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ABSTRACT. In this paper, we investigate the Mill’s ratio estimation problem and get two new
inequalities. Compared to the well known results obtained by Gordon, they becomes tighter.
Furthermore, we also discuss the inverse Q-function approximation problem and present some
useful results on the inverse solution. Numerical results confirm the validness of our theoretical
analysis. In addition, we also present a conjecture on the bounds of inverse solution on Q-
function.
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2 PINGYI FAN

1. I NTRODUCTION

The Gaussian Q-function is always used to present the probability that a standard normal
random variable exceeds a positive valuex and is defined by

(1.1) Q(x) =
1√
2π

∫ ∞

x

e−u2/2du

Since the prevalence of normal random variables, the Q-function, as one of the most im-
portant integrals, is usually encountered in applied mathematics, statistics, and engineering.
However, it is very difficult to handle mathematically due to its non-elementary integral form,
which cannot be expressed as a finite composition of simple functions. For this reason, a lot
of works have been on the development of approximations and bounds for the Q-function. The
well known approximation form was first given by Gordon [1], usually referred to "Mills ratio
inequalities". Later on, Birnhaum improved Gordon’s lower bound [2] and Sampford improved
Gordon’s upper bound [3]. Baricz [4] presented new proofs on Birnhaum and Sampford’s re-
sults by using monotonicity properties of some functions involving the Mill’s ratio of standard
normal law. In [5], Borjesson and Sundberg extended the results of Birnhaum and Sampford
by computer search to find some explicit approximation functions to Q-function. The same
parameter selection problem was treated by Boyd [6]. Tate [7] also presented some inequalities
for real positive number and negative number. Some works focused on using a sum of multiple
terms to approximate the Q-function [8][9][10][11][12][13]. Some works derived the Chernoff-
type bounds of the Q-function, including upper and lower bounds [14][15]. In this paper, we
will focus on the improvement of Mills’ ratio inequalities by modifying the multiplying factor
function of e−x2/2 while keeping the type of original form of Mills’ inequalities. We get two
improved inequalities, including one upper bound and one lower bound. Compared to the well
known inequalities, the new developed lower bound becomes much tighter when integral vari-
ablex is relatively large. In addition, we also consider the approximation of the inverse solution
of Q-function and obtain some useful results, among them one setting up a close relationship
between the information entropy and Q-function.

Theorem 1.1. (Mills’ Ratio inequality[1][16])

For arbitrary positive numberx > 0, the inequalities

(1.2)
x

1 + x2
e−x2/2 <

∫ ∞

x

e−u2/2du <
1

x
e−x2/2

are valid. In particular,

(1.3)
∫ ∞

x

e−u2/2du ≈ 1

x
e−x2/2

holds whenx →∞.

Theorem 1.2. ( Birnbaum and Sampford)
The inequalities

(1.4)
2√

x2 + 4 + x
e−x2/2 <

∫ ∞

x

e−u2/2du <
4√

x2 + 8 + 3x
e−x2/2

holds for allx > 0.

Theorem 1.3. (New Mills’ Ratio inequality)
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The inequalities

(1.5)
∫ ∞

x

e−u2/2du <
1√

1 + x2
e−x2/2

is valid for all x >
√√

5−1
2

and

(1.6)
1 + x2

x(2 + x2)
e−x2/2 <

∫ ∞

x

e−u2/2du

is valid for all x >
√

2.
In particular,

(1.7)
∫ ∞

x

e−u2/2du ≈ 1√
1 + x2

e−x2/2

holds whenx →∞.

In fact, the upper bound in Theorem 1.3 is worse than that given in Theorem 1.2, but we still
like to keep it since it has a relatively simple expression and is also useful in the estimation of
the inverse Q-function, which will be shown in Section IV.

By combing the results of Theorem 1.2 and Theorem 1.3, we have

Corollary 1.4. The inequalities

(1.8) f1(x) <

∫ ∞

x

e−u2/2du < f2(x)

are valid for allx > 0, wheref1(x) andf2(x) are given as follows

(1.9) f1(x) =


2√

x2 + 4 + x
if 0 < x ≤

√
2

1 + x2

x(2 + x2)
if x >

√
2

and

(1.10) f2(x) =
4√

x2 + 8 + 3x
e−x2/2

In particular,

(1.11)
∫ ∞

x

e−u2/2du ≈ 1√
1 + x2

e−x2/2

holds whenx →∞.

