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1. INTRODUCTION

Let c be a complex number, the g—shifted factorial are defined by

n—1
(1.1) (c@o=1, (GQa=]]0—cd*), n=12...
k=o
(1.2) (650)0 = lim (e1q)n = [ J(1 = ).
For x complex we denote
1—gq"
(1.3) ol = T2
The g—Jackson integrals from 0 to c are defined by [} 6]
(1.4) / f@)dgz = (1—q)c > fleq")q
0 n=0
and
(1.5) / f(@)dgz = (1 —q) Zf

provided the sum converges absolutely.

The g—analogue of the Gamma function is defined by Jakson [6] as follows

(¢; 9)ox -
(1.6) I,(z)= 1—q) ", x#0,-1,-2,... ,
)= g 7Y
and it is satisfying the following
(1.7) Loz +1) = [2]Ty(x), Ty(1) =1,

and tends to I'(z) as ¢ — 1.
The g—integral representation of the Gamma function is (see [2, 4]) as follows

(1.8) Ly(z) = Kq(az)/ tx_leq_tdqt,
0
where
et !
(=9t
and

I-a™  ((1-9:i0« (—(1—Q)_1;Q)
I+ (1 —g) ' (=(1- Doo(—(1 =)L ¢) o0

The g—analogue of the psi function 1 (z) = is defined as the logarithmic derivative of the

Iy (2)
Fq(x)

Kq(t) =

9)q";
re
I2)

q—gamma function, that is ¥ () =
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From (I.6), we obtain for z > 0

e qn+x
n=0
= —ln(l—q)#—lnqzlq_qn,
n=1
lnq th—l
1.9 = —In(1-— dgt.
(1.9 a(l—q)+ 2L [ 1,

For x > 0, we put

and

B [x]q
{ohe = oy

In(z)
In(g) *

where F (Egg ) is the integer part of

The g—Zeta function is defined (see[3]) as

< g(mta(lnl)s

(1.10) @@):}25%5252 o

It has been proved in [3]], that the ¢g—analogue of the classical Riemann Zeta function is

1 oo
£,(s) = = / B1Z.(0)dt, seC, R(s)> 1,
I(s) Jo
where for all ¢ > 0,
N et ~ T, (t)
Z,t) =Y e M and T, (t) = L~
=2 0= %)

In his paper, K. Brahim [1], gave the following results:

Theorem 1.1. Forn =1,2,...,let¢,,, = 1/151"), the n—th derivative of the function . Then

(1.11) Vym (@) gn(2) 2 Vg min (2),

where mTJF” is an integer.

Theorem 1.2. For all s > 1 we have

§,(s+ 1)‘

(1.12) [s + 1], S5

£q(8)
m > Q[S]q
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2. IMPROVEMENT AND GENERALIZATION

We start by giving a short easy proof for the following Lemma, without go to the g—definition
for functions f and g.

Lemma 2.1. [1]]. Let a € R, U {00} and let f and g be two nonnegative functions. Then

en (| o) 7 <x>dqx)2 <(/ bg(w)fm(x>dqfrf> (/ bg(fv)f"(x)dqx) .

Proof. We have, by extending the limits of integration between a and b, 0 < a < b < o0,

2

/ \/g(x)fm(x)\/ / g(x)f"(:c)dqw—\/g(fv)f"(x)\/ / g(2) fr(@)dgr | dgw > 0.

Opening the above inequality gives

2 [ s @i [ o @

b b b
> 2 / g(x)f"‘?"mdqx\/ / g(w)fﬂ(m)dqasx\/ / 9(@) f(2)dy.

Canceling and squaring, the result follows.
The above inequality can also be generalized as follows:
By using the AG-inequality

p g 11
(2.2) Wd<S+ 8 ps1, T4 =1, ¢d>0.
b q b q

In fact, we have, by putting

1/p

=gty ([ swrwar)

1/q

=gt ([ bg(w)f”(ﬂ:)dqas) ,

we obtain, after multiplying (2.2)) by d,x and then integrating from a to b,

ea | @) @)y < (/ bg(rc)fm(w)dq:r> " (/ bg(:r)f”(x)dqx) "

Inequality (2.T)) follows from inequality (2.3)) by putting p = ¢ = 2.

