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this family of the n-fold symmetric Koebe type functions, are obtained. We also provide certain
criteria that embed this family of the n-fold symmetric Koebe type functions in a function class
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A denote the class of functions f(z) normalized by the following Taylor-Maclaurin se-
ries:

(1.1) f(z) = z +
∞∑
n=2

anz
n (z ∈ U),

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1},

C being, as usual, the set of complex numbers. Thus, equivalently, A denotes the class of
functions f(z) which are analytic in U and normalized by

f(0) = f ′(0)− 1 = 0.

Suppose also that S denotes the subclass of functions in A which are univalent in U (see, for
details, [3] and [10]; see also the recent works [1], [2], [8], [9], [11], and [12]).

Some of the important and well-investigated subclasses of the univalent function class S
include (for example) the class S∗(κ) of starlike functions of order κ in U and the class K(κ)
of convex functions of order κ in U. By definition, we have

(1.2) S∗(κ) :=
{
f : f ∈ S and <

(
zf ′(z)

f(z)

)
> κ (z ∈ U; 0 5 κ < 1)

}
and

(1.3) K(κ) :=
{
f : f ∈ S and <

(
1 +

zf ′′(z)

f ′(z)

)
> κ (z ∈ U; 0 5 κ < 1)

}
.

It readily follows from the definitions (1.2) and (1.3) that

(1.4) f(z) ∈ K(κ)⇐⇒ zf ′(z) ∈ S∗(κ).

Furthermore, for the relatively more familiar classes S∗ and K of starlike functions in U and
convex functions in U, respectively, we have

S∗ := S∗(0) and K := K(0).

In particular, the class K of convex functions in U consists of functions that map the unit disk
U into a convex region.

A function f(z) ∈ A is said to be α-spirallike of order

β
(
−π
2
5 α <

π

2
; 0 5 β < cosα 5 1

)
in U if it satisfies the following inequality:

(1.5) <
(
e−iα · zf

′(z)

f(z)

)
> β(

z ∈ U; −π
2
5 α <

π

2
; 0 5 β < cosα 5 1

)
.

In the special case when β = 0, geometrical characterization of the above-defined functions
is that they map the unit disk U onto an α-spirallike region, that is, for each point w0 ∈ f(U),
the unique α-spiral given, from w0 to the origin, by

w = w0e
λt

(
λ = eiα; t ∈ R

)
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SOME DISTORTION AND OTHER PROPERTIES 3

lies entirely in f(U). The class of all such functions is denoted here by S∗α(β). For α = 0,
0-spirals are radial half-lines and the corresponding class

S∗(β) := S∗0 (β)

is indeed the class of starlike functions of order β in U. Moreover, if α = β = 0, we are led to
the class of starlike functions in U:

S∗ := S∗0 (0) =: S∗(0).

All of the aforementioned function classes are subclasses of the class S of univalent functions
in U (see, for details, [3]; see also [10] and some recent investigations of several interesting
subclasses of spirallike functions of real or complex order by Kim and Srivastava [6], Srivastava
et al. [12], and the references cited in each of these earlier works).

It can be verified from the work of Eguchi and Owa [4] that the function f(z) given by

(1.6) f(z) =
z

(1− z)2(cosα−β) exp(iα)

is the extremal function for the class S∗α(β). In the case when α = β = 0, we get the well-
known Koebe function. Eguchi and Owa [4] studied the generalized Koebe type function f∗(z)
given by

(1.7) f∗(z) =
z

(1− z)b exp(iα)
(b ∈ R; 0 5 α < 2π) .

Since, in general, the function f∗(z) defined by (1.7) is neither α-spirallike of order β in U, nor
starlike of order β in U, nor convex of order β in U, Eguchi and Owa [4] calculated the radii
of α-spirallikeness of order β (denoted by rsp), the radii of starlikeness of order β (denoted by
rst), and the radii of convexity of order β (denoted by rk) such that

(1.8) 0 5 r < rsp =⇒ <
(
e−iα · zf

′
∗(z)

f∗(z)

)
> β (|z| < r),

(1.9) 0 5 r < rst =⇒ <
(
zf ′∗(z)

f∗(z)

)
> β (|z| < r),

and

(1.10) 0 5 r < rk =⇒ <
(
1 +

zf ′′∗ (z)

f ′∗(z)

)
> β (|z| < r),

respectively. More precisely, Eguchi and Owa [4] proved the following theorems.

