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2 WILHELM STANNAT, SATOSHI Y OKOYAMA

1. INTRODUCTION

In this paper we study the following type of the stochastic Navier-Stokes equation with re-
spect tou = (u'(t,x),u*(t,x)),t > 0,z € R*:

(1.1) % —plu+ (u-V)u—+/2uVu-Blt)+Vp=0, t>0,z¢eR?
(1.2) divu =0, t>02¢cR?
(1.3) u(0) = ug, 7z €R?

wherep = p(t, z) denotes the pressure term;> 0 is a constant andk(t) = 4(B\(t), B*(t))
the distributional derivative of the two-dimensional Brownian moti®ft) = (B'(t), B%(t)).
Furthermorey, is a deterministicv (R?)-valued function oriR? with compact support. Here
V(R?) is the set of functions defined as follows (see Section 2):

V(R?) = WH(R?%; R?) N H(R?),
where
H(R?) = {u € L*(R*;R?) | div u = 0}.

Equation [(1.]1){(1]3) can be formally derived as the Euler-Lagrange equation satisfied by a crit-
ical point of a random energy functional defined on the space of volume preserving diffeo-
morphisms inR? perturbed by Brownian motion (se€ [9]). In [9], the velocity defined as the
time derivative of the associated stationary point satisfies the stochastic Navier-Stokes equa-
tion (1.1)-(1.3) and as a corollary, it is shown that the expectation of the solutipn bf[(1.]1)-(1.3)
satisfies the Reynolds equation.

On the other hand|_[4] considers an energy functional different from that of [9], and shows
that the deterministic Navier-Stokes equation is related to its stationary point. In this paper, we
try to study the equation (1.1)-(1.3) not in the case of a two-dimensional torus but on the whole
spaceR?.

In comparison with the case of stochastic Navier-Stokes equations on a bounded domain, the
case of unbounded domains requires more efforts because of the lack of compactness.

In addition, our equation does not satisfy the coercivity condition which usually gives the
tightness. Let us explain briefly our strategy taken in this paper to construct the solution of
the equation[(1]1)-(1}.3). In this paper, we partly use the method which is studied in 2], [11]
and [14], that is, we construct the solution by taking the limit of the sequence of periodic
solutions. First, we consider a family of modified equations Witiperiod { € N) in each
variable whose viscosity coefficient is slightly larger tharn> 0, that is, Z—Jg‘su, 0 > 0, so
that the approximating equations satisfy the coercivity condition. We use a standard Galerkin
approximation and construct a solutioff. Then, for suitable cutoff functiongy 1 12, it can
be shown that the family?!? = y .IT1,,ul’, wherell,, represents the orthogonal projection onto
an n-dimensional linear subspace, is uniformly bounded in the spa¢e, L.2(0,T; V(R?))
with respect toR,l,n andd. Finally, we take a limit ofu?*? as§ — 0, n — oo andR — oo
simultaneously and show that its limit satisfies the equafion ([[.1)-(1.3) in a weak sense.

So far, there are several known results about weak solutions of stochastic Navier-Stokes equa-
tions ([1], [2], [8], [11], [12], [13], [14], [15]). The papers[1] and [13] study the equation with
a trace class Wiener process and a spatially homogeneous initial distribution and the existence
of the spatially homogeneous weak solution in a weighted Sobolev space is proven. There
are also several results about the case of the two-dimensional torus ([3], 15],.]10], [15]). Es-
pecially, [15] studies the case where the equation does not satisfy the coercivity condition in
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a two-dimensional torus and![5] discusses the two-dimensional stochastic Euler equation in a
bounded domain and periodic case.

Furthermore [[14] shows that there exists a spatially homogeneous weak solution of the equa-
tions inR"(n > 2) with a spatially homogeneous*-valued initial distribution independent
of the space-time white noise. InJ11] and [12], the stochastic Navier-Stokes equations on
R™(n > 2) satisfying the coercivity condition are studied. However, no results are known in
the case where the equation does not satisfy the coercivity condition in unbounded domain in
R™(n > 2).

This paper is organized as follows: In Section 2, we introduce notations used in this paper
and our main result. Section 3 and Section 4 contain the proof of our main results.

2. NOTATIONS AND RESULTS

In this section we introduce several notations appearing latefl'Set (—1,1)?, 1 € N. We

denote by
Cx (1) = {u € C*(R* R?) | u is 2/-periodic in(x1, 5) € R*},

per

the family of smooth vector fields having period2/ in each variabldz;, z,) € R?. We also
denote byC2 (1) the subspace of divergence free vector fieAcﬁtisfyinngl udz = 0, that

per,o
IS,

per,o per

Cx.,()={ueCx. ()| /T udr =0, divu =0inT,}.
I

We also denote the following function spaces:

C = {u € C*(R*R?) | suppu is compac},

C(Q2) = {u € CF | suppu C 2},

CS?U:{UGCSO] udx = 0, diVu:0inR2}.

