
The Australian Journal of Mathematical
Analysis and Applications

http://ajmaa.org

Volume 9, Issue 1, Article 1, pp. 1-7, 2012

TURAN TYPE INEQUALITIES FOR SOME SPECIAL FUNCTIONS
W. T. SULAIMAN

Received 3 September, 2010; accepted 2 March, 2011; published 31 January, 2012.

DEPARTMENT OF COMPUTER ENGINEERING, COLLEGE OF ENGINEERING, UNIVERSITY OF MOSUL, IRAQ
waadsulaiman@hotmail.com

ABSTRACT. In this paper new results concerning the q-polygamma and q-zeta functions are
presented. Other generealizations of some known results are also obtained.

Key words and phrases: Turan’s inequality, q−polygamma function, q−zeta function.

1991 Mathematics Subject Classification. 26D07, 33B15.

ISSN (electronic): 1449-5910
c© 2012 Austral Internet Publishing. All rights reserved.

http://ajmaa.org/
mailto:<waadsulaiman@hotmail.com>
http://www.ams.org/msc/


2 W. T. SULAIMAN

1. INTRODUCTION

Let c be a complex number, the q−shifted factorial are defined by

(c; q)0 = 1, (c; q)n =
n−1∏
k=o

(1− cqk), n = 1, 2, ....(1.1)

(c; q)∞ = lim
n→∞

(c; q)n =
∞∏
k=0

(1− cqk).(1.2)

For x complex we denote

[x]q =
1− qx

1− q
.(1.3)

The q−Jackson integrals from 0 to c are defined by [5, 6]∫ c

0

f(x)dqx = (1− q)c
∞∑
n=0

f(cqn)qn,(1.4)

and ∫ ∞
0

f(x)dqx = (1− q)
∞∑

n=−∞

f(qn)qn,(1.5)

provided the sum converges absolutely.

The q−analogue of the Gamma function is defined by Jakson [6] as follows

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, x 6= 0,−1,−2, ... ,(1.6)

and it is satisfying the following

Γq(x+ 1) = [x]qΓq(x), Γq(1) = 1,(1.7)

and tends to Γ(x) as q → 1.
The q−integral representation of the Gamma function is (see [2, 4]) as follows

Γq(x) = Kq(x)

∫ ∞
0

tx−1e−tq dqt,(1.8)

where

etq =
1

((1− q)t; q)∞
,

and

Kq(t) =
(1− q)−x

1 + (1− q)−1
× (−(1− q); q)∞(−(1− q)−1; q)∞

(−(1− q)qt; q)∞(−(1− q)−1q1−t; q)∞
.

The q−analogue of the psi function ψ(x) = Γ′(x)
Γ(x)

is defined as the logarithmic derivative of the

q−gamma function, that is ψq(x) =
Γ′q(x)

Γq(x)
.
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From (1.6), we obtain for x > 0

ψq(x) = − ln(1− q) + ln q
∞∑
n=0

qn+x

1− qn+x

= − ln(1− q) + ln q
∞∑
n=1

qnx

1− qn
,

= − ln(1− q) +
ln q

1− q

∫ q

0

tx−1

1− t
dqt.(1.9)

For x > 0, we put

α(x) =
ln(x)

ln(q)
− E

(
ln(x)

ln(q)

)
and

{x}q =
[x]q

qx+α([x]q)
,

where E
(

ln(x)
ln(q)

)
is the integer part of ln(x)

ln(q)
.

The q−Zeta function is defined (see[3]) as

ξq(s) =
∞∑
n=1

1

{n}sq
=
∞∑
n=1

q(n+α([n]q))s

[n]sq
.(1.10)

It has been proved in [3], that the q−analogue of the classical Riemann Zeta function is

ξq(s) =
1

Γ̃(s)

∫ ∞
0

ts−1Zq(t)dqt, s ∈ C, R(s) > 1,

where for all t > 0,

Zq(t) =
∞∑
n=1

e−{n}q
t

q and Γ̃q(t) =
Γq(t)

Kq(t)
.

In his paper, K. Brahim [1], gave the following results:

Theorem 1.1. For n = 1, 2, ..., let ψq,n = ψ(n)
q , the n−th derivative of the function ψq. Then

ψq,m(x)ψq,n(x) ≥ ψ2
q,m+n

2
(x),(1.11)

where m+n
2

is an integer.