Theorem 1. (see [4, Theorem 3]) Suppose that

−π
2
5 α <

π

2
and 0 5 β < cosα 5 1.

(i) If b = 2(cosα− β), then

rsp =
cosα− β

β − cosα + b
=: rsp1.

(ii) If 0 5 b 5 2(cosα− β), then rsp = 1.
(iii) If b 5 0, then

rsp = −rsp1.
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Theorem 2. (see [4, Theorem 4]) Let

0 5 α < 2π, 0 5 β < 1,

rst1 =
b

2(b cosα + β − 1)
and rst2 =

√
b2 − 4b(1− β) cosα + 4(1− β)2

2(b cosα + β − 1)
.

(i) Let b = 0 and cosα = 0.
(a) If

b 6= 0 and b 6= 1− β
cosα

,

then
rst = rst1 − rst2.

(b) If

b =
1− β
cosα

,

then
rst = cosα.

(c) If b = 0, then rst = 1.
(ii) If b = 0 and cosα < 0, then

rst = rst1 − rst2.
(iii) If b < 0 and cosα = 0, then

rst = −rst1 − rst2.
(iv) Let b < 0 and cosα < 0.

(a) If

b 6= 1− β
cosα

,

then
rst = −rst1 − rst2.

(b) If

b =
1− β
cosα

,

then
rst = − cosα.

Theorem 3. (see [4, Theorem 2]) Let 0 5 β < 1 and α = 0, that is, let

f∗(z) =
z

(1− z)b
(b ∈ R).

(i) If b = 1, then

rk =
b(3− β)− 2(1− β)−

√
b[b(β2 − 2β + 5)− 4(1− β)]

2(b− 1)(b− 1 + β)
.

(ii) If b 5 −1, then

rk =
−b(3− β) + 2(1− β)−

√
b[b(β2 − 2β + 5)− 4(1− β)]

2(b− 1)(b− 1 + β)
.
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The main object of this paper is to present a systematic further study of the following general
family of the n-fold symmetric Koebe type functions:

(1.11) k(z) =
z

(1− zn)b exp(iα)
(n ∈ N; b ∈ R; −π 5 α < π),

which was introduced by Kamali and Srivastava [5]. For this general family of the n-fold
symmetric Koebe type functions, we derive several distortion theorems, that is, the estimates of

|k(z)|, |k′(z)| and
∣∣arg (k′(z))∣∣ .

Further, we obtain the radii of α-spirallikeness, starlikeness and convexity of some order (using
markedly diffrent techniques than those used in [4]). We also provide sufficient conditions (or
criteria) that would embed this general family of the n-fold symmetric Koebe type functions in
the following function class:

(1.12) Gλ :=

f : f ∈ A and

∣∣∣∣∣∣∣∣
1 +

zf ′′(z)

f ′(z)

zf ′(z)

f(z)

− 1

∣∣∣∣∣∣∣∣ < λ (z ∈ U; 0 < λ 5 1)

 ,

which was defined earlier by Silverman [7].

2. A SET OF DISTORTION THEOREMS

In this section, we prove several distortion theorems which provide the estimates for

|k(z)|, |k′(z)| and
∣∣arg (k′(z))∣∣ (|z| = r < 1),

where the n-fold symmetric Koebe type function k(z) is given by (1.11). Some of these esti-
mates are shown to be sharp.

Theorem 4. Supose that

θ1 =
2

n

[
arctan

(√
1 + (1− r2n) tan2 α + 1

(1 + rn) tanα

)]
,

θ2 = −
2

n

[
arctan

(√
1 + (1− r2n) tan2 α− 1

(1 + rn) tanα

)]
and

h1(θ) =
√

1− 2rn cos(nθ) + r2n · exp
[
(tanα) · arctan

(
rn sin(nθ)

1− rn cos(nθ)

)]
.

Also let
k1 = [h1(θ1)]

−b cosα and k2 = [h1(θ2)]
−b cosα .