R2
We denote byH(/) the set of square integrable vector fieldsn T';, which are of divergence
zero and satisfyp, udz = 0, that s,

H(l) = {U € L*(T;;R?) | /T udr =0, divu = 0in Tl}_
I

Let (u,v); = » /T W ()0 (x)da be its inner product and|; = (u, )7 its norm. In addition,
with its inner product

and associated norm
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Let us seZ? = Z*\{0} andT? = R?/2IZ>. Let

2
Tl

H,. () = {UE L*(T?R?) | | udr =0, divu =0in R2} ,

be the Hilbert space with inner product
(, V)peray = D (k)0 (k)
kez?
and associated norm
1
thery = (D Na(R)) ", w0 € Hyer0),
kez3

whereu (k) represents thé = (k, k2)-th Fourier coefficient of the Fourier expansiomofin
addition, we set

Vier (1) = WH(TE R?) 0 Hper (1),
with inner product
™ NP
{(u, V))pery = Z(7|k|)2u(k>v</<r)
kez3

and associated norm

lullpery = (3 (G 1D k) P)z,

kez?

for u,v € V., (1). Note thatu|,.,q) = |ul; if w € Hye, (1) and||u||perqy = ||u]]i if © € Viper(1).
Similarly, let us set

H(R?) = {u € L*(R*R?) | divu = 0inR*},
with its inner product and the norm denoted(by) and| - |, respectively, and
V(R?) = WH(R?% R?) N H(R?),

with its inner product and the norm denoted gy, -)) and|| - ||, respectively. For an open set
Q C R?, let us define

H(Q) = {u € HR?) | suppu C Q}, V(Q)={ue V(R?)| suppu C Q}.
In addition, define

Ho = {u \/Q]u(x)|2d$<oo}, Vo = {u |Z/Qﬁg_?|2dx<oo},

Ho={u€ Hy| divu=0}, Vg={uecVy| divu=0}.

We denote by, V.. the set of vector-fields whose countable semi notm$ z, ||u||1 r are
finite for all R € N, respectively, that is,

Hioe = {u € (CF°)'| |[ullo,r < oo forall R € N},
Viee = {u € (C)'| ||ul|1.r < oo forall R € N},
where||ul|o g, ||u||1,r are defined as follows:

2
Ou(x)

U = u(x)|*dz, u = / 2de,

[lullo.r /BRI ()] lull.r ; BR! B, |
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whereBy, is the open ball with radiug € N centered at the origin. In addition, let us set
Hioe = {u € Hy,.| divu(z) =0,z € R?},
Viee = {u € Vipe| divu(z) = 0,2 € R?}.
Furthermore, we denote By the topological dual space &f(R?) and by(u, ¢)_; the pair of
u € V and¢ € V(R?). We denote by, the spacév’ with topology given by countable
semi-norms
|ulvr == sup{|(v, ¢) 1| ; [|9]| <1, ¢ € CF,, suppu C Bg},

where By, is the open ball with radiu® € N at centered origin. Note that the divergence
appearing in each class is understood in the distributional sensed«d et —uPAu be the
Stokes operator with domain

D(A) = V(R?) " W**(R* R?),

whereP represents the Leray projection. It is well known tHais a non negative self adjoint
linear operator. Furthermore, |8tbe defined by

@WWM@:4NMWVM@yM@®,umeC@,

andG : Vioc — Ly s(R?; Hyoc) be defined by

Gu = —/2uVu,
where Ly s(R?; Hyoc) denotes the space of Hilbert-Schmidt operators fihto Hy.. Let us
denote byU = W*o2(R2; R?) N H(R?), ky > 2 the Sobolev space equipped with its norm
l|ullg, = (1 — A)%Ouﬁ andU’ its dual space with norrj - ||,». We denote by, . the space
U’ with topology given by countable semi-norms:

l9llor.r = sup l9(0)],
(z)ec(?,ov’SUpp(z)CBRvH(ka()Sl

for eachR € N. By Sobolev’'s embedding theorem, we see that
Wh=L2(D;R?) € Cy(D; R?) € L™(D; R?),

for any bounded domaif in R2. This implies that3 can be uniquely extended td&-valued
bilinear operator o, x Hjoc. INdeed,

)
| Ui
Br ox;
09,

< ‘ui|L2(BR)‘8_x’L°°(BR)‘uj‘L2(BR)

[

0uj
2 dy| = d
[ g oy ujdo

< il lOjllko[ujl2Br), v € CE°, ¢€U, j=1,2,
holds. This implies thaB is a U’-valued bilinear operator oH,. x Hioc. In our equation,
the noise is finite-dimensional and thus its covariance is trivially of finite trace, so the square
root is Hilbert-Schmidt. The abstract stochastic evolution equation associated wjtH (11)-(1.3)
is defined as follows:
{ du(t) + [Au(t) + B(u(t),u(t))]dt + Gu(t) - dB(t) =0, t>0,

(2.1)
u(0) = uo.
Definition 2.1. We say{u(t), B(t) }+>o is a weak solution of (2]1) if

(1) u(t) is an adapted process on a probability spd€e F, P, { F; }+>0).

