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ABSTRACT. The norm defined by Busemann'’s inequality establishes a class of star body - inter-
section body. This class of star body plays a key role in the solution of Busemann-Petty problem.
In 2003, Giannapoulos [1] defined a norm for a new class of half-section. Based on this norm,
we give a geometric generalization of Busemann-Petty problem, and get its answer as a result.
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2 R. Liu, J. YUAN

1. INTRODUCTION

Let vol;(L) denote the-dimensional Lebesgue measure of bet R” in its affine hull, and
let G(n, i) denote the Grassmann manifoldieflimensional subspace &". Let B} denote
the Euclidean unit balls™~! the Euclidean unit sphere iR, and| - | the Euclidean norm. A
compact, convex set IR™ with non-empty interiors is called a convex body. We will also work
with general star bodies, which are star-shaped bodies, meaning that L for all ¢ € [0, 1],
with the additional requirement that their radial functioi{u) = max{\A > 0: \u € L} isa
continuous function o™ 1.

Let K be a symmetric convex body iR, Busemann inequality states that the function

||

1.1
(1.1) v vol, (K Nazt)

is a norm.

Motivated by this norm, H.Busemann and C.M.Petty posed ten problems about convex bodies
in 1956 [2]. The first problem, now known as the Busemann-Petty problem (BP-problem),
states:

Supposes thak and L are origin-symmetric convex bodiesRY, such that

1.2) vol, 1 (K N¢) <vol, (L NE)
forall ¢ € G(n,n — 1). Does it follow that
vol,,(K) < vol,(L)?

The answer is affirmative ik < 4 and negative if» > 5, which was established in a se-
ries of papers by Larman and Rogers [8] % 12), Ball [4] (» > 10), Giannapoulos |5] and
Bourgain [6] ¢ > 7), Papadimitrakis[]7] and Gardner| [8} (> 5) Gardner[[9] proved that
the answer is affirmative for = 3. Zhang [10] proved that the answer to the Busemann-Petty
problem in the four dimensional case is affirmative . Futhermore, Gardner, Koldobsky and
Schlumprecht([11] provided a unified solution to the Busemann-Petty problem in all dimen-
sions. There are many other results related to Busemann-Petty problem (see for example [2],
[12], [13] [15],[16],]18],[19]). For Fourier analytic approach to the Busemann-Petty problem
and its generalization, the reader is referred to an excellent book of Koldobsky [12] .

The class of intersection bodies, introduced by Lutwak in [14], plays a key role in the thor-
ough solution of the Busemann-Petty problem . A star badyn R” is called an intersection
body if exist a star body., such that

1
py(u) = vol,_ (L Nut) = / pr (V)" dv.
n — 1 Sn—1nqL

The connection between intersection bodies and the Busemann-Petty problem which was first
found by Lutwak [14], states that K is an intersection body i (1.2), then the answer to the
guestion of the Busemann-Petty problem is affirmative.

In [17], Rubin and Zhang firstly give the definition of tlé k) intersection body . Let
positive real integersandk satisfyi + k£ < n, we shall say that an origin-symmetric star body
K in R™ is an (i, k) -intersection body (seé [17] for more general definition) if there exits a
non-negative measuyeon G(n, ) such that

Pic = Rin,
whereR! is thei-dimensional Radon transform(séel[17] or section 2 for its definition).
We denote by}, the class ofi, k)-intersection body ifiR". An (i, n—i)-intersection body is
simply calledi-intersection body. the case= n — 1 is associate with the notion of intersection
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body due to Lutwak [14]. Such generalization of the intersection body has essential connections
with some generalized Busemann-Petty problem (see [17] for example).

Let K be a symmetric convex body K" andE € G(n,n — k), where2 < k < n — 1. For
everyz € B+, define

(1.3) E(z)={z+tz:z € E,t >0}

It is easy to check tha(z) is a(n — k + 1)-dimensional half-space.
Later in 2003, Giannapoulos gave a generalization of the Busemann-inequality . He proved
that

2]

(1.4) i Vol 41 (K N E(z))

was a norm orgt.

Inspired by the above norm , we raise up a generalized Busemann-Petty problem in the fol-
lowing:

Let K, L be two symmetric star bodies aftle G(n,n — k). Is it true that the inequality

Vol,, 11 (K N E(2)) <Vol, 141 (LN E(2)), Yz € B+,

implies that
vol,(K) <vol,(L)?

Takingk = 2, the problem is just the Busemann-Petty problem.
In this article,we shall mainly study the specific affirmative answer to the above generalized
Busemann-Petty problem whét belongs to the class df: — & + 1)-intersection bodies .