The the following estimates hold true.
(i) If b cosα = 0, then

rk1 5 |k(z)| 5 rk2 (|z| = r < 1).

(ii) If b cosα < 0, then

rk2 5 |k(z)| 5 rk1 (|z| = r < 1).

Each of these estimates is sharp.
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Proof. It can easily be verified that

|k(reiθ)| = r[h1(θ)]
−b cosα.

Moreover, since h1(θ) is continuous and h1(θ) 6= 0, we find that the condition that h′1(θ) = 0 is
equivalent to the following condition:

sin(nθ) + cos(nθ) tanα− rn tanα = 0

with solutions given by

2

n

[
arctan

(√
1 + (1− r2n) tan2 α + 1

(1 + rn) tanα

)
+ 2`π

]
(` ∈ Z)

and

− 2

n

[
arctan

(√
1 + (1− r2n) tan2 α− 1

(1 + rn) tanα

)
+ 2`π

]
(` ∈ Z).

For ` = 0, we obtain the solutions θ1 and θ2, respectively. Therefore, h1(θ) has the extremal
values h1(θ1) and h1(θ2).

We next show that
h1(θ1) > h1(θ2) (|θ1| > |θ1|) .

Obviously, since
|θ1| > |θ2|,

we have
cos |θ1| < cos |θ2| (|θ1| > |θ2|)

and

(2.1)
√

1− 2rn cos(nθ1) + r2n >
√
1− 2rn cos(nθ2) + r2n.

If α = 0, then
tanα = 0 and θ1 > 0 > θ2.

On the other hand, if α < 0, then

tanα < 0 and θ2 > 0 > θ1.

In both cases, we find that

(tanα) · arctan
(

rn sin(nθ1)

1− rn cos(nθ1)

)
> 0

> (tanα) · arctan
(

rn sin(nθ2)

1− rn cos(nθ2)

)
.(2.2)

It follows from (2.1) and (2.2) that

h1(θ1) > h1(θ2) (|θ1| > |θ1|) .
Finally, in view of the monotonicity properties of the exponential function, we find for

b cosα = 0 that

min |k(reiθ)| = rk1 and max |k(reiθ)| = rk2 (b cosα = 0).

In a similar manner, if b cosα < 0, then

min |k(reiθ)| = rk2 and max |k(reiθ)| = rk1.

Sharpness of the estimates asserted by Theorem 4 follows from the fact that h1(θ) attains its
extremal values for θ1 and θ2.
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Theorem 5. Let

a :=
b sinα

1 + b cosα
,

θ3 =
2

n

[
arctan

(√
1 + (1− r2n) · a2 + 1

(1 + rn)a

)]
,

θ4 = −
2

n

[
arctan

(√
1 + (1− r2n) · a2 − 1

(1 + rn)a

)]
and

h2(θ) =
√

1− 2rn cos(nθ) + r2n · exp
[
a · arctan

(
rn sin(nθ)

1− rn cos(nθ)

)]
.

Suppose also that

k3 = [h2(θ3)]
−b cosα−1 , k4 = [h2(θ4)]

−b cosα−1 ,

k5 = 1− rn
√
1− 2bn cosα + b2n2

and
k6 = 1 + rn

√
1− 2bn cosα + b2n2.

Then the following estimates hold true.
(i) If b cosα + 1 = 0, then

k3k5 5 |k′(z)| 5 k4k6 (|z| = r < 1).

(ii) If b cosα + 1 < 0, then

k4k5 5 |k′(z)| 5 k3k6 (|z| = r < 1).

Proof. Since

(2.3) k′(z) =
1 + (bneiα − 1) zn

(1− zn)b exp(iα)+1
,

which, for z = reiθ, yields ∣∣k′ (reiθ)∣∣ = [h2(θ)]
b cosα+1 · h3(θ),

where
h3(θ) =

∣∣1 + (bneiα − 1
)
· rn · einθ

∣∣ .
Just as in the proof of Theorem 4, it can be shown that the inequality:

1 + b cosα = 0

implies that

min
∣∣[h2(θ)]b cosα+1

∣∣ = k3 and max
∣∣[h2(θ)]b cosα+1

∣∣ = k4.

