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ABSTRACT. We offer an intuitive explanation of the end-point and transversality conditions that
complement the Euler equation in the calculus of variations. Our reasoning is based upon the
fact that any variation given to an optimal function must entail a zero net gain to the functional,
all consequences of implied changes in its derivative being fully taken into account.
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2 OLIVIER DE LA GRANDVILLE

1. INTRODUCTION.

While necessary conditions for determining extremals of a differentiable function defined
over an open interval are obvious (its gradient should be equal to zero), optimizing functionals
requires rules that seem much less obvious. For instance, for most people who are not teaching
the calculus of variations, it definitely requires some effort to remember that first order condi-
tions of maximizing the functionalg™’ Flz,y(x),y'(x)] dz or [ [, Glz,y, 2(2,y), 2, 2,|dzdy
where the domain of integration is fixed are the Euler equafipr -1 F}, = 0 and the Euler-
Ostrogradski equatioy, — 2G, — %Gq = 0, wherep = z, andq = z,.

In [1] we showed that these equations were not as arcane as they looked, and that on the
contrary they could be intuitively derived at one stroke. Our reasoning was based upon the
geometrical approach used by Euler and the fact that if optimal funafionr z(z, y) existed,
they must be such that at any of their points any small variation imparted to them should entalil
a zeronet advantage to the functional, taking into account the incidence of that variation on the
slopes ofy or z.

We show here that this reasoning can be extended to obtain directly the classical end-point
and transversality conditions, which apparently offer little intuitive sense, particularly if the end
value ofy is fixed or ify(z;) can move along a certain curyér) at the teminal point.

1. A reminder of terminal point conditions.
Suppose that we wish to maximijaéo1 Flz,y(x),y (z)] dz; assume the initial poiritco yo) is
fixed — the case where the initial point is movable could be treated in an analogous way. Besides
the Euler equation, necessary conditionsifar) to be an optimal solution are the summarized
in the following table:

Table 1.1: Conditions to be met at= x; according to the nature of the end point, additional
to the Euler equation.

Nature of end point Condition additional g — L F,, = 0
atr = x;
a) bothz; andy, are free F=0andF, =0
b) z, is fixed andy, is free F,=0
c) y; Is fixed andr; is free F—yF,=0
d) y(z1) = g(z1), g(x) fixed F4+ (g —y)Fy, =0

2. The logic behind those conditions.

In all treatises, those conditions are demonstrated either through the differential or the de-
rivative approach (see for instance [2], [3], [4]). We now offer an intuitive explanation of each
of those conditions. For that purpose, we suppose without loss of generality that the partial
derivativesF, and F,, are positive.

2.1. Consider first case a) where bathandy; are free and suppose that the optimal point
(z1,y1) has been found. Any increase impartedztoor to y; imply the following. First,
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all consequences, direct and indirect, of a changg are taken care in the Euler equation
F, — &LF, = 0 (analysed in1]).We now have to take into account the fact thatis not

fixed any more but that it can move bir,. This entails two consequences: first, a ben-
efit in the direct increase of the functional measured by the additional infinitesimal element
Flzy,y(x1),y (x1)]dzy; second, a further benefit due to the possible changg af the end
point; the accrued value for the functionalA% . Therefore both impacts should be zero, and

we must have, at = z1, F' = 0 andF,, = 0 in addition tof}, — - F,, = 0.

2.2. In the case b)4; fixed, y; free) there is no possible increase of the integrand due to a
change inc{, but the benefit of a free value gfentailing a change in the slogéis maintained.
This only impliesF,, = 0 atz = z; in addition to the Euler equation.

Cases c) and d) require special attention; they correspond to the constraint defined by a fixed
terminal valuey; (case c) and by the fact that can move along a given curyéz) (case d).

2.3. Consider first case c) wherg is fixed andz; is free; a changéx; normally would
impart at the terminal point a slope equaktéz; )dz;, carrying a gain for the functional mea-
sured byF, y'dz, atxy; but sincey cannot change at the terminal poititis advantageannot
be counted any moreit now must be considered as a cost, to be balanced against the gain
Flz1,y(x1),y (z1)]dz, mentioned in 2.1Hence the equality'dz; = F,y'dx;, equivalent to
F —y'F, = 0 atz = 1, the condition additional td, — -L F,, = 0 over|[zg, z1] .

2.4. The final case d) wherg(x) can move along a curvgz) at the terminal point can be
treated as a direct extension of the preceding one. While the cost of not benefitting of the own
slope of the curveg(x) has still to be borne, we can now account for the gain generated by the
slope ofg(x), equal toF,, ¢'dx, atz;. This implies the additional conditioR + (¢’ —y')F,, = 0
atr = ;.
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