Theorem 1.2. For all s > 1 we have

[s+ 1]q
ξq(s)

ξq(s+ 1)
≥ q[s]q

ξq(s+ 1)

ξq(s+ 2)
.(1.12)
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2. IMPROVEMENT AND GENERALIZATION

We start by giving a short easy proof for the following Lemma, without go to the q−definition
for functions f and g.

Lemma 2.1. [1]. Let a ∈ R+ ∪ {∞} and let f and g be two nonnegative functions. Then(∫ b

0

g(x)f
m+n

2 (x)dqx

)2

≤
(∫ b

0

g(x)fm(x)dqx

)(∫ b

0

g(x)fn(x)dqx

)
.(2.1)

Proof. We have, by extending the limits of integration between a and b, 0 ≤ a < b ≤ ∞,∫ b

a

√g(x)fm(x)

√∫ b

a

g(x)fn(x)dqx−
√
g(x)fn(x)

√∫ b

a

g(x)fm(x)dqx

2

dqx ≥ 0.

Opening the above inequality gives

2

∫ b

a

g(x)fm(x)dqx

∫ b

a

g(x)fn(x)dqx

≥ 2

∫ b

a

g(x)f
m+n

2 (x)dqx

√∫ b

a

g(x)fn(x)dqx×

√∫ b

a

g(x)fm(x)dqx.

Canceling and squaring, the result follows.
The above inequality can also be generalized as follows:
By using the AG-inequality

cd ≤ cp

p
+
dq

q
, p > 1,

1

p
+

1

q
= 1, c, d ≥ 0.(2.2)

In fact, we have, by putting

c = g
1
p (x)f

m
p (x)/

(∫ b

a

g(x)fm(x)dqx

)1/p

,

d = g
1
q (x)f

n
q (x)/

(∫ b

a

g(x)fn(x)dqx

)1/q

,

we obtain, after multiplying (2.2) by dqx and then integrating from a to b,∫ b

a

g(x)f
m
p

+n
q (x)dqx ≤

(∫ b

a

g(x)fm(x)dqx

)1/p(∫ b

a

g(x)fn(x)dqx

)1/q

.(2.3)

Inequality (2.1) follows from inequality (2.3) by putting p = q = 2.

For more extension, we give the following.

Theorem 2.2. For n = 1, 2, ..., let ψq,n = ψ(n)
q , the n−th derivative of the function ψq. Then

ψq,m
s

+n
t

(x
s

+
y

t

)
≤ ψ1/s

q,m(x)ψ1/t
q,n(y),(2.4)

where m+n
2

is an integer, s > 1, 1
s

+ 1
t

= 1.
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Proof. Let m and n be two integers of the same parity. From (1.9), it follows that

ψq,n(x) =
ln q

1− q

∫ q

0

(ln(1/u))nux−1

1− u
dqu.

By above, we have

ψq,m
s

+n
t

(x
s

+
y

t

)
=

ln q

1− q

∫ q

0

(ln(1/u))
m
s

+n
t u

x
s

+ y
t
−1

1− u
dqu

=
ln q

1− q

∫ q

0

(ln(1/u))
m
s u

x−1
s

(1− u)
1
s

(ln(1/u))
n
t u

y−1
t

(1− u)
1
t

dqu

≤ ln q

1− q

(∫ q

0

(ln(1/u))mux−1

1− u
dqu

)1/s(∫ q

0

(ln(1/u))nuy−1

1− u
dqu

)1/t

= ψ1/s
q,m(x)ψ1/t

q,n(y).

Remark 2.1. On putting y = x in Theorem 2.2, we obtain a generalization for Theorem 1.1.

Another type via Minkowski’s inequality is the following.

Theorem 2.3. For n = 1, 2, ...., let ψq,n = ψ(n)
q , the n−th derivative of the function ψq. Then

(ψq,m(x) + ψq,n(y))1/p ≤ ψ1/p
q,m(x) + ψ1/p

q,n (y),(2.5)

where m+n
2

is an integer, p ≥ 1.