Similarly, the inequality:
1 + b cosα < 0

implies that

min
∣∣[h2(θ)]b cosα+1

∣∣ = k4 and max
∣∣[h2(θ)]b cosα+1

∣∣ = k3.

Since
min |[h3(θ)| = k5 and max |h3(θ)| = k6,

we easily arrive at the estimates asserted by Theorem 5.
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Remark 1. The estimates in Theorem 5 are not sharp, since the minima and the maxima used
in the proof of Theorem 5 are (in general) obtained for different values of θ. Owing to the obvi-
ously complicated calculations, we leave the finding of sharp estimates as an open problem.

When r → 1−, Theorem 4 and Theorem 5 yield the following corollary.

Corollary 1. Assume that

a :=
b sinα

1 + b cosα
,

a1 = 2 · | cosα| · eα tanα and a2 =
2√

1 + a2
· ea·arctan(a).

(i) If b cosα = 0, then

|k(z)| = a−b cosα1 (|z| = 1).

(ii) If b cosα < 0, then

|k(z)| 5 a−b cosα1 (|z| = 1).

(iii) If b cosα + 1 = 0, then

|k′(z)| = a−b cosα−12 (|z| = 1).

(iv) If b cosα + 1 < 0, then

|k′(z)| 5 a−b cosα−12 (|z| = 1).

The estimates asserted by (i) and (ii) are sharp.

Proof. The estimates asserted by Corollary 1 follow from the facts that

lim
r→1−

nθ1
2

=
π

2
− α, lim

r→1−
h1(θ1) = a1,

lim
r→1−

nθ3
2

= arctan

(
1

a

)
, lim

r→1−
h2(θ3) = a2,

lim
r→1−

nθ2
2

= lim
r→1−

nθ4
2

= 0 and lim
r→1−

h1(θ2) = lim
r→1−

h2(θ4) = 0.

Theorem 6 below provides sharp estimate of
∣∣arg (k′(z))∣∣ in the case when α = 0. The

estimation of
∣∣arg (k′(z))∣∣ in more general cases would involve complicated calculations.

Theorem 6. Let α = 0, that is, let

k(z) =
z

(1− zn)b
(b ∈ R \ {0}.

Suppose that
0 5 r < 1 and rn · |1− bn| < 1,

A = −2bnr2n(1− bn),
B = bnrn

[
r2n(1− bn)(3 + n− bn) + n+ 1

]
and

C = −bnr2n
[
r2n(1− bn)2 + 1 + 2n− bn2

]
.

Assume also that s0 is the unique solution of the following equation:

(2.4) As2 +Bs+ C = 0 (−1 < s0 < 1).
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Then the following sharp estimate holds true:

(2.5)
∣∣arg (k′(z))∣∣ 5 |h4(θ0)| (|z| = r),

where

θ0 =
1

n
arccos(s0)

and

h4(θ) = arctan

(
rn(bn− 1) sin(nθ)

1 + rn(bn− 1) cos(nθ)

)
− (b+ 1) arctan

(
rn sin(nθ)

rn cos(nθ)− 1

)
.

Proof. For z = reiθ, we find from (2.3) that

arg
(
k′(reiθ)

)
=
(
1 + (bn− 1)rneinθ

)
− (b+ 1) arg

(
1− rneinθ

)
=: h4(θ).

Since
k′(z) = k′(z) (z ∈ U),

we conclude that
h4(θ) = arg

(
k′(reiθ)

)
attains its minimal and maximal values for some θ∗ = 0 and −θ∗. Further, since the function
h4(θ) is continuous and

h4(0) = h4

(π
n

)
= 0,

we also conclude that
θ∗ ∈

(
0,
π

n

)
,

that is, that
cos(nθ∗) 6= ±1.

It also implies that h′4(θ∗) = 0, which is equivalent to

g(s∗) = As2∗ +Bs∗ + C = 0 and s∗ = cos(nθ∗).

This quadratic equation has two real roots and only one of them lies in the interval (−1, 1)
because

g(−1) · g(1) = b2n2r2n(r2n − 1)[r2n(bn− 1)2 − (n+ 1)2][r2n(bn− 1)2 − 1] < 0.

