < G(z,y)(t) < KY (¢t) for
t > T, which implies thatb(z, y) € W, that is,® maps)V into itself.

(i) @(W) is relatively compact. The inclusich()V) C W implies that®()V) is uniformly
bounded onT, oo). The inequalities

0> (Fla,y)(t) > — /t Oo{Ho‘lpl(s)X(s)al + Kﬁlql(s)Y(s)ﬁl}ds,

02 (@)1=~ [ {Hpa(e)X(6)" + Ko2an(s)Y (5)7 s,
t
holding fort > 7" and for all(z,y) € W ensure tha#()V) is equicontinuous ofi’, co). The
relative compactness @f()V) follows from the Arzela-Ascoli lemma.

(iii) @ is a continuous map. Ldt(z,,y,)} be a sequence W converging to(z,y) € W
in the topology ofC[T, o0)?, which means thaf(z,,(t),y.(t))} converges tdx(t),y(t)) as
n — oo uniformly on any compact subinterval @f, co). We need to prove that

F(wn, yn)(t) = F(z,y)(t)  and  G(zn,yn)(t) — G(z,)(t)

AJMAA Vol. 12, No. 1, Art. 1, pp. 1-16, 2015 AJMAA
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uniformly on compact subintervals @f, co). But this follows readily from the Lebesgue dom-
inated convergence theorem applied to the right-hand side of the following inequalities

Fn )0 = Fa )@ < [ s(mlen(s) = 0"+ a(@ln(s)* — y(s)*)ds.

90 )0 = GO < [ s(palo)on(s)® = a(5)°| + alo)lon (% — (s)* ).
The details may be omitted.

Therefore, by the Schauder- Tychonoff fixed point theorem (see, e.g., Chapter | of Coppel [2])
there exist§x, y) € W such thatz,y) = ®(x,y) = (F(z,y),G(z,y)), i.€

z(t) = / / pi(r a1+q1()(r)ﬂ1}drds,
y(t) = / / pa(r +q2()(r)ﬂ2}drds,

for t > T, This means thatz(t), y(t)) gives a solution of the system (A) i, c0), and the
membershigzx, y) € W shows that it is nearly regularly varying of indéx o).

It remains to verify tha{xz(t), y(¢)) is actually a regularly varying solution of indéy, o)
having the asymptotic behavidr (B.5). This can be done with the help of the generalized
L'Hospital’s rule stated below. For the proof see e.g. Haupt and Aumann [3].

(3.17)

Lemma 3.3. Let f(t),g(t) € C*T,

) and suppose that
tlim f(t) = tlim g(t) = o0 and g (t) >0 foralllarge t,

or
thm f(t) = thm g(t)=0 and g'(t) <0 foralllarge t.
Then,
/ /
lim inf f/ ®) < liminf m, lim sup & < lim sup / (t)
t=oo g'(t) T oo g(t) t—oo 9(1) T imoo ¢'(1)

Let (x(t),y(t)) be the nearly regularly varying solution of (A) constructed as a solution of
the system of integral equations (3.17). Defirie) andv(¢) on[a, co) by

u(t) = / / pi(r )+ aqi(r )Y(r)ﬁl}drds,
o(t) = / / pa(r 2+ ('r’)Y(r)BQ}drds.

Since [3.ID) implies
(3.19) pi() X () +a ()Y (1) ~ (X ()™, po(t) X ()2 +(1)Y (1) ~ g2(1)Y (1),
ast — oo, from (3.7) it follows that
(3.20) u(t) ~ X(t), v(t) ~ Y (t), t — o0.
It is clear that
(3.21) pi(H)(®)™ + at)y(t) ~ pi(B)z(t)™,  p2(t)x(t)™ + g2(t)y(t)” ~ qa(t)y(t)™,

(3.18)
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ast — oo. Let us consider the following superior and inferior limits:

(3.22) [ =Iliminf (? L = lim sup ﬂ, m = lim inf M M = limsup w

X u(t)’ e? ul(?) B u(t)’ e’ ult)
Clearly, these are finite positive constants. Applying Leimp 3i3epeatedly, we find that
| sl + a(omls) s
> h{n inf
/ )X ()" + (Y (5}

A5 1 S ST 1() h S
- (rmaesty) - (i) -

where [3.1P) and (3.21) have been used in the middle[and (3.20) has been used in the last step.
Thus, we have

[ > — [ >1 becausea; < 1.
Similarly, applying Lemma 3|3 td, we have
L<L™ — L <1 becauseo; < 1.
It follows therefore that = L = 1, which implies that

W1 = s ~u X as oo

On the other hand, Lemma 8.3 applieditcand M/ shows that
lim (t) =1

% o(t) = y(t)~ou(t) ~Y () as t— oo,

and so itis concluded thét(t), y(t)) is regularly varying of negative indey, o) enjoying the
asymptotic behaviof (3/5) @s— oco. This completes the proof of Theorém|3.2.