Proof. Since

(a+ b)p ≥ ap + bp, a, b ≥ 0, p ≥ 1,

then, we have, via Minkowski’s inequality

(ψq,m(x) + ψq,n(y))1/p

=

(
ln q

1− q

)1/p
(∫ q

0

((
t
x−1
p (ln(1/t))m/p

(1− t)1/p

)p

+

(
t
y−1
p (ln(1/t))n/p

(1− t)1/p

)p)
dqt

)1/p

≤
(

ln q

1− q

)1/p
(∫ q

0

(
t
x−1
p (ln(1/t))m/p

(1− t)1/p
+
t
y−1
p (ln(1/t))n/p

(1− t)1/p

)p

dqt

)1/p

≤
(

ln q

1− q

)1/p
(∫ q

0

(
t
x−1
p (ln(1/t))m/p

(1− t)1/p

)p

dqt

)1/p

+

(∫ q

0

(
t
y−1
p (ln(1/t))n/p

(1− t)1/p

)p

dqt

)1/p


=

(
ln q

1− q

)1/p
((∫ q

0

tx−1(ln(1/t))m

1− t
dqt

)1/p

+

(∫ q

0

ty−1(ln(1/t))n

1− t
dqt

)1/p
)

= ψ1/p
q,m(x) + ψ1/p

q,n (y).
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Theorem 2.4. For x, y > 1 we have

ξq

(
x− 1

s
+
y + 1

t

)
≤ (Γ̃q(x))1/s(Γ̃q(y))1/t

Γ̃q
(
x−1
s

+ y+1
t

) ξ1/s
q (x)ξ1/t

q (y + 2)(2.6)

Proof. For x, y > 1, we have

ξq

(
x− 1

s
+
y + 1

t

)
=

1

Γ̃q
(
x−1
s

+ y+1
t

) ∫ ∞
0

u
x−1
s

+ y+1
t Zq(u)dqu

=
1

Γ̃q
(
x−1
s

+ y+1
t

) ∫ ∞
0

u
x−1
s Z1/s

q (u)u
y+1
t Z1/t

q (u)dqu

≤ 1

Γ̃q
(
x−1
s

+ y+1
t

) (∫ ∞
0

ux−1Zq(u)dqu

)1/s(∫ ∞
0

uy+1Zq(u)dqu

)1/t

=
(Γ̃q(x))1/s(Γ̃q(y))1/t

Γ̃q
(
x−1
s

+ y+1
t

) ξ1/s
q (x)ξ1/t

q (y + 2).

Remark 2.2. On putting y = x, in Theorem 2.4 we get a generalization for Theorem 1.2.

3. MONOTONICITY

Theorem 3.1. Let f be a function defined by

f(x) =
Γaq(1 + bx)

Γbq(1 + ax)
, ∀x > 0, ab > 0,(3.1)

in which 1 + ax > 0, 1 + bx > 0, then f is nondecreasing for a ≥ b and nonincreasing for
a ≤ b.

Proof. We have

g(x) := ln f(x) = a ln Γq(1 + bx)− b ln Γq(1 + ax, )

which implies

g′(x) =
f ′(x)

f(x)
= ab

Γ′q(1 + bx)

Γq(1 + bx)
− ab

Γ′q(1 + ax)

Γq(1 + ax)

= abψq(1 + bx)− baψq(1 + ax)

= ab ln q
∞∑
n=1

qn(1+bx) − qn(1+ax)

1− qn
≥ 0, for a ≥ b.

Therefore g is nondecreasing, and hence f(x) = eg(x) is nondecreasing.

Corollary 3.2. For all x ∈ [0, 1], a > b, ab > 0,

1 ≤
Γaq(1 + bx)

Γbq(1 + ax)
≤

Γaq(1 + b)

Γbq(1 + a)
.(3.2)

If a < b, (3.2) reverses.

Proof. The proof follows by applying Theorem 3.1 twice noticing that Γq(1) = 1.
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Corollary 3.3. For all x, y ∈ [0,∞), x ≤ y, a > b, ab > 0,

Γaq(1 + bx)

Γbq(1 + ax)
≤

Γaq(1 + by)

Γbq(1 + ay)
.(3.3)

If x ≥ y, a < b, (3.2) reverses.

Proof. The proof follows by applying Theorem 3.1.
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