Therefore, we have
cos(nθ∗) = s0,

that is,

θ∗ =
1

n
arccos(s0) =: θ0.

For bn = 1, we deduce Corollary 2 below.

Corollary 2. Let α = 0, that is, let

k(z) =
z

(1− zn)b
(b ∈ R \ {0}.

Suppose that 0 5 r < 1. If bn = 1, then

(2.6)
∣∣arg (k′(z))∣∣ 5 (b+ 1) · arctan

(
rn√

1− r2n

)
(|z| = r).

This estimate is sharp.
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Proof. For bn = 1, we use the notations which are already introduced in Theorem (6). We thus
find that

A = 0, B = rn(n+ 1), C = −r2n(n+ 1), s0 = rn and θ0 =
1

n
arccos(rn).

The estimate given by (2.6) now follows easily from the estimate (2.5) asserted by Theorem
6.

When r → 1− in Theorem 6, we obtain the following corollary.

Corollary 3. Let α = 0, that is, let

k(z) =
z

(1− zn)b
(b ∈ R \ {0}.

If 0 < bn < 2, then the following sharp estimate holds true:∣∣arg (k′(z))∣∣ 5 (b+ 1)
π

2
(|z| = 1).

Furthermore,

k(z) /∈ Rβ =

{
f : f ∈ A and

∣∣arg (f ′(z))∣∣ < βπ

2
(z ∈ U; 0 < β 5 1)

}
and

k(z) /∈ R(γ) =
{
f : f ∈ A and <

(
f ′(z)

)
> γ (z ∈ U; 0 5 γ < 1)

}
.

Proof. Corollary 3 follows directly from Theorem 6 in light of the fact that, for r = 1, rn · |1−
bn| < 1 is equivalent to 0 < bn < 2, and by verifying that the equation (2.4) has the following
solutions:

s1 = 1 and s2 =
1

2

(
n− bn+ 1− n+ 1

bn− 1

)
(|s2| = 1).

Therefore, we get
θ0 = 0 and |h4(0)| = (b+ 1)

π

2
.

Moreover, bn > 0 implies that b > 0. We thus arrive readily at each of the following assertions:

k(z) /∈ Rβ and k(z) /∈ R(γ)
of Corollary 3.

3. RADII OF SPIRALLIKENESS, STARLIKENESS AND CONVEXITY

We begin this section with the relation between the n-fold symmetric Koebe type function
k(z) and the class S∗α(β) of α-spirallike functions of order β in U.

Theorem 7. If α 6= γ and b 6= 0, then k(z) /∈ S∗γ(β).
Proof. By means of straightforward calculations, we see that

(3.1)
zk′(z)

k(z)
= 1 +

bneiαzn

1− zn
≡ h5(z)

and that, for z = eiθ,

<
(
e−iγ

eiθk′(eiθ)

k(eiθ)

)
= cos γ − bn

2
·
[
sin(α− γ) cot

(
nθ

2

)
+ cos(α− γ)

]
.

Therefore, if α 6= γ and b 6= 0, then
h5(U) = R.
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From Theorem 7 naturally arises the interesting question of finding the radii of α-spirallikeness
of some order, as described in (1.9). Such a set of radii exists, since every analytic function f(z)
maps, one-to-one, a small disk onto a small disk, that is, there always exists small enough disk

Ur = {z : z ∈ C and |z| < r}
such that f(Ur) is a convex, starlike or α-spirallike region.

Theorem 8. Assume that

−π
2
5 α <

π

2
and 0 5 β < cosα 5 1.

(i) If bn = 2(cosα− β), then

rnsp =
cosα− β

β − cosα + bn
≡ rsp2.

(ii) If 0 5 bn 5 2(cosα− β), then

rsp = 1.

(iii) If b 5 0, then
rnsp = −rsp2.

Proof. Since
k(z) = z1−n · f∗(zn),

it is fairly easy to verify that

zk′(z)

k(z)
= 1− n+ n · z

nf ′∗(z
n)

f∗(zn)

and

<
(
e−iα · zk

′(z)

k(z)

)
= (1− n) cosα + n · <

(
e−iα · z

nf ′∗(z
n)

f∗(zn)

)
> β.