Theorem 1.1. Let K be an(n — k + 1)-intersection body/l. be a symmetric star body iR",
andE € G(n,n — k). If

VOl, 11 (K N E(2)) < VOb,_41(L N E(2)), Vz € E*,

then
vol,(K) < vol,(L).

Theorem 1.2. Let L be an origin-symmetric convex body wit boundary and positive cur-
vature. IfL is not an(n — k + 1)-intersection body ifR", then there exits an origin-symmetric
star bodyK so that

VOl, 11 (K N E(2)) <Vol,_y1 (LN E(2)), Vz € B+

whereE € G(n,n — k), but
vol,(K) > vol,(L).

Theorem[ 1.l and Theorem 1.2 together imply that the answer to the above generalized
Busemann-Petty problem is equivalent to ask wether the symmetric star bdly im an
(n — k + 1)-intersection body or not.

In the end, we get the half-sectidf(z)'s Funk theorem as an application .
Theorem 1.3. Let K, L be symmetric star bodies R* and £ € G(n,n — k). If
vol, 441 (K N E(z)) =vol,_1(L N E(2)), ¥z € B+,
thenK = L.

Fork = 2, itis just the Funk theorem.
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2. NOTATION AND PRELIMINARY WORKS

Let C(S"~1) be the space of continuous functions on the unit sphére, andC,(5"') the
subspace of’(S™!) that contains the even continuous functionss¥n!. And the subset of
C.(S™1) that contains the infinity differentiable functions will denoted®y (S™~'). Denoted
by C(G(n,i)) the space of continuous functions@1in, 7). For f € C(S"!), g € C(G(n,1)),

1 <i < n—1, thei-dimensional spherical Radon transfoRyf and its dual transforn®’ ¢ are
defined by

(2.1) (Rf)(E) = /

Sn—1ng

fldoifa), (Bg)w = [ gle)duie).
£€G(n,i)
whereo; is the Haar probability measure ¢t~ (and we have identified*~! with "1 N ¢),
andu; is the Haar probability measure on the homogenegus {Z(n, ) : u € &}
The corresponding duality relation reads (see [1]or [12])

(2.2) / (Rf)Eg©)de = [ Flu)(Rig)(w)du.
G(n,i) Sn—1

This allows us to defind?;. and Riv for arbitrary finite Borel measurgs on S"~! anv on
G(n,1) as follows:

2.3) | Ra©e©ic = | (Rg)udutu). g € CGln.).
G(n,i) Sn—1
2.4) [ mwsem= [ o, £ o)

We will also write [2.2),[(2.B)and (2.4) briefly as
(sza g) = (f? ng)a (Rzluag) = (,U7 ng% (R§y> f) = (y7 le)

We shall use the notation®,,; and i}, ; for i-dimensional spherical Radon transform and
its dual in a lower dimensional settifRj” C R” (as referred above, we also have identifit
with R" Nn, n € G(n,m), m < n).

For: star bodied<;, - - - , K;, and¢ € G(n, 1), the dual mixed volumey (K;N¢E, - - -, K;NE),
is defined by

~ 1
(2.5) Ue(KiNg, - K;iNg) = ;/ P, (W) -+ pre, (w)du.
Snflmg
If K1 =--- = K, then we get the-th section volume function ok’:
1 .
(2.6) Vol (K N¢) = —./ P (u)du.
1 Sn71ﬂ£

Thus, by [(2.11), the Radon transforR) has following close connection with the central sec-
tion of star bodies

27) (Riph)(€) = —-vol(K€ 1€), Y€ € Gln,i),

wherew; is the volume of the unit ball ilR™ N &.

_Wheni = nin (2.5) , the dual mixed volumes of the star bodi€s - - - , K, is denoted by
V(Ky,---,K,). And we will denote byV (K3, i, K3, n — i) the dual mixed volume , where
there are copies ofK; andn — i copies ofK,.

The last fact needed in this article dual Minkowski inequality reads:
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Let K, K, be star bodies ifR™, 0 < i < n, then
(2.8) V(K. Koyn — 1) < V%(Kl)v

n—i

n (Ks).

3. THE PROOFS OF THEOREMS

In this section, we shall prove Theor¢m]|1.1, Theorerm 1.2 and Thg¢orém 1.3 which presented
in section 1.
Proof of Theorer 1]1.