For more extension, we give the following. &

Theorem 2.2. Forn =1,2,... lety, , = wg”), the n—th derivative of the function 1. Then

Ty s
@4 Yomiy (+5) S U@0G),
where mTJF” is an integer, s > 1, % + % =1.
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Proof. Let m and n be two integers of the same parity. From (I.9), it follows that

Ingq /q (In(1/u)) u®"!

Ugn(E) =

1 dqu.

1—u

By above, we have

z y) _ Ing [? (ln(l/u))%+%uf+%’ld
¢q’%+%<s+t N 1—q/0 1—u at
)5u's (In(L/u)u’t

b ([ ! dqu) e [ (ln(l/U))"uyldqu)l/t

1—u

IN

|
Remark 2.1. On putting y = x in Theorem[2.2] we obtain a generalization for Theorem [I.1]

Another type via Minkowski’s inequality is the following.

Theorem 2.3. Forn=1,2,.... let ¢, = wg"), the n—th derivative of the function 1. Then

(2.5) (Vg (@) + ()P < WUE(x) + 2P (y),

m+n

where ™5 is an integer, p > 1.

Proof. Since
(a+b>pzap+bp7 aabZO» pZL

then, we have, via Minkowski’s inequality

-1 P y—1 P 1/p
t» (In(1/t))™/» tv (In(1/t)"/?
( (1—1¢)l/p ) * ( (1—1¢)l/p ) ) dqt)

—1 y—1 P 1/p
t v (In(1/e)™® ¢» (In(1/t)"/"
(1—t)/r + (1—t)1/p ) dqt)

)

)

=) (O () ) (0 () )
) (O =) T ([ )

IA

[\
e N N 7N
= —_
| | =
o R
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Theorem 2.4. For x,y > 1 we have

3 (w —1, y+ 1) _ Cy(@) (T

(2.6) ;

Proof. For x,y > 1, we have

r—1 y+1 1 a1y
gq( s +—> = = 1)/0 US+th(u)dqu

t

y+1

= = 1)/ uzT_lZ;/s(u)uTZ;/t(u)dqu
0

1 o] 1/s 0o 1/t
" Z,(u)d u) (/ utZ,(u)d u)
Fq ($_1+y+1> (\/0' q q 0 q q
Y

IN
!

1
Remark 2.2. On putting y = =, in Theorem [2.4 we get a generalization for Theorem[1.2]

3. MONOTONICITY
Theorem 3.1. Let f be a function defined by
e(1+ bx)

(3.1) (x) = w>

Ve >0, ab>0,
in which 1 + ax > 0,1 + bz > 0, then f is nondecreasing for a > b and nonincreasing for
a <b.
Proof. We have
g(z) :=Inf(z) =alnT (1 +bx) —bInTy(1 + ax,)
which implies
f'(x) [ (1 + bx) I (1 + ax)

! — — — _—
g @) fl@)  “T,0+02) “T,0+az)
= aby (1 +bx) — bay, (1 + ax)
© n(1+bz) _ n(l+az)
q q
= ablnqz =g >0, for a>0b.

n=1

Therefore g is nondecreasing, and hence f(x) = e9(®) is nondecreasing.
|

Corollary 3.2. Forall x € [0,1],a > b,ab > 0,
- re(1+bx) - ro(1+ b).
b1 +axr) = T1 +a)

(3.2)

Ifa < b, reverses.
Proof. The proof follows by applying Theorem twice noticing that I',(1) = 1. g
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Corollary 3.3. Forall x,y € [0,00),z < y,a > b,ab > 0,
Fg(l + bx) - Fg(l + by).
(1 +ax) = T4(1 4+ ay)

If v > y,a <b,(3.2)) reverses.

Proof. The proof follows by applying Theorem 3.1] n

(3.3)
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