Therefore, we have

<
(
e−iα · z

nf ′∗(z
n)

f∗(zn)

)
>
β − (1− n) cosα

n
.

Thus, upon setting

β 7→ β − (1− n) cosα
n

in Theorem 1, we get the result asserted by Theorem 8.

Since
rsp = 1 ⇐⇒ k(z) ∈ S∗α(β),

we can easily deduce Corollary 4 below.

Corollary 4. Suppose that

−π
2
5 α <

π

2
and 0 5 β < cosα 5 1.

Then the n-fold symmetric Koebe type function k(z) is α-spirallike of order β in U, that is,
k(z) ∈ S∗α(β), if and only if

0 5 bn 5 2(cosα− β).

For the radii of starlikeness of order β, by using Theorem 2 and similar technique as in the
proof of Theorem 8, we now prove Theorem 9 below.
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Theorem 9. Assume that

0 5 α < 2π, 0 5 β < 1, rst3 =
bn

2(bn cosα + β − 1)

and

rst4 =

√
b2n2 − 4bn(1− β) cosα + 4(1− β)2

2(bn cosα + β − 1)
.

(i) Let b = 0 and cosα = 0.
(a) If

b 6= 0 and bn 6= 1− β
cosα

,

then
rnst = rst3 − rst4.

(b) If

bn =
1− β
cosα

,

then
rnst = cosα.

(c) If b = 0, then rst = 1.
(ii) If

b = 0 and cosα < 0,

then
rnst = rst3 − rst4.

(iii) If
b < 0 and cosα = 0,

then
rnst = −rst3 − rst4.

(iv) Let b < 0 and cosα < 0.
(a) If

bn 6= 1− β
cosα

,

then
rnst = −rst3 − rst4.

(b) If

bn =
1− β
cosα

,

then
rnst = − cosα.

Proof. We first observe that

<
(
zk′(z)

k(z)

)
= 1− n+ n · <

(
znf ′∗(z

n)

f∗(zn)

)
> β

or, equivalently, that

<
(
znf ′∗(z

n)

f∗(zn)

)
>
β − 1 + n

n
.

Now, in Theorem 2, we set

β 7→ β − 1 + n

n
.
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We then obtain the result asserted by Theorem 9.

Next, by recalling the fact that

rst = 1 ⇐⇒ k(z) ∈ S∗(β),
we are led to the following corollary.

Corollary 5. Let 0 5 β < 1. Then the n-fold symmetric Koebe type function k(z) is starlike of
order β, that is, k(z) ∈ S∗(β), if and only if one of the following conditions is satisfied:

(i) b = 0;
(ii) α = 0 and bn = 1− β;

(iii) α = π and bn = β − 1.

Proof. Corollary 5 follows directly from Theorem 9 because bn = 1 − β implies that b > 0,
and that bn = β − 1 implies that b < 0. Cases (i)(a), (ii), (iii) and (iv)(a) do not lead to rst = 1
because, under the conditions specified there, we cannot have

rst3 − rst4 = 1 and − rst3 − rst4 = 1.

Finally, for the radii of convexity of order β, we choose to cover only the case when α = 0
and |b| = 1. As before, the more general cases would involve complicated calculations, and so
we leave them as open problems.

Theorem 10. Let 0 5 β < 1 and α = 0, that is, let

k(z) =
z

(1− zn)b
(b ∈ R).

(i) If b = 1, then

rnk =
bn(2 + n− β)− 2(1− β)− n

√
b[b(β2 − 2nβ + n2 + 4n)− 4(1− β)]

2(bn− 1)(bn− 1 + β)
=: rk1.

(ii) If b 5 −1, then

rnk =
−bn(2 + n− β) + 2(1− β)− n

√
b[b(β2 − 2nβ + n2 + 4n)− 4(1− β)]

2(bn− 1)(bn− 1 + β)
.

