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2 M. TODOROKI AND K. K UMAHARA AND T. M IURA AND S.-E. TAKAHASI

1. I NTRODUCTION

We are interested in the following stability problem: Given an approximately additive map-
ping, can one find the strictly additive mapping near it? This problem is proposed by S. M. Ulam
in 1940 and may be famous as the Ulam stability problem (cf. [6]). Next year, D. H. Hyers
[2] gave an affirmative answer to this problem for additive mappings between Banach spaces.
T. Aoki [1] and Th. M. Rassias [4] obtained generalized results of Hyers’ theorem which allow
the Cauchy difference to be unbounded.

H. -M. Kim, K. -W. Jun and J. M. Rassias [3] established an Ulam type stability problem
for Euler-Lagrange type mappings of a real normed space into a real Banach space. However
such mappings can be changed into the Jensen type mappings under a suitable transformation.
Then we introduce a generalized additive mapping which generalizes Jensen type mappings and
establish the Ulam type stability problem for such mappings. The obtained Ulam type stability
results for Euler-Lagrange type mappings are somewhat different from their results.

2. A ULAM TYPE STABILITY RESULT FOR COMMUTATIVE DIAGRAM

Let X be a set with a binary operation◦, Y a complete metric space with a continuous
binary operation� andf a mapping ofX into Y . In [5], S.-E. Takahasi, T. Miura and H. Takagi
obtained an Ulam type stability result for the following commutative diagram applying Banach’s
fixed point theorem:

X ×X
◦−−−→ X

f×f

y yf

Y × Y −−−→
�

Y.

We will describe this stability result more precisely. Ifσ and τ are self-maps ofX andY ,
respectively, and ifε is a nonnegative function onX × X, we can define the following two
quantities:

Nσ,ε = inf{K ≥ 0 : ε(σx, σx′) ≤ Kε(x, x′) (x, x′ ∈ X)},
Lτ = inf{K ≥ 0 : d(τy, τy′) ≤ Kd(y, y′) (y, y′ ∈ Y )}.

Using these quantities, they showed the following stability results in [5].

Theorem A. [cf. [5, Corollary 3.2]] Suppose that the square operator :x → x ◦ x is an auto-
morphism ofX with inverseσ and that the square operatorτ : y → y � y is an endomorphism
of Y with Lτ < ∞. Let ε be a nonnegative function onX × X such thatNσ, ε < ∞ and
LτNσ, ε < 1. If a mappingf : X → Y satisfies

(2.1) d(f(x ◦ x′), f(x) � f(x′)) ≤ ε(x, x′) (∀x, x′ ∈ X),

then there exists a mappingf∞ : X → Y such that

(2.2) f∞(x ◦ x′) = f∞(x) � f∞(x′) (∀x, x′ ∈ X),

(2.3) d(f(x), f∞(x)) ≤ Nσ, ε

1− LτNσ, ε

ε(x, x) (∀x ∈ X).

If g : X → Y satisfies(2.2)and

(2.4) sup
ε(x,x) 6=0

d(f(x), g(x))

ε(x, x)
< ∞,

theng = f∞.
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STABILITY PROBLEMS FOR GENERALIZED ADDITIVE MAPPINGS 3

Theorem B. [cf. [5, Corollary 3.5]] Suppose that the square operatorσ : x → x ◦ x is an
endomorphism ofX and that the square operatory → y � y is an automorphism ofY with
inverseτ satisfyingLτ < ∞. Letε be a nonnegative function onX ×X such thatNσ, ε < ∞
and LτNσ, ε < 1. If a mappingf : X → Y satisfies(2.1), then there exists a mapping
f∞ : X → Y which satisfies(2.2)and

(2.5) d(f(x), f∞(x)) ≤ Lτ

1− LτNσ, ε

ε(x, x) (∀x ∈ X).

If g : X → Y satisfies(2.2)and (2.4), theng = f∞.

Remark 2.1. We would like to state that the definition ofασ,ε given in [5, p. 425] is not
described correctly. This should be described as follows:

ασ,ε = inf{K ≥ 0 : ε(σx, σx′) ≤ Kε(x, x′) (x, x′ ∈ X)}.

Remark 2.2. The uniqueness off∞ in Theorems A and B follows easily from the proof of [5,
Theorem 3.1].

