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ABSTRACT. In this paper, we prove the inequality ab
a··

·a

< ba
b·

··
b

for 0 < a < b. Other related
conjectures are also presented.
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1. INTRODUCTION

In the article [1], the following problem was submitted.
Is the inequality

23
23

23

> 32
32

32

true or false?
We generalize this problem.

Definition 1.1. Let a, b (a < b) be positive real numbers. Define the sequences {an}∞n=1,
{bn}∞n=1 in the following way,

a1 = a, b1 = b and an+1 = abn , bn+1 = ban n = 1, 2, . . . .

We consider the problem of comparisons between an and bn.

2. RESULTS AND PROOFS

Theorem 2.1. If 1 < a, then

(2.1)
b2m
a2m

<
b2m−1
a2m−1

<
b2m+1

a2m+1

m = 1, 2, . . . .

Proof. The proof is by induction. First, we show that the inequality (2.1) is true for m = 1, that
is, we prove that

(2.2)
b2
a2

<
b1
a1

<
b3
a3
.

The left side of the inequality (2.2) is equivalent to f(a1) > f(b1), where

f(x) =
lnx

x− 1
for x > 1.

From f ′(x) < 0, it follows that f(x) is strictly decreasing, and hence f(a1) > f(b1).
Now we prove the right side of the inequality (2.2).

Case 1 ≥ b2
a2

. The right side of the inequality (2.2) is equivalent to

(2.3) (b2 − 1) ln a1 < (a2 − 1) ln b1.

From b2 − 1 ≤ a2 − 1, we have the inequality (2.3).

Case 1 < b2
a2

. The right side of the inequality (2.2) is equivalent to

(2.4) b2a1g(a2) < a2b1g(b2),

where
g(x) =

x lnx

x− 1
for x > 1.

From g′(x) > 0, it follows that g(x) is strictly increasing, and hence g(a2) < g(b2). Since
b2
a2
< b1

a1
, the inequality (2.4) holds.

Assuming the inequality (2.1) is true for m = k, we show that the inequality (2.1) is also true
for m = k + 1, that is, we prove that

(2.5)
b2k+2

a2k+2

<
b2k+1

a2k+1

<
b2k+3

a2k+3

.

The left side of (2.5) is equivalent to

(2.6) b2k(a2k − a2k−1)f
(
a2k+1

a2k

)
> a2k(b2k − b2k−1)f

(
b2k+1

b2k

)
.
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Since f(x) is strictly decreasing and b2k
a2k

< b2k+1

a2k+1
, f

(
a2k+1

a2k

)
> f

(
b2k+1

b2k

)
. From b2k

a2k
< b2k−1

a2k−1
,

we have
b2k(a2k − a2k−1) > a2k(b2k − b2k−1).

Thus (2.6) holds.
We prove the right side of (2.5).

Case b2k
a2k
≥ b2k+2

a2k+2
. The right side of (2.5) is equivalent to

(2.7) a2k(b2k+2 − b2k) ln a2k+1 < b2k(a2k+2 − a2k) ln b2k+1.

Since b2k
a2k
≥ b2k+2

a2k+2
, we have

a2k(b2k+2 − b2k) ≤ b2k(a2k+2 − a2k).
From 1 < b1

a1
< b2k+1

a2k+1
, we have ln a2k+1 < ln b2k+1. Thus (2.7) holds.

Case b2k
a2k

< b2k+2

a2k+2
. The right side of the inequality (2.5) is equivalent to

(2.8) b2k+2(a2k+1 − a2k−1)g
(
a2k+2

a2k

)
< a2k+2(b2k+1 − b2k−1)g

(
b2k+2

b2k

)
.

Since g(x) is strictly increasing and b2k
a2k

< b2k+2

a2k+2
, g(a2k+2

a2k
) < g( b2k+2

b2k
). From b2k−1

a2k−1
< b2k+1

a2k+1
and

b2k+2

a2k+2
< b2k+1

a2k+1
, we have b2k+2(a2k+1 − a2k−1) < a2k+2(b2k+1 − b2k−1). Thus the inequality (2.8)

holds.

Proposition 2.2. If a ≤ 1, then an < bn.

Proof. Case b > 1. an ≤ 1 < bn.
Case b = 1. an < 1 = bn.
Case b < 1. We can show this by induction.

Corollary 2.3. If n is an odd number, then an < bn.

Proof. Case a ≤ 1. From Proposition 2.2, it is obvious.
Case 1 < a. Using Theorem 2.1, 1 < b1

a1
≤ b2m−1

a2m−1
.

Corollary 2.4. If n is an even number and a ≤ 1, then an < bn.

Proof. Case a ≤ 1. From Proposition 2.2, it is obvious.

3. CONJECTURES

Conjecture 3.1. If n is an even number and 1 < a, there is only one real εa,n such that b Q
a+ εa,n ⇐⇒ an Q bn.

Using Theorem 2.1,

a2m+2 < b2m+2 ⇐⇒
b2m+1

a2m+1

<
ln b

ln a
=⇒ b2m−1

a2m−1
<

ln b

ln a
⇐⇒ a2m < b2m.

If Conjecture 3.1 is true, εa,2m ≥ εa,2m+2. So there exists α = limm→∞ εa,2m.

Conjecture 3.2. If 1 < a, then limm→∞ εa,2m = 0.
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