Proof. We start from the following relation:

1 +
zk′′(z)

k′(z)
= 1− bn+ n(b+ 1) · h5(z)− n · h6(z) =: h7(z),

where
h5(z) =

1

1− zn
and h6(z) =

1

1 + (bn− 1)zn
,

so that
min{h5(reiθ) : θ ∈ [0, 2π)} = (1 + rn)−1 (nθ = π),

max{h5(reiθ) : θ ∈ [0, 2π)} = (1− rn)−1 (nθ = 0),

and

min{h6(reiθ) : θ ∈ [0, 2π)} =


1

(1 + rn(bn− 1))
(bn = 1; nθ = 0)

1

(1− rn(bn− 1))
(bn < 1; nθ = π)

AJMAA, Vol. 9, No. 2, Art. 1, pp. 1-17, 2012 AJMAA

http://ajmaa.org


14 H. M. SRIVASTAVA AND NIKOLA TUNESKI AND EMILIJA GEORGIEVA-CELAKOSKA

and

min{h6(reiθ) : θ ∈ [0, 2π)} =


1

(1 + rn(bn− 1))
(bn = 1; nθ = 0)

1

(1− rn(bn− 1))
(bn < 1; nθ = π).

We now let b = 1. Then bn = 1 and we find that

min{h7(reiθ) : θ ∈ [0, 2π)} = 1− bn+
n(b+ 1)

1 + rn
− n

1− (bn− 1)rn
=: h8(r) (nθ = π).

Further, h8(0) = 1 > β and h8(r) on the interval [0, 1] has exactly one point of discontinuity
given by

rn∗ =
1

bn− 1
.

Moreover, h8(r) on the interval [0, r∗) is a decreasing function with the range (−∞, 1]. There-
fore, the following implication:

0 5 r < rk =⇒ <
(
1 +

zk′′(z)

k′(z)

)
> β (|z| < r)

holds true only when rk is the unique solution of the equation h8(r) = β, that is, when rnk = rk1.
In a similar manner, we can prove the assertion given in Part (ii) of Theorem 10.

Remark 2. By setting n = 1 in Theorem 8, Theorem 9 and Theorem 10, we can deduce the
above-mentioned Theorem 1, Theorem 2 and Theorem 3, respectively, in this paper.

4. A SET OF NECESSARY AND SUFFICIENT CONDITIONS
FOR THE FUNCTION CLASS Gλ OF SILVERMAN

In our next theorem, we shows that, in general, the n-fold symmetric Koebe type function
k(z) is not in the class Gλ which was introduced (for any λ ∈ R) by Silverman [7].

Theorem 11. If b(bn− 2 cosα) > 0, then k(z) /∈ Gλ.

Proof. We begin by noting that

1 +

(
zk′′(z)

k′(z)

)
(
zk′(z)

k(z)

) − 1 =
bn2eiαzn

(1 + δzn)2
(
δ := bneiα − 1

)
.

If b(bn− 2 cosα) > 0, then

|δ| > 1, z0 =
n

√
−1

δ
∈ U and

∣∣∣∣∣∣∣∣
1 +

(
z0k
′′(z0)

k′(z0)

)
(
z0k
′(z0)

k(z0)

) − 1

∣∣∣∣∣∣∣∣ > λ (λ ∈ R).
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Remark 3. In light of Theorem 11, we are now motivated to find rsil ∈ (0, 1] such that

(4.1) 0 5 r < rsil =⇒

∣∣∣∣∣∣∣∣
1 +

(
zk′′(z)

k′(z)

)
(
zk′(z)

k(z)

) − 1

∣∣∣∣∣∣∣∣ < λ (|z| < r),

which, together with other available information, will lead us to the necessary and sufficient
conditions for k(z) ∈ Gλ. In fact, since every analytic function maps, one-to-one, a small disk
onto a small disk, such rsil as defined by (4.1) above exists.

Theorem 12. Suppose that

0 < λ 5 1 and δ = bneiα − 1.

(i) If b = 0, then rsil = 1.
(ii) If |b|n = 1 and bn cosα = 1, then

rnsil =
λ

n
.

(iii) Let b 6= 0. If n · |b| 6= 1 or bn cosα 6= 1, then

rnsil =
2λ|δ|+ n2 · |b| −

√
4λn2 · |δ| · |b|+ b2n4

2λ|δ|2
=: rsil1.