3. A STABILITY OF GENERALIZED ADDITIVE MAPPINGS

Denote byK either the fieldR of all real numbers or the complex fieldC of all complex
numbers and fixa, b, c, d ∈ K. LetX andY be a normed space overK and a Banach space over
K, respectively and fixx0 ∈ X andy0 ∈ Y . A mappingf : X → Y is called(a, b, c, d; x0, y0)-
additive if

f(ax + bx′ + x0) = cf(x) + df(x′) + y0 (x, x′ ∈ X).

In case ofx0 = y0 = 0, f is simply called(a, b, c, d)-additive.
We consider the Ulam type stability problem for such generalized additive mappings ofX

into Y .

Theorem 3.1.Let ε be a nonnegative function onX ×X and suppose that

(i) a + b 6= 0.
(ii) ∃K ≥ 0 : K|c+d| < 1 and ε(x, x′) ≤ Kε((a+b)x+x0, (a+b)x′+x0) (∀x, x′ ∈ X).

If a mappingf : X → Y satisfies

(3.1) ‖f(ax + bx′ + x0)− cf(x)− df(x′)− y0‖ ≤ ε(x, x′) (∀x, x′ ∈ X),

then there exists a unique(a, b, c, d; x0, y0)-additive mappingf∞ : X → Y such that

(3.2) ‖f(x)− f∞(x)‖ ≤ K

1−K|c + d|
ε(x, x) (∀x ∈ X).

Proof. Define binary operations◦ onX and� onY by

x ◦ x′ = ax + bx′ + x0 (x, x′ ∈ X) and y � y′ = cy + dy′ + y0 (y, y′ ∈ Y ).

Then we can easily see that these operations are continuous and the corresponding square oper-
ators

x → x ◦ x = (a + b)x + x0 (x ∈ X) and y → y � y = (c + d)y + y0 (y ∈ Y )

are endomorphic. Also from (i), the square operatorx → x ◦ x has the inverseσ which is given
by σx = (a + b)−1(x− x0) (x ∈ X). Then we have from (ii) that

ε(σx, σx′) ≤ Kε(x, x′) (∀x, x′ ∈ X)
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4 M. TODOROKI AND K. K UMAHARA AND T. M IURA AND S.-E. TAKAHASI

and henceNσ, ε ≤ K. Also denote byτ the corresponding square operator to�. SinceLτ =
|c + d|, it follows from (ii) thatLτNσ, ε < 1 and

Nσ, ε

1− LτNσ, ε

≤ K

1−K|c + d|
.

Then the desired result follows immediately from Theorem A.

Theorem 3.2.Let ε be a nonnegative function onX ×X and suppose that

(i) c + d 6= 0.
(ii) ∃K ≥ 0 : K < |c + d| and ε((a + b)x +x0, (a + b)x′ +x0) ≤ Kε(x, x′) (∀x, x′ ∈ X).

If a mappingf : X → Y satisfies(3.1), then there exists a unique(a, b, c, d; x0, y0)-additive
mappingf∞ : X → Y such that

(3.3) ‖f(x)− f∞(x)‖ ≤ 1

|c + d| −K
ε(x, x) (∀x ∈ X).

Proof. Let ◦ and� be as in the proof of Theorem 3.1 and denote byσ the corresponding square
operator to◦. Then we have from (ii) that

ε(σx, σx′) ≤ Kε(x, x′) (∀x, x′ ∈ X)

and henceNσ, ε ≤ K. Also from (i), the square operatory → y � y has the inverseτ which
is given byτy = (c + d)−1(y − y0) (y ∈ Y ). SinceLτ = |c + d|−1, it follows from (ii) that
LτNσ, ε < 1 and

Lτ

1− LτNσ, ε

≤ |c + d|−1

1−K|c + d|−1
=

1

|c + d| −K
.

Then the desired result follows immediately from Theorem B.

4. A STABILITY OF EULER -L AGRANGE TYPE MAPPINGS

We consider the following two Euler-Lagrange type mappingsf andg of a normed spaceX
into a Banach spaceY satisfying

(4.1) f(ax + bx′) + f(ax− bx′) + 2af(−x) = 0 (∀x, x′ ∈ X)

and

(4.2) g(ax + bx′)− g(ax− bx′) + 2bg(−x′) = 0 (∀x, x′ ∈ X),

respectively. Herea, b are nonzero fixed numbers inK.
The following result is a consequence of Theorem 3.1.