(2) uw e L*0,T; Viee) N L>=(0,T; Hie), a.S.
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(3) {B(t), Fi}+>0 is a two-dimensional Brownian motion.
(4) Fora.e.t € [0,7] and every € Cg5,, P-a.s., the following equality

W@ﬁ%ﬁm@+£@@ﬂ@%

= [ (Buts). o uts)as = [ (Goyuts) - ano)
holds.

Remark 2.1. The term containing/p drops out in the weak form of the solution sinc&p -
¢dx = — [ pdivedr = 0 holds.

Remark 2.2. We can regard the second condition of the Definifion 2.1 as
we () L*(0,T;Vp,) N L¥(0,T;Hp,), a.s.
ReN

Now we can formulate our main result in this paper.

Theorem 2.1. Letu, € V(R?) has compact support. Then, there exists a weak solution of

2.3).

3. PROOF OF THEOREM 2.7

We will separate the proof into four steps.

step 1. We denote by4, ; the Stokes operator with viscosi%g—%, that is,

240
Ajsu = —%MPAU,

with domain
D(A1s) = Vper (1) N W>(T}; R?).
Note thatA4, ; is a strictly positive definite self-adjoint operator and has a compact resolvent.

Let0 < A" < Al? < be the eigenvalues of,; ande!” el ... the associated normal-
ized eigenfunctions. Let us prepare a complete filtered probability $pRCE, P; {F;}:>¢) on
which a two-dimensionaF;-Brownian motionB = { B(t)}+> is defined. Then, let us consider
the following finite-dimensional stochastic differential equation:

(3.1)
dubd (t) + [Aysub? (t) + T, B(ub? (), ubd ()] dt + 1, Gul4(t) - dB(t) =0, t >0,
ul?(0) = Hnu(()l),

Whereuél) is the Fourier expansion af, in H,., (1), that is,uff) => u})(k;)e,(f), whereuy (k)
denotes thé-th Fourier coefficient anfl,, is the orthogonal projection onto the linear subspace
spanned b)(e,(j))‘k‘gn. By standard arguments (see also Le 4.1), we see that there exists a
unique solution:!’ for eachl, § andn.

Let0 < xp < 1, R > 0 be aC§°(R)-function which is equal to 1 i, O outsideB;x and
satisfies x'’z ()| < ¢ for some uniform constant > 0. Letu!>® = y u’. Now let us obtain
an a priori estimate oEF {||ul>%(¢)[|?}. Let {K,,}m>1 be an increasing sequence of compact
sets inR? such that

K1CK2C"'TR2,
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and assume thdt,, C Kfnﬂ, wherern+1 denotes the interior ok, ;. For eachk,,, choose
two bounded open sef3g, , (2. such thatk,, C Qg, C Ok, C Oy, C K} ., holds.
For eachkR € N and compact sek, let us choosé = [(R, K) € N such that(—[,1)* D

Qx U Byr U suppug holds. Then, for such R, K),

3.2) [l O =[xy’ ()]

2
0
=artt” (O + 3 |5 —xamtt’ (1)
j=1 J

<C (Ju’ (O)1F + Ny’ BO1]F)

holds for some constait > 0, sincey, and%"TE, R > 0 are bounded functions. On the other
J
hand, since:;’ is a solution of[(3.]1), we obtain the following uniform estimate:

(3.3) B {J]uy ()17} < g |17
(see Lemma 4]2). By Parseval’s formula,
(3.4) [ |17 = ol I

As a result, for any? € N and compact sek C R?, we have
EP {[|uf W28} < [fuol %,
which means that
(3.5) sup EF {||uffR’K)’5’2R(t)||2} < 0.
n,ReEN,6>0,K CR2 compact
Furthermore, note that the following estimate holds (§ee|4.10) in Lémra 4.3):
(36) sup B { sup [ (1) g} < Cllug’ |17

n>1,6>0 te[0,T]

Thus, usingx,zul (1)|> < |u§;5(t)|2H(l) and [3.4), we see

(3.7) sup EP{ sup \u%R’K)’5’2R(t)]2} < 00.

n,REN,§>0,K CR? compact t€[0,T]

step 2. The following lemma is essential for tightness for a family of probability laws related
to our problems. Set

Wr = C([0,T]; Uy,,) N L*(0,T; Hy,) N L2(0,T; V(R?)) N C([0, T]; Hy),

loc
whereL? (0, T; V(RR?)) is the spacd.?(0, T'; V(R?)) equipped with its weak topology arid,
represents th&l,,. endowed with its weak topology. Letbe the corresponding supremum
norm onW, andB be its topologicab-field.

Furthermore, for the canonical procekst) = X (t,w) = w(t), w € Wz, we setB; :=
o(X(s), s < t)and by standard argument we can assume(#Baf-, satisfies the usual con-
dition, that is, it is right-continuous and contains BHnull set. Then, the following Lemma
holds.