Remark 3.1. Let us take a close look at conditign (3.10) in Theoréms 3.2. U§ing (3.9) we see
that

QY () s A e p2() X () s\ tasp—pig—fao
MOS0 = pth L(t) PROYOE =t P22 M (1),

for someL, M € SV, so that[(3.10) is satisfied regardless.¢f) and M (¢) if
(3.23) py+ Bio < A +ap and g+ agp < g + By,
(cf. Proposition 2.3, or equivalently, if

g+ B0 <p—2 and I+ ap <o —2.

This remark combined with Theorem B.2 yields the following practical criteria for system
(A) to have strongly decreasing solutions.
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Corollary 3.4. Assume tha3.8), (3.1) and (3.3) hold. Letp < 0 ando < 0 be defined by
(3.4). If (3.23)holds, then syste(®) possesses strongly decreasing regularly varying solutions
of index(p, o) whose asymptotic behavior is governed by the fornBi3).

4. PERTURBATIONS OF THE CYCLIC SYSTEM (A.)

We will show that different information about strongly decreasing solutions of system (A)
can be acquired by regarding (A) as a small perturbation of the cyclic system

(Ac) ' =qy”, Y = palt)a®,
whose in-depth analysis from the angle of regular variation has recently been attempted by Jaros

and Kusana [6]. Our development is based on their result (Propdsitipn 4.1 below) characterizing
the existence of regularly varying solutions of negative indices fg). (A

As in the preceding section we assume that) andg;(t), i« = 1,2, are regularly varying
functions satisfying (3]8) anfl (3.9). One of our essential requirements is that

(41) 06261 < 1.

Proposition 4.1. Let (4.1) hold. System {phas strongly decreasing regularly varying solutions
(x(t),y(t)) of negative indexp, o) if and only if

(4.2) 424 8,(M+2) <0, sy +2)+ X +2<0,

in which casep ando are given by

4.3) p:/i1+2+51(/\2+2)’ 02042(#1‘1”2)‘1'/\2-1-27
1 — a3 1 — a3

and any such solution enjoys one and the same asymptotic behavior

(4.4) z(t) ~ X(t), y(t) ~Y(t), t — 00,

where the functionX € RV(p) andY € RV(o) are defined by
_ [ Pa®) ) ( pa(1) )ﬂf Tasrt
X0 _Q—MG—p) (—o)1-0)) | !

In the subsequent discussions a crucial role is played by the cyclic system of asymptotic
relations

(4.6) //q1 (r)Prdrds ~ X (t), / /p2 (r)*2drds ~ Y ()

ast — oo. In fact, rewritingX (¢) andY'(¢) as

=#|(; Zf (e B
(i) ()]

AJMAA Vol. 12, No. 1, Art. 1, pp. 1-16, 2015 AIJMAA
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and using the relations
p:u1+ﬁla+27 0-:>\2+052)0+27
we compute

; -~ (@) ()
an
[ ey~ o B () ()]

-\ (i) (s a>>ﬂl] T, e

This establishes the first relation jn (#.6), and the second relation can be verified analogously.
We state and prove the main result of this section.

Theorem 4.2. Assume thaf4.1)and (4.2) hold. Define the negative constaptando by (4.3)
and consider the function¥ () andY (¢) defined by{(4]5). Suppose that
()X ()™ ()Y (1)
4.7 lim ————— im —~2 7 —
@ OV OL M e (DX (0
Then, systerfA) possesses strongly decreasing regularly varying solutiefys, y(¢)) of neg-
ative index(p, o) whose asymptotic behavior is governed by the unique forifdLdg
Proof. By (4.6) there exist§" > « such that

X < / " / T ()Y (1) drds < 2X (1),

=0,

(4.8)
%Y(t) < /t /S po(r) X (r)*2drds < 2Y (t).

fort > T. Leth, H, k and K denote the constants

1+8 148 1+ag 1+as

(4.9) h —_ 2_1—&251 , H — 41—042}31 , k; o 2_1—a2ﬁ}1 , K — 41_(12/@1 .