Corollary 4.1 (cf. [3, Theorem 2.4]). Let ε be a nonnegative function onX ×X and suppose

(4.3) ∃K ≥ 0 : K < |a| and ε(−ax,−ax′) ≤ Kε(x, x′) (∀x ∈ X).

If a mappingf : X → Y satisfies

(4.4) ‖f(ax + bx′) + f(ax− bx′) + 2af(−x)‖ ≤ ε(x, x′) (∀x, x′ ∈ X),

then there exists a unique mappingf∞ : X → Y satisfying(4.1)and

(4.5) ‖f(x)− f∞(x)‖ ≤ K

2(|a| −K)
ε
(x

a
, 0

)
(∀x ∈ X).
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Proof. Putu = ax + bx′, v = ax − bx′ for eachx, x′ ∈ X. Under these transformations, (4.4)
changes into the following estimate

(4.6)

∥∥∥∥f

(
u + v

−2a

)
− f(u) + f(v)

−2a

∥∥∥∥ ≤ ε1(u, v) (∀u, v ∈ X),

where

ε1(u, v) =
1

2|a|
ε

(
u + v

2a
,
u− v

2b

)
(∀u, v ∈ X).

Moreover putλ = 1
−2a

. Then by (4.3),K|2λ| < 1 and

ε1(x, x′) =
1

2|a|
ε

(
x + x′

2a
,
x− x′

2b

)
≤ K

2|a|
ε

(
x + x′

−2a2
,
x− x′

−2ab

)
= Kε1

(
x

−a
,

x′

−a

)
= Kε1(2λx, 2λx′)

holds for allx, x′ ∈ X. Therefore by Theorem 3.1, there exists a unique(λ, λ, λ, λ)-additive
mappingf∞ : X → Y such that

(4.7) ‖f(x)− f∞(x)‖ ≤ K

1− 2|λ|K
ε1(x, x) (∀x ∈ X).

However we can easily see the following assertions:

(i) f∞ is (λ, λ, λ, λ)-additive if and only iff∞ satisfies (4.1).
(ii) (4.7) is equivalent to (4.5).

This completes the proof.

The following result is a consequence of Theorem 3.2.

Corollary 4.2 (cf. [3, Theorem 2.4]). Let ε be a nonnegative function onX ×X and suppose

(4.8) ∃K ≥ 0 : K <
1

|a|
and ε(x, x′) ≤ Kε(−ax,−ax′) (∀x, x′ ∈ X).

If a mappingf : X → Y satisfies(4.4), then there exists a unique mappingf∞ : X → Y
satisfying(4.1)and

(4.9) ‖f(x)− f∞(x)‖ ≤ 1

2(1−K|a|)
ε
(x

a
, 0

)
(∀x ∈ X).

Proof. Putu = ax + bx′, v = ax − bx′ for eachx, x′ ∈ X. Under these transformations, (4.4)
changes into the following estimate

(4.10)

∥∥∥∥f

(
u + v

−2a

)
− f(u) + f(v)

−2a

∥∥∥∥ ≤ ε1(u, v) (∀u, v ∈ X),

where

ε1(u, v) =
1

2|a|
ε

(
u + v

2a
,
u− v

2b

)
(∀u, v ∈ X).
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Moreover putλ = 1
−2a

. Then by (4.8),K < |2λ| and

ε1(2λx, 2λx′) =
1

2|a|
ε

(
2λ(x + x′)

2a
,
2λ(x− x′)

2b

)
=

1

2|a|
ε

(
x + x′

−2a2
,
x− x′

−2ab

)
≤ K

2|a|
ε

(
x + x′

2a
,
x− x′

2b

)
= Kε1(x, x′)

holds for allx, x′ ∈ X. Therefore by Theorem 3.2, there exists a unique(λ, λ, λ, λ)-additive
mappingf∞ : X → Y such that

(4.11) ‖f(x)− f∞(x)‖ ≤ 1

2|λ| −K
ε1(x, x) (∀x ∈ X).

However we can easily see the following assertions:
(i) f∞ is (λ, λ, λ, λ)-additive if and only iff∞ satisfies (4.1).

(ii) (4.11) is equivalent to (4.9).
This completes the proof.

Remark 4.1. There are two transformations:u = ax+bx′, v = −x′ andu = ax−bx′, v = −x′

except the transformation treated in the proofs of the above corollaries. However, if we apply
these transformations, then the corresponding results are complicated and hence we don’t feel
beauty.