Lemma 3.1. (See Lemma 2.7 i{id2]). A setK' C Wy is 7-relatively compact if

T
1. sup/ [u(t)][2dt < oo,
0

ueK

2. sup  sup |lu(t) —u(s)[lu =0, 50,
ueK t,s€[0,T],|t—s|<d
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3. sup sup |u(t)]* < oo,
ueK t€[0,T]

hold.

Later we will use the above Lemma. Let us et §, = % andn = k, kK € N. For
each compact st C R?, let us choos&? = Ry, [ = [, andd = §;, such that(—i,[;) D
Byg, U K Usuppug, k= 1,2,--- and [3.5) and (3]7) hold for an§ = Ry, | = I, andd = ¢.
Let us setP* the probability law ofui"' on Wr. We denote byD the family of functions¥
defined orH (R?) whose form are of

\Ij(u) = ¢(<U, ¢1>7 B <u7 ¢n>)7

for somen € N, wherey € Cj(R") and for allp;, € CX, i = 1,--- ,n. Let us define a linear
operatorl, onD,k=1,2,---,as

IS T ) w6 {(—TLGu) ) - (—TLGu)*6,)"}

F3 2 (b (w6, {2 0%, 86,) + (T V>Hk¢i,u>} ,

for U € D. In these settings, we formulate the martingale problem associated to our equations.

Definition 3.1. We say that a probability measur@ defined on(W, B) is a solution of
(L, D)-martingale problem starting at € H(RR?) if

(1) P(x(0) =u) =1,

(2) W(@)(t) = W(x)(0) — [y L¥(2)(s)ds, t€0,T],
is a B;-local martingale under”.

Note thatP* is a solution of(L;, D)-martingale problem starting &t,u,. We shall prove
the following lemmas:

Lemma 3.2. The family of probability measuré#*),_, - is relatively compact iiW .

Suppose that Lemma 3.2 is proven, we denoté’hits limit. We define a linear operatat
onD as
0%

1 n
W(u) ==
L) =5 = daidag

((u, 1), 5 (u, 6,)) {(=Gu)*¢y) - ((=Gu)"o;)"

£ G0, {0:6,)) (s 80) + (0 i)

We shall prove following lemma.

Lemma 3.3. The probability measur® is a solution of( £, D)-martingale problem starting at
Ug.

The following Lemma is used for tightness criterion of the set of probability lagugf).

Lemma 3.4. Let (X,,) be a sequence of continuo¥s-valued random variables off2, 7, P)
satisfying the following conditions:

T
3 SupEP{/ X (8)][2dt} < oo.
0

n>1

2. Foranye, ¢ > 0,there exist® > 0 such that for any stopping timeg,,),,>1,
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0<T,<T, sup sup P(||X.(T, +t) — X,.(T,,)||u: > €) < e holds.

n>1t€[0,6)

3. supE"{ sup |X,()|*} < o0.
n>1 t€[0,T)

Let P, be the law ofX,, on Wr. Then,(P,),>; is tight in W.

Proof. The assertion is proven by similar methods of Lemma 3.12 ih [15] hence we omit the
proof. i

We shall prove Lemmia 3.2:

Proof. By (3.8) and[(3]7), we see thai*** ") satisfies the conditionsands3 of Lemm.
Let us set

¢
uff(t) :Hnug) —/ Agulﬂ‘s(s)ds
0

t t

_ / L, B(ub (), ub® (s))ds — / I, Gl (s) dB,
0 0
=" ) + 5 + ),

Let (T%)k>1, 0 < Ty, < T be a sequence of stopping times. Then,

(3.8) sup B (1P, (4 T) = x JE (T o b <
>1

(3.9) sup B {Hka Ty (4 Te) = Xy I3 (T !U/} < Cut,

(3.10) Sup E” {\IXRkJ§’6k’lk(t +Th) = Xg, J5 o (Tk)HU’} < Cyt?,

hold for some constant;, i« = 1,2, 3 independent ok. Indeed, by noting that—I, ;) D
Byg, Usuppug, k =1,2,--- holds, we obtain

X, Ty (4 T3) = X, 1 (10 o

240 s 2+46 4
<= e / e 28 ) s < = e / e P20 (s) | [*ds) 3 2.
Ty, 0

Thus, by [35), we obtaifi (3.8). As foi ¥ we have

||XRkJ§’6k’lk(t +Ty) — XRkJS’dk’lk (T )| [

o i, 11 2R 2
<[ I ) Dy s < o [l (),

T T

<o ( sup fuj 42 <t>|%{<lk>) t=c ( sup 2" <t>|2> 2

te[0,T] t€[0,T7]
Thus, by [3), we obtaifi (3.9). Concernirgy’* ‘s, we see that

k651 k05l
E||xp,J3 """ (t +Tk) — xg, J5 " (Th) | |ur

t+Ty, 5
lie,0k 2Ry, 2
<aB ([ VA IR s
AJMAA Vol. 11, No. 1, Art. 17, pp. 1-19, 2014 AJMAA
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BT 3
2
<csE (/ ™" (s )’H(lk)ds)
Ty
1 1
2 1 ? 1
<cs (E{ sup |u%’5k’2Rk<s>|%{<lk>}) <o (E{ sup |u§:’5k’”k<s>|2}> t
te[0,7 te[0,7