Proof. We begin by recalling the fact that

(4.2)

∣∣∣∣∣∣∣∣
1 +

(
zk′′(z)
k′(z)

)
(
zk′(z)

k(z)

) − 1

∣∣∣∣∣∣∣∣ =
n2 · |b| · |z|n

|1 + δzn|2
=: h9(z).

The following cases correspond to those in Theorem 12.

(i) If b = 0, then
h9(z) = 0 < 1 (z ∈ U),

which yields rsil = 1.

(ii) If the conditions stated in Part (ii) of Theorem 12 are satisfied, then

δ = 0, bneiα = 1 and h9(re
iθ) = nrn,

which leads us to the following assertion:

rnsil =
λ

n
(0 < λ 5 1).

(iii) Let b 6= 0. If n · |b| 6= 1 or bn cosα 6= 1, then

(4.3) δ 6= 0 and max{h9(reiθ) : θ ∈ [0, 2π)} = n2 · |b| · rn

(1− rn|δ|)2
5 λ

(0 < λ 5 1),

which is equivalent to the following inequalities:

(4.4) |δ|rn < 1 and λs2 · |δ|2 −
(
2λ|δ|+ n2 · |b|

)
s+ λ = 0

(s = rn; 0 < λ 5 1) .
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The corresponding quadratic equation has two different real roots given by

s1,2 =
2λ|δ|+ n2 · |b| ±

√
4λn2 · |δ| · |b|+ b2n4

2λ|δ|2
,

irrespective of the values of λ, δ and n. Suppose that s1 is the smaller root. Then, since λ|δ|2 >
0, we conclude that the inequality (4.4) holds true if and only if

s 5 s1 or s = s2.

Moreover, it is easily verified in this case that

0 < s1 < 1 5 s2,

which implies that the inequality (4.4) holds true if and only if

0 5 rn 5 s1.

Finally, if 0 5 rn 5 s1, then
rn · |δ| < 1,

which allows us to conclude that the inequality (4.3) holds true if and only if

0 5 rn 5 s1,

that is, that
rnsil = s1 = rsil1.

Since k(z) ∈ Gλ if and only if rsil = 1, we have the following corollary.

Corollary 6. Each of the following assertions holds true:
(i) If b = 0, then

k(z) ∈ Gλ (0 < λ 5 1).

(ii) If n = |b| = b cosα = λ = 1, then k(z) ∈ G1.
(iii) If

b 6= 0, bn < cosα and λ =
n2 · |b|(

1−
√
b2n2 − 2bn cosα + 1

)2 5 1,

then k(z) ∈ Gλ.

Proof. If b = 0, then k(z) = z and Part (i) of Corollary 6 follows readily. If, on the other hand,

n = |b| = b cosα = λ = 1,

then
n · |b| = 1 and bn cosα = 1

and, by appying Theorem 12(ii), we find that

rsil =
n

√
λ

n
= 1,

which completes the proof of Part (ii) of Corollary 6. In the case of Part (iii) of Corollary 6, by
means of bn < cosα, and the notations used in the proof of Theorem 12, we find that |δ| < 1
and, furthermore, that

(4.5) max{h9(reiθ) : θ ∈ [0, 2π)} = n2 · |b|
(1− |δ|)2

= λ (0 < λ 5 1).
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5. CONCLUDING REMARKS AND OBSERVATIONS

Our present investigation is motivated essentially by a recent work by Kamali and Srivastava
[5], which dealt with the following family of the n-fold symmetric Koebe type functions:

k(z) =
z

(1− zn)b exp(iα)
(b ∈ R; −π 5 α < π; n ∈ N),

whose special case when n = 1 was investigated in an earlier paper by Eguchi and Owa [4]. We
have discussed and presented here a systematic further study of this general family of the n-fold
symmetric Koebe type functions. In particular, we have proved several distortion theorems and
such other properties for this general family of the n-fold symmetric Koebe type functions as
the radii of spirallikeness, the radii of starlikeness and the radii of convexity. For this family
of the n-fold symmetric Koebe type functions, we have also demonstrated certain criteria that
embed this family of the n-fold symmetric Koebe type functions in a function class Gλ which
was introduced and studied earlier by Silverman [7].
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