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ABSTRACT. The norm defined by Busemann’s inequality establishes a class of star body - inter-
section body. This class of star body plays a key role in the solution of Busemann-Petty problem.
In 2003, Giannapoulos [1] defined a norm for a new class of half-section. Based on this norm,
we give a geometric generalization of Busemann-Petty problem, and get its answer as a result.
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1. I NTRODUCTION

Let voli(L) denote thei-dimensional Lebesgue measure of setL ⊂ Rn in its affine hull, and
let G(n, i) denote the Grassmann manifold ofi-dimensional subspace ofRn. Let Bn

2 denote
the Euclidean unit ball,Sn−1 the Euclidean unit sphere inRn, and| · | the Euclidean norm. A
compact, convex set inRn with non-empty interiors is called a convex body. We will also work
with general star bodiesL, which are star-shaped bodies, meaning thattL ⊂ L for all t ∈ [0, 1],
with the additional requirement that their radial functionρL(u) = max{λ ≥ 0 : λu ∈ L} is a
continuous function onSn−1.

Let K be a symmetric convex body inRn, Busemann inequality states that the function

(1.1) x 7→ |x|
voln−1(K ∩ x⊥)

is a norm.
Motivated by this norm, H.Busemann and C.M.Petty posed ten problems about convex bodies

in 1956 [2]. The first problem, now known as the Busemann-Petty problem (BP-problem),
states:

Supposes thatK andL are origin-symmetric convex bodies inRn, such that

(1.2) voln−1(K ∩ ξ) ≤ voln−1(L ∩ ξ)

for all ξ ∈ G(n, n− 1). Does it follow that

voln(K) ≤ voln(L)?

The answer is affirmative ifn ≤ 4 and negative ifn ≥ 5, which was established in a se-
ries of papers by Larman and Rogers [3] (n ≥ 12), Ball [4] (n ≥ 10), Giannapoulos [5] and
Bourgain [6] (n ≥ 7), Papadimitrakis [7] and Gardner [8] (n ≥ 5) Gardner [9] proved that
the answer is affirmative forn = 3. Zhang [10] proved that the answer to the Busemann-Petty
problem in the four dimensional case is affirmative . Futhermore, Gardner, Koldobsky and
Schlumprecht [11] provided a unified solution to the Busemann-Petty problem in all dimen-
sions. There are many other results related to Busemann-Petty problem (see for example [2],
[12], [13] [15],[16],[18],[19]). For Fourier analytic approach to the Busemann-Petty problem
and its generalization, the reader is referred to an excellent book of Koldobsky [12] .

The class of intersection bodies, introduced by Lutwak in [14], plays a key role in the thor-
ough solution of the Busemann-Petty problem . A star bodyK in Rn is called an intersection
body if exist a star bodyL, such that

ρK(u) = voln−1(L ∩ u⊥) =
1

n− 1

∫
Sn−1∩u⊥

ρL(v)n−1dv.

The connection between intersection bodies and the Busemann-Petty problem which was first
found by Lutwak [14], states that ifK is an intersection body in (1.2), then the answer to the
question of the Busemann-Petty problem is affirmative.

In [17], Rubin and Zhang firstly give the definition of the(i, k) intersection body . Let
positive real integersi andk satisfyi + k ≤ n, we shall say that an origin-symmetric star body
K in Rn is an (i, k) -intersection body (see [17] for more general definition) if there exits a
non-negative measureµ onG(n, i) such that

ρk
K = Rt

iµ,

whereRt
i is thei-dimensional Radon transform(see [17] or section 2 for its definition).

We denote byIn
i,k the class of(i, k)-intersection body inRn. An (i, n−i)-intersection body is

simply calledi-intersection body. the casei = n− 1 is associate with the notion of intersection
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body due to Lutwak [14]. Such generalization of the intersection body has essential connections
with some generalized Busemann-Petty problem (see [17] for example).

Let K be a symmetric convex body inRn andE ∈ G(n, n− k), where2 ≤ k ≤ n− 1. For
everyz ∈ E⊥, define

(1.3) E(z) = {x + tz : x ∈ E, t > 0}.
It is easy to check thatE(z) is a(n− k + 1)-dimensional half-space.