We obtain K3;Ip) from (3]7). From the estlma-(BrS 10) and Chebyshev's inequality, we

obtain that(uk )k>1 satisfies the condition of Lemm Thus, the conclusion follows from

Lemmd3.48
We shall prove Lemma 3.3

Proof. The assertion is shown similarly to Theorem 2.10[in [12] or Lemma 3.5 inh [15]. By
Lemma[ 3.2, there exists a convergent subsequence, which is denotéyl dyain, such that
lim,_, P* = P weakly inWy. From this, it follows that the condition 1 of Deflnltl 3.1 holds
for P. As for the condition 2, sinc&* is a solution of(£,,, D)-martingale problem starting at
o,

(3.11) £ {(\P(x)(t) — U(x)(s) — / t Ckll/(x)(u)du) @(x)} =0,

holds for any0 < s < t < T and anyB,-measurable bounded continuous functn Let
z, — = in Wy, Then, we have

(3.12) sup { ( sup (|:Bk(t)\2 + |:E(t)|2)> +/0 (|93k(t)|2 + ]x(t)|2) dt} < 00

k>1 te[0,T)

In addition,

(3.13) Jim (ka — zl|r20,rmp,) + sUp [(zi(t) — l‘(t),¢>|> =0,

te[0,7

forany¢ € C,pandR > 0. Set

Gi(t2) = U(2)(t) — U(2)(0) — /0 L00(2) (u)du
= fl(tvw) + fég(tvm) + f;(t,l‘) + ff(t,l‘),

where
Filt,2) = ({e(e), 7) — ((a(s), 6)9),
% o : .
J(t,2) = Z 3 [ o) D) (TGt (-G, )
it 2) = 2”’“2 / S (o), )l Ao du
fi(t,0) Z [ o ), I 0) - 9,

and< ( )7 ¢>1 = (< ( )7 ¢1>7 Tty < (U), ¢n>) Then{Gk(tv xk)}kZl IS eqUicontinuous in. In-
deed,¢ is a smooth function with a compact support and[by (3. £3), xx) is equicontinuous.
From

(—Gap(u) ;- (—Gap(u) ;)" < Colan(u)?,

AJMAA Vol. 11, No. 1, Art. 17, pp. 1-19, 2014 AJMAA


http://ajmaa.org

WEAK SOLUTIONS OF STOCHASTIANAVIER-STOKES EQUATIONS 11

(i (2 () - V), ()] < Cglan(u)]?,

for someC,, > 0, it follows that| f5 (¢, zx) — fo (s, zi)|, | fo(t, xr) — f5(s,2x)| @and| f5 (L, zy) —
f¥(s,x;,)| are bounded from above by

C,p SUp ( sup ka(u)l2> (t—s),

E>1 \ u€0,T)

for some constar@', ,, > 0. The equicontinuity of Gy (zy, t) }x>1 is shown by[(3.12). Set

G(t,x) = V(x / LY (x
= filt,) + olt,2) + folt,2) + fult. ),
where
~1 [ 0% . . ‘g Ve

flto) == 30 5 | g (ol AN ((~Grlw) 6 (=Gaw)'o,)" ) du,

Bt ==Y [ Sl o tetw), A6,)du

At ==Y [ Sl 6(e0) - V)6, alu)du
We will show that
(3.14) lim Gi(t,zx) = G(t, x),

k—oo

for eacht. Sincey has a compact support and py (3.13), we Havg_. ., | f1(x, t)— fi(z,t)| =
0. Concerningfy, | f¥(t, ) — f2(t, z)| can be rewritten as

’Z / a(fjgoz] u), o)1)

(~IL G () ;- (G (w)"0,)" = (~Gir(w))*6))" ) du

s f ( afj;”@j«xk(u), o) - ajjg;j (o))

((~G(w)*6, - (~Galu))' )" )du

5 ; aigaj(m(u), ¢>?)<(—Hkak(u))*¢i - (—G:E(u))*qﬁi)((—G:zc(u))*gbj)*du :

which is bounded from above by
2[5 [ guey o)
(~IGap()'é; - ((~MGr(w)'9,)" = (~Ga(w))'e;)" ) dul
n 2)2 [ (Gt o) - Gt )
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((~Gatw)s, - ((~Ca )M+Zb/££xwwm
(c—ngaxuu»<m——c—axun>¢J(t—ax@o>¢p dul
(3.15) =T+ 1I+1III.
Then,
(~IGan(w))'6,)" = (=Gan()'9,)" ) (~ThGar(u)" 6| du
G ()"0, - (~Gan(w))'6))" = (~Ga(u))',)") |du.