For all > € £+, by (I.4) and[(2]7), we have
Ro-ps1py "THE(2)) < Ruoprrpy 7 (B(2)).
SinceK € I, ., there existg. € G(n,n — k + 1), such that
P’;(_l = R 1t

Therefore, we have

vol,(K) = A ) (u)du

P () R,y pdu
(R 25 (B(2)

(R a1 (B ()
(n,n—k+1)

) pp () R,y pedu

A ()

_ n n—k+1 1 _ n k—1
) e )RS
sn—1 kil sn—1

W(L))" 5 (vol, (K)) 5

3
|

S

Q

(n,n—k+1)

IN
ZIEI—I =33 =3
S

—

»
3

e

S|

I
/&\ —~
=1

This gives
vol,(K)" < (vol, (L))" (vol, (K))* 1,

vol, (K) < vol,(L).
This proves the theorem.
Before we prove Theorejmn 1.2, we require the following notations. We will denotdd kiye
spaces of signed Borel measures. In particld(,S" ') denotes the spaces of signed measures
on S LetX = R;(C(S"!)), denoted byM ™ (X) the set of non-negative linear functionals

onX. We will consider the convex con€; defined byV; = {Riy : p € MHT(X)}in M(S™1).
It can be shown that this convex cang is closed undew*-topology of M (S™~1) (see [17]).

Lemma 3.1. (se€e[l7]) Letp € M(S"1). If p ¢ N;, then there existg € C°°(S"!) so that
(p,g) >0, Rig <0.

Remark. If the Radon-Nikodym derivative of the measysewith respect to the Lebesgue
measure o™~ ! is an even continuous function apd? A;, then the functiory in Lemmd 3.1
can be chosen i6'>°(S"1) (see[17]).
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Proof of Theorem 1]2.

SinceL ¢ I} ,, we havep} " ¢ N,_i;1. By applying Lemma 3|1 iiR", there exists a
g € C°(S" 1) so that

(31) (p][gilug) > 07 RTL*k‘Flg < 0.
We can define an origin-symmetric convex bddyin R™ by
(3.2) P = ey,

for ¢ > 0 sufficiently small. This is possible for the reason thdtasC? boundary and positive
curvature.
Substituting[(3.R) into the second inequallty (3.1) and using (2.7), we have

0 > ERn_k+1g
= sRn_k+1pZ§k+1 - €Rn_k+1p§f—k+1
= VOl _p41(Le N E(Z)) = SvOl, 1 (L N E(2)),

whereE(z) € G(n,n — k + 1). This concludes

(3.3) VOb,— 11 (Le N E(z)) < VOl,_p1 (LN E(2)).
Substituting[(3.R) into the first inequality (3.1) , we get
0 <(py'.9)
= e M (pp Pt = i

= e M ) = e e )

= e 'W(Lk—1,Le,n —k+1) —e 'vol,(L).

This implies

(3.4) V(L k—1,Le,n—k+1) > vol,(L).

But by dual Minkowski inequality{ (2]8)

(3.5) V(L k—1,Leyn—k+1) < (Voly_1 (L)) & (VOl_pe1 (L)
Combining the last two inequalitgs (B.4),(3.5), we arrive at

(3.6) vol,(L.) > vol,(L).

Then letK = L. in (3.3) and[(3.5) we obtain the result desired immediately.
In the rest part we shall establish a generalization result of Funk Theorem (see [12]), and the
following lemma will be needed:

Lemma 3.2. (see[l12]) Let f be an even homogeneous of degree+ 1 on R", continuous
on the spheres™~!. Then the Fourier transform of is an even homogeneous of degrel
continuous orR"\{o} function such that , for eveyc S,

1.
RIQ = [ fudu=1f(©)
Sn—lmé‘l- T
where the spherical Radon transforknis applied to the restriction of to the sphere.

Proof of Theorer 1]3From the definition[(2]6) , it is easy to verify that
VOl 11 (K NE(2)) =VOol, 1 (LN E(2))

1 1
= R () du = —/ L) du.
n — k + 1 /SnlmE(Z) pK ( ) n — k + 1 SnflmE(Z) pL ( )
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That is

(3.7) [ = [ g e
Sn—1INE(z) Sn—INE(z)

Fixed any¢ € S™°!, and denote by7:(n — 1,n — k + 1) the Grassmann af — k + 1-
dimensional subspace éf. Integrating both sides of equatidn (3.7) o@&f(n — 1,n — k + 1),
we get

(3.8) R O
Sn-ingt Sn-ingt

Extend 5™~ (u), o™ (u) to homogeneous functions of degree + 1 on the wholeR".
By Lemmd 3.2, the Fourier transforms of their extensions are equal. By the uniqueness theorem
for the Fourier transform (see [12i* " (u) = p7™ " (u). This impliespy (u) = p;(u),
henceK = L. »
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