Because 0f] (4]7) one can chodBe> a large enough so that in addition {o (4.8) the following
inequalities hold for > T

(X @)™ k% @)Y ()2 he
4.10 < <X
(#.10) DOVOF SHT pnX(0e - Ko
Let us define the séw by
(4.11)

W = {(x,y) € O[T, 00)? : hX (1) < x(t) < HX(t), kY (t) <y(t) < KY(t), t> T}

AJMAA Vol. 12, No. 1, Art. 1, pp. 1-16, 2015 AJMAA
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and consider the mapping: W — C[T, oo)? defined by
(4.12) o, y)0) = (Fap@®). 6@ @), =71,

whereF(z,y) andG(z,y) are the integral operators given jn (3.14).
Let (z,y) € W. Then, using[(4.10) we have

)ew

<wx@r“<ifrnpm>xxwal<]» ety _ K% a0y ()
aWy)r — k@)Y (@) T T pa(B)z(t)2 T ko2 pa(t) X (t)
whence we see that

prMM+%mmWﬁ:wmww%0+zgﬁé)smww@%

Y

<1

)

(4.13)

P00 + w0yl = pltya(0 (14 P ) < 20y

Combining [4.8),[(4)9)] (4.11) and (4]13), we obtainfor T

F(z,y)(t) < 2/ / q(r)y(r)Prdrds

< 2KM / / @ (r)Y (r)Prdrds < 4AK% X (t) = HX (1),
(z,y)(t) < 2/ / po(r)z(r)*?drds
< QHQZ/ / pa(r) X (r)*2drds < 4AH®Y (t) = KY ().

On the other hand, it is easy to see that

/ / q(r ﬁ tdrds

>k;51/ / q(r)Y (r)Prdrds > kﬂlX()—hX(t),
/ / po(r)z(r)*drds
> hoe / / po(r) X (r)*2drds > h”QY() kY (t)

fort > T'. This shows tha®(x,y) € W, ensuring thaf is a self-map on.

Furthermore, one can verify in a routine manner tfais continuous and send4’ into
a relatively compact subset 6f[T, c0)2. Consequently, the Schauder-Tychonoff fixed point
theorem guarantees the existence of a fixed painy) € W of ®, which gives birth to a
strongly decreasing solutiofx:(t), y(t)) of system (A) which is nearly regularly varying of
index(p, o).

To prove that(z(t), y(¢)) is really regularly varying of indexp, o) we proceed as follows.
Note that(z(¢),y(t)) solves the system of integral equatiops (B.17)[Br). Defineu(t)
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andu(t) by (3.18), where we have to use the functiong), Y (¢) given by [4.5). Since (4}7)

implies that

(4.14) pi ()X O+ ()Y O ~ @Y ()7, p2()X(8)™ + ()Y (1) ~ pa(t) X ()

ast — oo, from (4.6) we obtain

(4.15) u(t) ~ X(t), v(t) ~ Y(t), t — o0.

Use is made of the relations

(4.16) pi(t)z(0)™ + @ (®y)” ~ a@y®)™,  pa(O)2()* + ga()y () ~ pa(t)z(8)*2,

which follow immeditately from[(4.14). Consider the superior and inferior limits defined by
_ z® z(t) e U(t) e y(t)

417 1= hlgclgf ()’ L= hl;risogp m, m = hgclxr)lf@, M = hianOEp @

It is clear that all of them are finite positive constants. We now apply Lemna 3.aridm.
Taking (4.15) and (4.16) into accout, we obtain

o

[p1()2(5)™ + q1()y(s)" Yds
[ > 112(1)2&
/“{m g gu(s)Y ()% ) ds

> lim inf p(B)z(t) + o By = —
T t—oo pr(6)X(8) 4 g (6)Y (8) t—oo q1 ()Y (t)5

51 B1
lim inf =% y(t) (t) =m’,
t—o00 Yt tﬂoo U(t)

T pal)a(s)
m>¥%ff{m@X@a

and

N

Thus, we have
I>m’ and m > 1%,
which implies that
(4.18) >0/ and m>m™ — [>1 and m>1 becauseaf, < 1.
Likewise, application of Lemma 3.3 tb and/ yields
L<MP and M <L,

which leads to
(4.19)
L<L*® and M<M* — L<1 and M <1 becausea,s, < 1.

From (4.18) and (4.19) it follows that= L = 1 andm = M = 1, that s,

i 200 ()
e ult) =)

=1, =1.
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Therefore we conclude from (4]15) that

w(t) ~u(t) ~ X(t),  y@t) ~o(t) ~Y(t), - o0
confirming thatr € RV(p) andy € RV(o). This completes the proof of Theor¢mj4g2.
Remark 4.1. In view of (3.9) the functions irf (4} 7) are expressed in the form

a B
p1(t) X (t)™ :t)‘1+a1p_“1_ﬁlaL(t), @)Y (1) _ t#2+52‘7_)‘2_a2pM(t),

@ ()Y (t)h pa(t) X ()2
for someL, M € SV, and so conditiorj (47) is satisfied if
(4.20) A+ aip < py + Byo, fo + Ba0 < Ag + aizp.