The right hand side is bounded from above by

sz)wsupHleL?OTHR? (HfEk—90HL2OTHBR)—i-Z\aﬂ5 GHMM)

7j=1
for a large enougtik > 0, whereCy , > 0 is some constant. Similarly, we have

2
I <Cypl|z|[r200mm®2) <||ka: — ol 20 rimng) + D 10,6 — aijcle),
j=1

for a largeR > 0. On the other hand,
2 2
17 <C¢w Z / Y 7Y

v @C\{] U),¢>1)— 8Qiaaj(<x(u)7¢>l)
for some constant’, , > 0. Hereax oo b =1,---,nare bounded continuous. By (3]12)
and [3:1B), it follows thaf, I7 and /11 converge td) ask — oo, hencelimy, ... | f5(t, zx) —
f2(t,z)| = 0. We will checkf¥. Indeed,

£ (t, xk) - fg(t g;)|

du( sup [2(w)]?),

we([0,T]

¢)1){xn(u), Ag;)du

+¢Z/a% )MWAM—QNMW@WM@AMM_

The right hand side is bounded from above by

0kCy,g SUP (| || |L2(0,T;H(R2)))
k>1

)1 ){x(u) — zp(u), Ad;)

(52 (00,000 — 2ot D) ) Grn(). 56,

For a largeR > 0, this is bounded from above by

0kClp. igll) lzxllc20,rm@2) + Cyplle — il 20705,
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(3.16)

+T50¢i</0

i=1

oY

o (o) O0) = S (Gan(u). )

6041'

2 2
du) sup kaHLQ(O,T;H(RQ))-
k>1

Hereg—i is bounded continuous adg — 0. From [3:12) and (3.13), we obtain th#f (¢, z; ) —
f3(t,x)] — 0 ask — oc. As for f},

> [ St ) D)o )

((z(w), Y1) ((@(u) - V) @y, w(u))du

is equal to

| Z / 5, ) (e ) - V), e (w)) = (e (w) - V), e(w) )

aai(<xk( w), 0)7) (g (zp(u) - V), zp(u)) — {(x(u) - V), x(u)))
t (gi(<wk<U>,¢>?> - g—i«x(u)@)?)) ((2(u) - V)qéi,:c(u))du‘.

And this is bounded from above by

S| [ S o, ) Matrs(e) - 9046, — ) s

+

0 Oa;
- Z /0 gi(<xk(“)>¢>?)<ﬂk(($k(u) —z(u)) - V), x1(u))du
' Z; 0 goi(<mk<“)»¢>?)<((ﬂkx(u) —2(u)) - V) ¢y, xp(w)) du
+ Z o (rn(w). @)((2(w) - 96, mu(u) — ()

=l +1I1+1I1+1V 4V

Note thatlimy,_... [Ix¢(u) = ¢(u) for all u. Sinceg is aC'*-vector fields with compact support
and from [3:IR), it is easy to séén, ..,/ = 0. By proceeding similarly tofy, we have
limy_. V = 0 by (3.12) and[(3.13). It is easy to check thiat; ... /V = 0. In addition, we
have

IT < Cyysup ( sup ]xk(u)P) ||l — x”L2(07T;HBR)7

E>1 \ uel0,T]

Thus,lim;,_., I1 = 0 follows from (3.12) and[(3.13). Similarly, we have

T 2
ITT < Cyy (/ |z (u) — x(u)ﬁ{BRdu) sup sup |z;(u)|?.
0

1>1 uel0,T)
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We know thatlimy_... [Il;z(u) — z(u)|aps, = 0, a.ew. From this and[(3.12), we have
limy, oo [T = 0. Thuslimy_.o | fF(t, 2) — fi(t,z)| = 0. As a result, we obtairf (3.14). From
equicontinuity, the convergence [n (31 14) also holds uniformly in

(3.17) lim sup |G(t,zr) — G(t,z)| = 0.

k=00 4ei0,1)
Let K € W1 be a compact set. Then, we obtain
(3.18) lim sup |Gi(t,z) — G(t,x)| =0.

k—004ci0,7),0e K
By Prohorov’s theorem for the relative compactnes(sRﬁ)kZl in W, for eachn > 0,
(3.19) lim P* | sup |Gi(t) — G(t)| >n | =0.
k—o0 te[0,T]

For M > 0, let us setry, = inf{t > 0;|G(¢)| > M}. Setn = 1. Let us define* = inf{t >
0; |Gr(t) — G(t)| > n} andryrx = min{7y, 7%}. Thenlimy .., P*(7% < T') = 0 follows from
(3.19). In addition, we see the following uniform boundedness:

(3.20) sup sup |Gr(t A Tark)| < M + .
k>1 t€[0,T)

Let 7,; be left-continuousP-a.s., that is,P(ty; = 7y_) = 1. The functionz — G(t A
Tam (), x) is continuous on the set of/ () = 75, (x). Indeed, this follows fron{ (3.17). From