Later in 2003, Giannapoulos gave a generalization of the Busemann-inequality . He proved
that

(1.4) z 7→ |x|
voln−k+1(K ∩ E(z))

was a norm onE⊥.
Inspired by the above norm , we raise up a generalized Busemann-Petty problem in the fol-

lowing:
Let K, L be two symmetric star bodies andE ∈ G(n, n− k). Is it true that the inequality

voln−k+1(K ∩ E(z)) ≤ voln−k+1(L ∩ E(z)), ∀z ∈ E⊥,

implies that
voln(K) ≤ voln(L)?

Takingk = 2, the problem is just the Busemann-Petty problem.
In this article,we shall mainly study the specific affirmative answer to the above generalized

Busemann-Petty problem whenK belongs to the class of(n− k + 1)-intersection bodies .

Theorem 1.1. Let K be an(n − k + 1)-intersection body,L be a symmetric star body inRn,
andE ∈ G(n, n− k). If

voln−k+1(K ∩ E(z)) ≤ voln−k+1(L ∩ E(z)), ∀z ∈ E⊥,

then
voln(K) ≤ voln(L).

Theorem 1.2. Let L be an origin-symmetric convex body withC2 boundary and positive cur-
vature. IfL is not an(n− k + 1)-intersection body inRn, then there exits an origin-symmetric
star bodyK so that

voln−k+1(K ∩ E(z)) ≤ voln−k+1(L ∩ E(z)), ∀z ∈ E⊥

whereE ∈ G(n, n− k), but
voln(K) > voln(L).

Theorem 1.1 and Theorem 1.2 together imply that the answer to the above generalized
Busemann-Petty problem is equivalent to ask wether the symmetric star body inRn is an
(n− k + 1)-intersection body or not.

In the end, we get the half-sectionE(z)’s Funk theorem as an application .

Theorem 1.3. LetK, L be symmetric star bodies inRn andE ∈ G(n, n− k). If

voln−k+1(K ∩ E(z)) = voln−k+1(L ∩ E(z)), ∀z ∈ E⊥,

thenK = L.

Fork = 2, it is just the Funk theorem.
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2. NOTATION AND PRELIMINARY WORKS

Let C(Sn−1) be the space of continuous functions on the unit sphereSn−1, andCe(S
n−1) the

subspace ofC(Sn−1) that contains the even continuous functions onSn−1. And the subset of
Ce(S

n−1) that contains the infinity differentiable functions will denoted byC∞
e (Sn−1). Denoted

by C(G(n, i)) the space of continuous functions onG(n, i). Forf ∈ C(Sn−1), g ∈ C(G(n, i)),
1 ≤ i ≤ n− 1, thei-dimensional spherical Radon transformRif and its dual transformRt

ig are
defined by

(2.1) (Rif)(ξ) =

∫
Sn−1∩ξ

f(u)dσi(u), (Rt
ig)(u) =

∫
ξ∈G(n,i)

g(ξ)dυi(ξ),

whereσi is the Haar probability measure onSi−1(and we have identifiedSi−1 with Sn−1 ∩ ξ),
andυi is the Haar probability measure on the homogeneous {ξ ∈ G(n, i) : u ∈ ξ}.

The corresponding duality relation reads (see [1]or [12])

(2.2)
∫

G(n,i)

(Rif)(ξ)g(ξ)dξ =

∫
Sn−1

f(u)(Rt
ig)(u)du.

This allows us to defineRiµ andRt
iν for arbitrary finite Borel measuresµ on Sn−1 an ν on

G(n, i) as follows:

(2.3)
∫

G(n,i)

(Riµ)(ξ)g(ξ)dξ =

∫
Sn−1

(Rt
ig)(u)dµ(u), g ∈ C(G(n, i)),

(2.4)
∫

Sn−1

(Rt
iν)(u)f(u)du =

∫
G(n,i)

(Rif)(ξ)dν(ξ), f ∈ C(Sn−1).

We will also write (2.2), (2.3)and (2.4) briefly as

(Rif, g) = (f, Rt
ig), (Riµ, g) = (µ, Rt

ig), (Rt
iν, f) = (ν, Rif).