This can be used as a useful criterion for the existence of strongly decreasing solutions for
system (A).

Corollary 4.3. Assume thaf4.1) and (4.2) hold. Definep < 0 ando < 0 by (4.3). If (4.20)
holds, then systei\) possesses strongly decreasing regularly varying solutio(yg, y(t)) of
index(p, o) whose asymptotic behavior is governed by the fornfdii).

5. EXAMPLES

In the final section we give examples illustrating our main results: Thedreins 3[2 and 4.2.

Example 5.1. Consider the system

logt
o’ = 3t exp{—(logt)? i + Qt—gloglgogtyga
(5.1)
y' = 2t7% exp{(logt)?}zs + 5t <2 + sin(log log t))y%.
This system is a special case of (A) in which
2 4 3 3
al_ga 51_57 CY2_g7 62_Za
) 12
1 ) Hq 37 2 5 ) 125 )
and
L= 3exp{—(log )i}, my =280 1 oepf(logt)i), ms = 5(2+sin(1o o t))
1= p g ) 1= loglog ¢’ 2 = p g ) 2 = glogti)|.
(i) First we considel(5.1)) as a perturbation of the cyclic system
1 t 12 1
(5.2) o =05 28 y3, y'=2t"7% exp{(logt)ﬁ}x%.
loglogt
Since
(g +2)+ B (A +2) Coan(py F2) (A +2)
Pc = — _1a Oc = - _]-7
1 — a4 1 —aof3y

Propositior] 4.1 implies th&.2) has strongly decreasing regularly varying solutign$t), y(t))
of index(—1, —1) such that

20

2(t) ~ Xe(t) =t (m12<t)>5 (%” ) T ) ~ () = £ (7"12(”)3 ( l?é’f))s
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ast — oo. Itis elementary to check that
11 15
>\1+Oélp(;:_§ <_3:M1+510C7 /J/2+/620-C:_Z<_3:A2+O[20C,

which shows tha5.7))is a sufficiently “small”’perturbation of(5.7) to which Theorern 4] gor
Corollary [4.3 is applicable. It follows that syste.]) possesses strongly decreasing regu-
larly varying solutiongz(t), y(t)) of index(—1, —1) all of which enjoy the unique asymptotic
behavior

x(t)wtl( log ¢ )sexp{?(logt)é}, y(t)wtl( log? )3exp{5(1ogt)%},

loglogt loglog ¢

ast — oo.
(if) One may considef5.1) as a perturbation of the diagonal system

(5.3) 2" = 3t% exp{—(log t)%}x%, y" =5t73 (2 + sin(log log t))y%.
Since
( ) Pd 1 — a1 ) ad 1_ ﬁg )

by Proposition 3.]L implies th#b.3)has strongly decreasing regularly varying solutidnst), y(¢))
of index(—3, —4) such that

L)\’ ma(t) )"
(655)  a(t)~Xa(t) =t L2 ), oyt ~Yar) = E2) o
12 20
It is easily confirmed that
Wy + Brod < A1+ aipy but A2 + apy > e + B904,

which violates the conditiof8.10) Therefore, one cannot apply Theorem| 3.Z3d}), which
means that nothing can be said at this stage about the existence or nonexistence of strongly
decreasing solutions satisfying the asymptotic behaf&d).

Example 5.2. Consider the differential system

logt
2" = 3t 3exp{—(logt)? i + Qt—glogigtyga
(5.6)
y' = 2t7% exp{(logt)?}xs + 5t <2 + sin(log log t))y%.

which is the same as syst) except that the regularity indt—:‘x%2 of p,(t) is replaced with
_22

5
Usingpy = —3 andog = —4, we see that the conditig8.10)is satisfied:

31
u1+ﬁ10d:—7<—5:)\1—|—041,0d and )\2+042pd:—g<_6:u2+/620'd.

Therefore, from Theoremn 3.2 we conclude that sy{teff) possesses strongly decreasing reg-
ularly varying solutiongz(¢), y(¢)) of index(—3, —4) whose asymptotic behavior is governed
by the unique formulg.5), more precisely,

1 1 4
x(t) ~ 6—475_3 exp{—?)(log t)%}, y(t) ~ %t_‘l (2 + sin(log log t)) , t — o00.
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