2. PROOF OF THE MAIN RESULT

Proof of Theorem 1.3.Let us define a function

(2.1) g(u) = − 1√
1 + u2

for all u > 0.
Differentiation yields

dg(u)

du
=

u

(1 + u2)3/2
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4 PINGYI FAN

Thus, we have ∫ ∞

x

u

(1 + u2)3/2
e−u2/2du =

∫ ∞

x

e−u2/2dg(u)

= g(u)e−u2/2|∞x −
∫ ∞

x

g(u)e−u2/2udu

=
1√

1 + x2
e−x2/2 −

∫ ∞

x

u√
1 + u2

e−u2/2du(2.2)

By reorganizing the integral equality above, we get

(2.3)
∫ ∞

x

[
u

(1 + u2)3/2
+

u

(1 + u2)1/2
]e−u2/2du =

1√
1 + x2

e−x2/2

That is,

(2.4)
∫ ∞

x

u(2 + u2)

(1 + u2)3/2
e−u2/2du =

1√
1 + x2

e−x2/2

It is easy to find that ifu >
√√

5−1
2

,

(2.5)
u(2 + u2)

(1 + u2)3/2
> 1

In fact, by definingg1(u) = u(2 + u2), g2(u) = (1 + u2)3/2 andg3(u) = g1(u)
g2(u)

for all u > 0, we
have

g2
1(u)− g2

2(u) = u6 + 4u4 + 4u2 − (u6 + 3u4 + 3u2 + 1)

= u4 + u2 − 1 > 0(2.6)

if u >
√√

5−1
2
≈ 0.7862.

By using the results above, Eqn. (2.4) becomes the following inequality

(2.7)
∫ ∞

x

e−u2/2du <
1√

1 + x2
e−x2/2,

which is valid forx >
√√

5−1
2
≈ 0.7862. Therefore, the first inequality Eqn. (1.5) is proved.

On the other hand, it is not difficult to getg3(u) is monotonically decreasing foru ≥
√

2.

Since
dg3(u)

du
=

(2 + 3u2)(1 + u2)3/2 − 3u2(2 + u2)(1 + u2)1/2

(1 + u2)3

=
2− u2

(1 + u2)5/2
(2.8)

If u ≥
√

2, thendg3(u)
du

< 0, resulting in thatg3(u) is monotonically decreasing foru ≥
√

2.
In this case, we have

(2.9)
∫ ∞

x

u(2 + u2)

(1 + u2)3/2
e−u2/2du <

g1(x)

g2(x)

∫ ∞

x

e−u2/2du.

By using Eqns. (2.4) and (2.9), we get

(2.10)
g1(x)

g2(x)

∫ ∞

x

e−u2/2du >
1√

1 + x2
e−x2/2
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which is equivalent to

(2.11)
∫ ∞

x

e−u2/2du >
1 + x2

x(2 + x2)
e−x2/2

Thus, the inequality Eqn. (1.6) is proved.
On the limit case, it is easy to prove

(2.12) lim
x→∞

1+x2

x(2+x2)√
1 + x2

= 1

which indicates that

(2.13)
∫ ∞

x

e−u2/2du ≈ 1√
1 + x2

e−x2/2

is true.
The proof of Theorem 1.3 is completed.

3. T IGHTNESS COMPARISON

It is not difficult to see that forx > 1

(3.1)
1

x
>

1√
1 + x2

Thus,

(3.2)
1

x
e−x2/2 >

1√
1 + x2

e−x2/2

This indicates that our new developed inequality in Theorem 1.3 has a tighter upper bound
on the estimation of

∫∞
x

e−u2/2du than that given in Theorem 1.1.
On the lower bound tightness, it can be seen that

(3.3)
x

1+x2

1+x2

x(2+x2)

=
x2(2 + x2)

(1 + x2)2
=

(1 + x2)2 − 1

(1 + x2)2
< 1

Therefore,

(3.4)
x

1 + x2
e−x2/2 <

1 + x2

x(2 + x2)
e−x2/2

which means that our new developed inequality in Theorem 1.3 has a tighter lower bound on
the estimation of

∫∞
x

e−u2/2du than that given in Theorem 1.1.
On the comparison of Theorem 1.2 and Theorem 1.3, it is very difficult to give a simple

proof. One can use numerical analysis to get it. Therefore, we shall discuss it in Section V by
numerical method.