We shall use the notationsRm,i andRt
m,i for i-dimensional spherical Radon transform and

its dual in a lower dimensional settingRm ⊆ Rn (as referred above, we also have identifiedRm

with Rn ∩ η, η ∈ G(n,m), m ≤ n).
Fori star bodiesK1, · · · , Ki, andξ ∈ G(n, i), the dual mixed volume,̃vξ(K1∩ξ, · · · , Ki∩ξ),

is defined by

(2.5) ṽξ(K1 ∩ ξ, · · · , Ki ∩ ξ) =
1

i

∫
Sn−1∩ξ

ρK1
(u) · · · ρKi

(u)du.

If K1 = · · · = Ki, then we get thei-th section volume function ofK:

(2.6) voli(K ∩ ξ) =
1

i

∫
Sn−1∩ξ

ρi
K(u)du.

Thus, by (2.1), the Radon transformRi has following close connection with the central sec-
tion of star bodies

(2.7) (Riρ
i
K)(ξ) =

1

ωi

voli(K ∩ ξ),∀ξ ∈ G(n, i),

whereωi is the volume of the unit ball inRn ∩ ξ.
Wheni = n in (2.5) , the dual mixed volumes of the star bodiesK1, · · · , Kn is denoted by

Ṽ (K1, · · · , Kn). And we will denote byṼ (K1, i,K2, n − i) the dual mixed volume , where
there arei copies ofK1 andn− i copies ofK2.

The last fact needed in this article dual Minkowski inequality reads:
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Let K1, K2 be star bodies inRn, 0 < i < n, then

(2.8) Ṽ (K1, i,K2, n− i) ≤ V
i
n (K1)V

n−i
n (K2).

3. THE PROOFS OF THEOREMS

In this section, we shall prove Theorem 1.1, Theorem 1.2 and Theorem 1.3 which presented
in section 1.
Proof of Theorem 1.1.

For all z ∈ E⊥, by (1.4) and (2.7), we have

Rn−k+1ρ
n−k+1
K (E(z)) ≤ Rn−k+1ρ

n−k+1
L (E(z)).

SinceK ∈ In
n−k+1, there existsµ ∈ G(n, n− k + 1), such that

ρk−1
K = Rt

n−k+1µ.

Therefore, we have

voln(K) =
1

n

∫
sn−1

ρn−k+1
K (u)ρk−1

K (u)du

=
1

n

∫
sn−1

ρn−k+1
K (u)Rt

n−k+1µdu

=
1

n

∫
G(n,n−k+1)

(Rn−k+1ρ
n−k+1
K )(E(z))dµ

≤ 1

n

∫
G(n,n−k+1)

(Rn−k+1ρ
n−k+1
L )(E(z))dµ

=
1

n

∫
sn−1

ρn−k+1
L (u)Rt

n−k+1µdu

=
1

n

∫
sn−1

ρn−k+1
L (u)ρk−1

K (u)du

≤ (
1

n

∫
sn−1

(ρn−k+1
L (u))

n
n−k+1 )du)

n−k+1
n (

1

n

∫
sn−1

(ρk−1
K (u))

n
k−1 )du)

k−1
n

= (voln(L))
n−k+1

n (voln(K))
k−1

n .

This gives
voln(K)n ≤ (voln(L))n−k+1(voln(K))k−1,

voln(K) ≤ voln(L).

This proves the theorem.

Before we prove Theorem 1.2, we require the following notations. We will denotes byM the
spaces of signed Borel measures. In particular,M(Sn−1) denotes the spaces of signed measures
onSn−1. Let X = Ri(C(Sn−1)), denoted byM+(X) the set of non-negative linear functionals
onX. We will consider the convex coneNi defined byNi = {Rt

iµ : µ ∈M+(X)} inM(Sn−1).
It can be shown that this convex coneNi is closed underw∗-topology ofM(Sn−1) (see [17]).

Lemma 3.1. (see[17]) Letρ ∈M(Sn−1). If ρ /∈ Ni, then there existsg ∈ C∞(Sn−1) so that

(ρ, g) > 0, Rig < 0.