(B18), [3.20) and ;. — Tar, We obtain
0 = khm EPk {(Gk(t N TMJg) — Gk(s A Tka)) @}

(3.21) =E{(G(t ATy) — G(s ATu)) O}
This shows that

¥()(t) ~ W(a)0) ~ [ ()
0
is a local martingale unde?. The proof is completeg
By Lemmd 3.8, we see that
M¢<t7l’) = <.I’(t), ¢> - <u07¢>
3.22 — x(s), A¢)ds — x(s) - x(s))ds
(3.2 [ et s = [ (@) )o.ats)as,
and
Mot = [ (~Galw) o (~Gatw)'o)du
are local martingales. Namely/¢ is a local martingale whose quadratic variation is given by
(1. 219)(8) = [ (=Ga(w) ¢ (~Ca(w)e)du
By (3.5) and|(3.]7), we obtain

(3.23) sup EX* { sup ]a:(t)@IBR} < 00,

k>1 t€[0,T
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T
(3.24) sup EF* {/0 ||a:(t)]|%,BRdt} < 00,

k>1

for a largeR > 0. By lower semicontinuity of

T
oo swp o, 7 [ (Ol
0

te[0,7
we obtain
B T
(3.25) EP{ sup \x(t)ﬁ{BR +/ ||x(t)||%,BRdt} < 00,
t€[0,7) 0

from (3.23) and[(3.24). From this, we have

B { [/ (-Gatw)'s - ((=Gow)) oy du ) < o

for eacht > 0. Thus,M is a martingale. By applying the representation theorem of martingale
(see e.g.[[7], Theorem 8.2), there exist a probability spete’”, I') with a filtration {77 }:>o
and a two-dimensionaf;’ = B, x F;{-Brownian motion5 defined on(Q)" = Wy x ', F" =
B x F',P" = P x P') such that for any € C, andt € [0, T], we have thaP"-a.s.,
t ~

(3.26) M®(t,z,w') = / (—Gz(u,w"))* ¢ dB(u, x, '),

0
where M?(t,z,w') = M?(t,x) andz(t,w’) = z(t). SetX(t,z,0') = z(t,«’). Then from
(3.22) and|(3.26), for each, with probability one,

(X(1).6) — (0, 8) — 1 / (X(s), Ad)ds

(3.27) - / (X(s) - V)6, X (5))ds = / (—GX(s))' b dB(s),

holds. Namely{X (t), B(t)}=o on (", " {F/}1=0, P") satisfies the properties 3 and 4 of
Definition[2.1. The properties 1 and 2 of Definitipn]2.1 are checked as follows. It is clear
that X (¢) is an F;-adapted process. Furthermorg, (3.25) implése L>(0,7;Hg,) N
L?(0,T; Vp,), a.s. The proof of Theorem 2.1 is complege.

4. EXISTENCE OF WEAK SOLUTIONS OF (3.1))

In this section, we will give proofs about the a priori estimate|(3.5) and Lefmma 4.1 appearing
in Theorenj 2.JL. Although the following lemma is similar to [8], we give the proof here for the
reader’s convenience.

Lemma 4.1. There exists a unique solutiai?’ of (3.3).

Proof. We will take several steps to prove this lemma.

step 1.Let II,, be the orthogonal projection onto the linear subspace spaand§lej|§n
Let us setul’ = II,u". Note thatu;’ can be rewritten as a Fourier expansion with respect
t0 {ey }rezz, WhereZZ = Z2\{0}, that is,ul = 3, ub(s)e\, whereul** stands for

O] o (1

the Fourier coefficientu:5* = (ul9(s),el’),. Let us setul)” = <Hnu0),e§l)>l, ubdi(t) =
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(uif(t),ey))l. Now let us consider the following finite dimensional simultaneous stochastic
integral equations:

) t
(4.1) ub9 (1) = uf + / Fy(ubd (s), -+ ulbdm(s))ds
0

t
+/ o (ub®(s), -+ ub®"(s))dB(s), j=1,---,n,
0

where
Fj(ul, ) = <—A5€§-Z) + H”B(Z uke,(j), e§l)), Z ukeg))l
|k|<n |k|<n
aj(ul, L. ’un) _ —(HnG Z uk(g[(j))*e;l)’
lk|<n
that is,
t t
u(t) = g +/ F(u(s))ds +/ o(u(s))dB(s),
0 0
where
u(t) = (W (0), @), wo = (uy ™),
F(U) - (F1<u)7 T 7Fn(u))/7 U(U) - (01(u)7 o 70%(“))/‘
Let us set

T inf{¢; |u(t)| < R}, if {}is notempty
B oo, otherwise

Then, we see that
t
E{|u(t A TR)|*} < |uol® + C/ E{|u(s A Tg)|*}ds,
0

holds for some” independent of2. Thus, we obtaifs{|u(¢)|*} < co. Furthermore,
|[F(u) — F(v)] < Crlu—u|, foreverylul, |v] < R,
jo(u) = o(v)] < Clu =],

holds for some constant, Cr > 0. Therefore,[(4]1) has a unique strong solution for each0
andn,l € N.