4. APPLICATION TO THE ESTIMATION OF INVERSE Q-FUNCTION

Since Q-function is usually used to estimate the error probability, and the error probability
is often with value close to zero. In this part, we mainly focus on the estimation of inverse
Q-function for Q-function with very small values. The estimation problem of the inverse Q-
function can be described as follows.

Inverse Q-function Problem

To find a simple functionfQ(α) with an explicit form so that

(4.1) | Q−(α)− fQ(α) |→ 0
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asα → 0, whereQ(x) = α andQ−(α) is the inverse function ofQ(x) with Q−(α) = x.
By using the definition of the Q-function and the results in Theorem 1.1, for a very small

positive valueα, we have

(4.2)
1

x
e−x2/2 '

√
2πα

whereQ(x) = α. It is equivalent to

(4.3)
1

x2
e−x2

' 2πα2

Sincep(y) = y log y is monotonically decreasing for0 < y < e−1, we have

(4.4) log

(
1

x2

)
1

x2
e−x2 − e−x2

/ (2πα2) log (2πα2)

if

(4.5)
1

x2
e−x2

< e−1.

There are two terms at the left-hand side of Eqn. (4.4). It is seen that whenx is very large, the
second term will become dominant part. Thus, one can remove the first term from the left-hand
side, we get

(4.6) e−x2 ≈ −(2πα2) log(2πα2)

which means

(4.7) x ≈
√
− log(−(2πα2) log(2πα2)) ≥

√
− log (−h(2πα2))

Based on the discussion above, we summarize it as the following theorem.

Theorem 4.1. For an arbitrary positive numberε > 0 andQ(x) = α. Let Q− is the inverse
function of Q-function andf(α) =

√
− log(−(2πα2) log(2πα2)), there exists aα0 > 0 such

that

(4.8) |Q−(α)− f(α)| < ε

if 0 < α < α0.

Proof. The proof can be easily obtained by using the continues property of functionQ−(α) at
zero.

Likewise, by using the upper bound in Theorem 1.3,

(4.9)
∫ ∞

x

e−u2/2du ≈ 1√
1 + x2

e−x2/2,

whenx is sufficient large, one can also get another approximation of the inverse solution of
Q-function by

(4.10) x ≈
√
− log (2πα2(1− log(2πα2))).

Thus, we have:

Theorem 4.2. For an arbitrary positive numberε > 0 andQ(x) = α. Let Q− is the inverse
function of Q-function andf(α) =

√
− log (2πα2(1− log(2πα2))), there exists aα0 > 0 such

that

(4.11) |Q−(α)− f(α)| < ε

if 0 < α < α0.
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Proof. The proof can follow that of Theorem 4.1.

It is worthy to note that by using assumption1
x2 e
−x2

< e−1, one can get1
x2 < ex2−1. Since

h1(x) = 1
x2 is strictly monotonically decreasing forx > 0 and h2(x) = ex2−1 is strictly

monotonically increasing forx > 0 and h1(1) = h2(1). Thus, the inequality1
x2 < ex2−1

holds is equivalent to that the inequalityx > 1 holds. With this result, one can easily see that
the first term in the left-hand side of Equation (4.4),log[ 1

x2 ]
1
x2 e
−x2

< 0. By removing it from
Equation (4.4), which may increase the value of the left-hand side in Equation (4.4) and make
it close to the value of the right-hand side term in Equation (4.4).

Although it is difficult to give an exact approximation error analysis in theory, we can use
the numerical analysis to observe it. Based on various numerical results, we get the following
conclusion, which is expressed as a conjecture (due to less of strict mathematical analysis).