Remark. If the Radon-Nikodym derivative of the measureρ with respect to the Lebesgue
measure onSn−1 is an even continuous function andρ /∈ Ni, then the functiong in Lemma 3.1
can be chosen inC∞

e (Sn−1) (see [17]).
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Proof of Theorem 1.2.

SinceL /∈ In
k−1, we haveρk−1

L /∈ Nn−k+1. By applying Lemma 3.1 inRn, there exists a
g ∈ C∞

e (Sn−1) so that

(3.1) (ρk−1
L , g) > 0, Rn−k+1g < 0.

We can define an origin-symmetric convex bodyLε in Rn by

(3.2) ρn−k+1
Lε

= ρn−k+1
L + εg,

for ε > 0 sufficiently small. This is possible for the reason thatL hasC2 boundary and positive
curvature.

Substituting (3.2) into the second inequality (3.1) and using (2.7), we have

0 > εRn−k+1g
= εRn−k+1ρ

n−k+1
Lε

− εRn−k+1ρ
n−k+1
L

= ε
ωi

voln−k+1(Lε ∩ E(Z))− ε
ωi

voln−k+1(L ∩ E(Z)),

whereE(z) ∈ G(n, n− k + 1). This concludes

(3.3) voln−k+1(Lε ∩ E(z)) < voln−k+1(L ∩ E(z)).

Substituting (3.2) into the first inequality (3.1) , we get

0 < (ρk−1
L , g′)

= ε−1(ρk−1
L , ρn−k+1

Lε
− ρn−k+1

L )
= ε−1(ρk−1

L , ρn−k+1
Lε

)− ε−1(ρk−1
L , ρn−k+1

L )

= ε−1Ṽ (L, k − 1, Lε, n− k + 1)− ε−1voln(L).

This implies

(3.4) Ṽ (L, k − 1, Lε, n− k + 1) > voln(L).

But by dual Minkowski inequality (2.8)

(3.5) Ṽ ((L, k − 1, Lε, n− k + 1) ≤ (volk−1(L))
k−1

n (voln−k+1(Lε))
n−k+1

n .

Combining the last two inequalites (3.4),(3.5), we arrive at

(3.6) voln(Lε) > voln(L).

Then letK = Lε in (3.3) and (3.6) we obtain the result desired immediately.�
In the rest part we shall establish a generalization result of Funk Theorem (see [12]), and the

following lemma will be needed:

Lemma 3.2. (see[12]) Let f be an even homogeneous of degree−n + 1 on Rn, continuous
on the sphereSn−1. Then the Fourier transform off is an even homogeneous of degree−1,
continuous onRn\{o} function such that , for everyξ ∈ Sn−1,

Rf(ξ) =

∫
Sn−1∩ξ⊥

f(u)du =
1

π
f̂(ξ).

where the spherical Radon transformR is applied to the restriction off to the sphere.

Proof of Theorem 1.3.From the definition (2.6) , it is easy to verify that

voln−k+1(K ∩ E(z)) = voln−k+1(L ∩ E(z))

⇐⇒ 1

n− k + 1

∫
Sn−1∩E(z)

ρn+k−1
K (u)du =

1

n− k + 1

∫
Sn−1∩E(z)

ρn+k−1
L (u)du.
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That is

(3.7)
∫

Sn−1∩E(z)

ρn+k−1
K (u)du =

∫
Sn−1∩E(z)

ρn+k−1
L (u)du.

Fixed anyξ ∈ Sn−1, and denote byGξ(n − 1, n − k + 1) the Grassmann ofn − k + 1-
dimensional subspace ofξ⊥. Integrating both sides of equation (3.7) overGξ(n− 1, n− k +1),
we get

(3.8)
∫

Sn−1∩ξ⊥
ρn+k−1

K (u)du =

∫
Sn−1∩ξ⊥

ρn+k−1
L (u)du.

Extendρn+k−1
K (u), ρn+k−1

l (u) to homogeneous functions of degree−n+1 on the wholeRn.
By Lemma 3.2, the Fourier transforms of their extensions are equal. By the uniqueness theorem
for the Fourier transform (see [12]),ρn+k−1

K (u) = ρn+k−1
L (u). This impliesρK(u) = ρL(u),

henceK = L.
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