Lemma 4.2. The following estimate holds:

(4.2) EF {[Ju (0)lIF} < llug [1F

Proof. Here we use the same notations as introduced in the proof of L¢mina 4.1. By applying
O]

Ito's formula to(ul’(t), €;”)7,

(4.3) (Wh? (1), )7 — (uld(t), el)?

t
=(2+d)pu / (Wh?(s), e (Auld (s), e)ids
0
t
+2 /0 (L, (b2 (s) - Yl (s)), €Yo (uld (s), €Y 1ds + martingale

t o 1,0 o 1,0
wop [ (0, 2y o0, P g
0 L1
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whereu!’(s) € C=, (1) and we use the integration by parts in the last term. Let us multiply

) by<)\§l)lu_1 per,o

(4.4) (W2 (1), ePN2 — (uld (1), el))?

=240 [ (O M), s
+2 / t<<nn<u5ﬁ(s) VUl (s)), eV (Wl (s), e )ids + martingale

v [ {4, 2y (o0, 2,

8x1 J 8x2

holds. Since{(u)\g.”_l)%egl)}jezg is orthonormal system iW,,,.(I), multiply ) bypAy)_l,
then sum fronmyj = 1 to |n|, we have

(.5) a5 (012 — ||k (O)]?
<@+0p / (), D () s

+2/t<(H (ub?(s) - Vubi(s)), ul?(s))),ds + martingale

8ul§ 5(8)
v [ 125 2D s,

Note that the integrand of the second term of (R.H.S.) is equA(t9’ (s) - Vubi(s)), ukd(s)));.
As for the first term of (R.H.S.), we have

((u? (), A () = [l — |
by using the integration by parts formula. On the other hand, we see
(4.6) (T (13" (5) - V? (5)), 1’ (5)))0 = 0.
Indeed, in the case of two dimensional torus, there exists a stream fugctiprsatisfying

ubd(s) = V+é(s). ) Is shown by using such (see [6] Proposition 6.3). However, it does
not hold in the case of higher dimension in general. As a result,

(4.7 B { [ 0)f} } < Il 12
The proof is completeg

(9 ( )12 8ul‘5(5)

Hl>

Lemma 4.3. The following estimates hold:

T
(4.8) supE{ sup |[ul?(t)]? + 5u/ |[ub2])? & < oo.
n,l te[0,7) 0

and

1,6 p 2+ 0
(4.9) supE ¢ sup |w,°(t)|] p < oo, forpe[2,—].

n,l t€[0,T] 2
Furthermore, in particular ifp = 2, the following estimate holds:
(4.10) sup E ¢ sup [’ (0)fF o < Offuy |7,
n>1,6>0 t€[0,T]
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for C; > 0 independent of, andJd. In addition, letK' C R? be a compact set. For an integer
and R > 0 satisfying(—1,1)? D Byg U Q U suppug. Then,

(4.112) sup E{ sup \ufg(s’R(t)]Q} < CQHUOH2,

n>1,6>0,R>0,leN te[0,T]
holds for some constaigt, > 0 independent of, ¢, [ and R.
Proof. By Ito’s formula applied tdul’ )|V, p > 2, itis easy to see that

W) < |TLul |7
246 t _
b (<557 1) [ o) s
0
t
Ty / [ () [P (I1, G ()" (5) dB(s),
0

Then,sup, E {|u}(¢)|7} < oo holds ifE {]u(()l)ﬂ’} < oo and

2496 _ 5
—%er—lgo, thatis,p € [0,2+§].

Clearly, this condition ensures that

t
sup [ [ul? ()72l o) s < .
n 0
holds. Note that the following trivial inequality holds:
‘GUEH,S(R%HW(D) < 2ulfullf + Aul?,  uw € Ve (1), X > 0.
Then the stochastic term can be estimated as follows:

E{SUP /P|uf;6(3')|§7_2(HnGUff(3'))*Uf{6(8')d3(8')
s€[0,¢]

0
: ;
<en{ ( [/ o)

0

where we have used the Burkholder’s inequality. The right hand is bounded from above by
t 3
CE { (/ PRl (D17 (20l (817 + Alul?) ds’) }
0

t
<CE(( / (sup [k () ) (2up?||ak? () |[2]uk () P2

s€[0,¢]

1
+ 2\p( u, |ub? (o) [F)ds')z }.
o€l0,s’

Furthermore, the right hand is bounded from above by

1 ! -
§E{ - Iuif(s>|§’} R { [ e sy d}
0

s€[0,t]
02 t
-I—?)\pg/ E{ sup [ul(o) ¢ ds,
0 o€[0,s']
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As a result, by Gronwall's Iemm .9) follows fpre (2,2 + 2]. As for (4.10), it is easily
obtained by usind (4]7) in Lemnma 4.2. Finally, concern[ng (4.11), it is obtained by noisng
chosen as—/,1)? contains both the support af and B,r. The proof is completex
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