Remark 4.2. The following assertions follow immediately from Corollaries 4.1 and 4.2.
(i) (cf. [3, Corollary 2.5]). Letδ, p ≥ 0 andq > 0 with p + q 6= 1 and supposea, b 6= 0. If a

mappingf : X → Y satisfies

‖f(ax + bx′) + f(ax− bx′) + 2af(−x)‖ ≤ δ‖x‖p‖x′‖q (∀x, x′ ∈ X),

thenf(ax + bx′) + f(ax− bx′) + 2af(−x) = 0 holds for allx, x′ ∈ X.
In fact, putε(x, x′) = δ‖x‖p‖x′‖q for eachx, x′ ∈ X. Sinceq > 0, it follows thatε(x, 0) = 0

for all x ∈ X. Note that (4.3) and (4.8) are equivalent to|a|p+q < |a| and |a| < |a|p+q,
respectively. Sincea 6= 0 andp + q 6= 1, it follows that either (4.3) or (4.8) holds. Then our
assertion follows immediately from Corollaries 4.1 and 4.2.

(ii) (cf. [3, Corollary 2.8]). Letδ ≥ 0 and supposea, b 6= 0 and |a| 6= 1. If a mapping
f : X → Y satisfies

‖f(ax + bx′) + f(ax− bx′) + 2af(−x)‖ ≤ δ (∀x, x′ ∈ X),

then there exists a unique functionf∞ : X → Y such that

f∞(ax + bx′) + f∞(ax− bx′) + 2af∞(−x) = 0 (∀x, x′ ∈ X),

‖f(x)− f∞(x)‖ ≤ δ

2||a| − 1|
(∀x ∈ X).

In fact, putε(x, x′) = δ for eachx, x′ ∈ X. Note that (4.3) and (4.8) are equivalent to|a| > 1
and |a| < 1, respectively. Since|a| 6= 1, it follows that either (4.3) or (4.8) holds. Then our
assertion follows immediately from Corollaries 4.1 and 4.2.

The following result is a consequence of Theorem 3.1.

Corollary 4.3 (cf. [3, Theorem 2.6]). Let ε be a nonnegative function onX ×X and suppose
that
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(i) ±b 6= −1
2
.

(ii) ∃K ≥ 0 : K|1± 2b| < 1 and

ε(x, x′) ≤ Kε((1± 2b)x, (1± 2b)x′) (∀x, x′ ∈ X).

If a mappingf : X → Y satisfies

(4.12) ‖f(ax + bx′)− f(ax− bx′) + 2bf(−x′)‖ ≤ ε(x, x′) (∀x, x′ ∈ X),

then there exists a unique mappingf∞ : X → Y satisfying(4.2)and

(4.13) ‖f(x)− f∞(x)‖ ≤ K

1−K|1± 2b|
ε

(
1± b

a
x,−x

)
(∀x ∈ X)

(double-sign corresponds).

Proof. The case of+. Putu = ax + bx′, v = −x′ for eachx, x′ ∈ X. Under these transforma-
tions, (4.12) is changed into the following estimate

(4.14) ‖f(u + 2bv)− f(u)− 2bf(v)‖ ≤ ε2(u, v) (∀u, v ∈ X),

where

ε2(u, v) = ε

(
u + bv

a
,−v

)
(∀u, v ∈ X).

Moreover putλ1 = 1, λ2 = 2b, λ3 = 1 andλ4 = 2b. By (i), we haveλ1 + λ2 6= 0. Also by (ii)
K|λ3 + λ4| < 1 and

ε2(x, x′) = ε

(
x + bx′

a
,−x′

)
≤Kε

(
(1 + 2b)(x + bx′)

a
,−(1 + 2b)x′

)
= Kε2((1 + 2b)x, (1 + 2b)x′)

= Kε2((λ1 + λ2)x, (λ1 + λ2)x
′)

holds for allx, x′ ∈ X. Therefore by Theorem 3.1, there exists a unique(λ1, λ2, λ3, λ4)-additive
mappingf∞ : X → Y such that

(4.15) ‖f(x)− f∞(x)‖ ≤ K

1−K|λ3 + λ4|
ε2(x, x) (∀x ∈ X).

However we can easily see the following assertions:

(i) f∞ is (λ1, λ2, λ3, λ4)-additive if and only iff∞ satisfies (4.2).
(ii) (4.15) is equivalent to (4.13).