Conjecture 4.3. (Inverse Q-function Inequality)

Letα = Q(x) for a positive real numberx, the inverse solution of the Q-function is given by
x = Q−(α), whereQ− represents the inverse function of the Q-function. Ifα is sufficient small,
then we have

(4.12) Q−(α) >
√
− log (−(2πα2) log(2πα2))

and

(4.13) Q−(α) <
√
− log (2πα2(1− log(2πα2)))

Furthermore, we have

(4.14) Q−(α) >
√
− log(h(2πα2))

whereh(x) is the information entropy function of formh(x) = −x log(x)− (1− x) log(1− x)
for 0 ≤ x ≤ 1.

Note that the inequality (4.14) sets up a close relation between the information entropy and
the Q-function when integral variablex is very large.

5. NUMERICAL RESULTS

In this section, we shall present some numerical results to check the tightness of our new de-
veloped inequalities. Fig. 1 and Fig. 2 present some comparison results by using Theorem 1.1
and Theorem 1.3 for0 < x < 1.5 andx > 1.5, respectively, where Ideal, O-upp, O-low, N-upp, N-low
denote the results obtained by using ideal integral, the upper bound of Theorem 1.1, the lower
bound of Theorem 1.1, the upper bound of Theorem 1.3 and the lower bound of Theorem 1.3,
respectively. From Fig. 1, it is easy to see that the upper and lower bounds of Theorem 1.1
are always true and the lower bound of Theorem 1.3 is true whenx is greater than

√
2 and the

upper bound of Theorem 1.3 is valid whenx is greater than 0.7862. These results clearly con-
firm the validness of Theorem 1.3. Fig. 2 shows that whenx is greater than 1.5, the results of
Theorem 1.3 provides better approximations than that using Theorem 1.1. Another observation
is that whenx is less than 0.7862, using1+x2

x(2+x2)
e−x2/2 really provides the best approximation

to
∫∞

x
e−u2/2du and that whenx is greater than 0.7862, using1√

1+x2 e
−x2/2 can provide the best

approximation to
∫∞

x
e−u2/2du among the four bounds in Theorem 1.1 and Theorem 1.3.

Fig. 3 shows some numerical results on the comparison of Theorem 1.2 and Theorem 1.3,
where all the results are normalized by

∫∞
x

e−u2/2du. The legend mark "Integral, BS-upp, BS-
low, N-upp, and N-low," denote the results obtained by using ideal integral, the the upper bound
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8 PINGYI FAN

Figure 1: Mills’ Ratio Approximation forx in the range of0 < x < 1.5

Figure 2: Mills’ Ratio Approximation forx in the range ofx > 1.5

of Theorem 1.3, the lower bound of Theorem 1.3, the upper bound of Theorem 1.2 and the
lower bound of Theorem 1.2, respectively. It indicates that the new lower bound in Theorem
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1.3 is tighter than that in Theorem 1.2, but the upper bound in Theorem 1.3 is worse than that
given in Theorem 1.2.

Figure 3: Comparison Results on Mills’ Ratio Approximation in Theorem 1.2 and Theorem 1.3

Fig. 4 presents some numerical results on the inverse Q-function forα less than10−2, where
Ideal, UPP, Low1, Low2 denote the results obtained by using ideal inverse Q-function, Equa-
tion (4.10), Equation(4.12) and Equation (4.14), respectively. From Fig. 4, one can find that
Equation (4.12) has the best estimation performance to the inverse Q-function and as the value
of α decreases, the three approximates will converge the ideal inverse Q-function rapidly as
expected, which confirm our developed theoretical results. Another interesting observation is
that Equation(4.12) and Equation(4.14) provide two lower bounds on the inverse Q-function for
α < 10−2 and Equation (4.10) provides an upper bound on the inverse Q-function forα < 10−2.
Based on the observation, we expressed it as a Conjecture in Section IV.

6. CONCLUSION

In this paper, we have presented two new Mills’ ratio inequalities with simple expressions,
one lower bound and one upper bound. The new developed lower bound is tighter than that well
known results on Mills’ ratio obtained by Gordon and Sampford. As their applications, we also
considered the approximation of inverse solution of the Q-function and presented some useful
formulas with simple expressions. Some numerical results confirmed that these approximates
can characterize the property of inverse Q-function very well and provide some upper and lower
bounds when the value of Q-function is relatively small. Finally, we then proposed an conjecture
on the inverse solution of Q-function.
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Figure 4: Approximation of Inverse Q-Function
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