This completes the proof for the case of+.
The case of−. By using the transformation :u = ax − bx′, v = −x′, we obtain the desired

result in the same way.

The following result is a consequence of Theorem 3.2.

Corollary 4.4 (cf. [3, Theorem 2.6]). Let ε be a nonnegative function onX ×X and suppose
that

(i) ±b 6= −1
2
.

(ii) ∃K ≥ 0 : K < |1± 2b| and

ε((1± 2b)x, (1± 2b)x′) ≤ Kε(x, x′) (∀x, x′ ∈ X).
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If a mappingf : X → Y satisfies(4.12), then there exists a unique mappingf∞ : X → Y
satisfying(4.2)and

(4.16) ‖f(x)− f∞(x)‖ ≤ 1

|1± 2b| −K
ε

(
1± b

a
x,−x

)
(∀x ∈ X)

(double-sign corresponds).

Proof. The case of+. Putu = ax + bx′, v = −x′ for eachx, x′ ∈ X. Under these transforma-
tions, (4.12) is changed into (4.14). Moreover putλ1 = 1, λ2 = 2b, λ3 = 1 andλ4 = 2b. By (i)
we haveλ3 + λ4 6= 0. Also by (ii), K < |λ3 + λ4| and

ε2((λ1 + λ2)x, (λ1 + λ2)x
′) = ε2((1 + 2b)x, (1 + 2b)x′)

= ε

(
(1 + 2b)x + b(1 + 2b)x′

a
,−(1 + 2b)x′

)
≤Kε

(
x + bx′

a
,−x′

)
= Kε2(x, x′)

for all x, x′ ∈ X. Therefore by Theorem 3.2, there exists a unique(λ1, λ2, λ3, λ4)-additive
mappingf∞ : X → Y such that

(4.17) ‖f(x)− f∞(x)‖ ≤ 1

|λ3 + λ4| −K
ε2(x, x) (∀x ∈ X).

However we can easily see the following assertions:

(i) f∞ is (λ1, λ2, λ3, λ4)-additive if and only iff∞ satisfies (4.2).
(ii) (4.17) is equivalent to (4.16).

This completes the proof for the case of+.
The case of−. By using the transformation :u = ax − bx′, v = −x′, we obtain the desired

result in the same way.

Remark 4.3. Let p, q, δ ≥ 0, p + q 6= 1, ±b 6= −1
2

anda, b 6= 0 and suppose that a mapping
f : X → Y satisfies

‖f(ax + bx′)− f(ax− bx′) + 2bf(−x′)‖ ≤ δ‖x‖p‖x′‖q (∀x, x′ ∈ X).

Then the following assertions follow immediately from Corollaries 4.3 and 4.4 (cf. [3, Corol-
laries 2.7 and 2.8]).

(i) If 1± b 6= 0, then there exists a unique mappingf∞ : X → Y satisfying (4.2) and

‖f(x)− f∞(x)‖ ≤ δ|1± b|p

|a|p ||1± 2b|p+q − |1± 2b||
‖x‖p+q (∀x ∈ X)

(double-sign corresponds).
(ii) If p = q = 0, then there exists a unique mappingf∞ : X → Y satisfying (4.2) and

‖f(x)− f∞(x)‖ ≤ δ

|1− |1± 2b||
(∀x ∈ X)

(double-sign corresponds).
(iii) If either 1 + b = 0 andp > 0 or 1− b = 0 andp > 0, thenf satisfies (4.2).
In fact, putε(x, x′) = δ‖x‖p‖x′‖q for eachx, x′ ∈ X. Note that (ii) in Corollary 4.3 and (ii)

in Corollary 4.4 are equivalent to|1± 2b| < |1± 2b|p+q and|1± 2b| > |1± 2b|p+q, respectively
(double-sign corresponds). Since±b 6= −1

2
, 0 andp + q 6= 1, it follows that either (ii) in

Corollary 4.3 or (ii) in Corollary 4.4 holds (double-sign corresponds). Then the assertion (i)
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follows immediately from Corollaries 4.3 and 4.4. Ifε(x, x′) = δ for eachx, x′ ∈ X, then the
assertion (ii) holds in the same way. Also if1± b = 0 andp > 0, then|1± b|p = 0 (double-sign
corresponds) and hence we can easily see that the assertion (iii) holds by the same consideration
in the above (i).
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