

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 8, Issue 1, Article 12, pp. 1-3, 2011

ON THE INEQUALITY WITH POWER-EXPONENTIAL FUNCTION SEIICHI MANYAMA

Received 2 June, 2010; accepted 30 September, 2010; published 28 November, 2011.

GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, JAPAN manchanr4@gmail.com

Key words and phrases: Power-exponential function.

2000 Mathematics Subject Classification. 26D15.

ISSN (electronic): 1449-5910

^{© 2011} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

In the article [1], the following problem was submitted. *Is the inequality* 2

$$2^{3^{2^{3^{2^{3}}}}} > 3^{2^{3^{2^{3}}}}$$

true or false?

We generalize this problem.

Definition 1.1. Let a, b (a < b) be positive real numbers. Define the sequences $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ in the following way,

 $a_1 = a, b_1 = b$ and $a_{n+1} = a^{b_n}, b_{n+1} = b^{a_n}$ $n = 1, 2, \dots$

We consider the problem of comparisons between a_n and b_n .

2. RESULTS AND PROOFS

Theorem 2.1. If 1 < a, then

(2.1)
$$\frac{b_{2m}}{a_{2m}} < \frac{b_{2m-1}}{a_{2m-1}} < \frac{b_{2m+1}}{a_{2m+1}} \quad m = 1, 2, \dots$$

_

Proof. The proof is by induction. First, we show that the inequality (2.1) is true for m = 1, that is, we prove that

(2.2)
$$\frac{b_2}{a_2} < \frac{b_1}{a_1} < \frac{b_3}{a_3}.$$

The left side of the inequality (2.2) is equivalent to $f(a_1) > f(b_1)$, where

$$f(x) = \frac{\ln x}{x - 1} \quad \text{for} \quad x > 1.$$

From f'(x) < 0, it follows that f(x) is strictly decreasing, and hence $f(a_1) > f(b_1)$.

Now we prove the right side of the inequality (2.2).

Case $1 \ge \frac{b_2}{a_2}$. The right side of the inequality (2.2) is equivalent to

$$(2.3) (b_2 - 1) \ln a_1 < (a_2 - 1) \ln b_1$$

From $b_2 - 1 \le a_2 - 1$, we have the inequality (2.3).

Case $1 < \frac{b_2}{a_2}$. The right side of the inequality (2.2) is equivalent to

$$(2.4) b_2 a_1 g(a_2) < a_2 b_1 g(b_2),$$

where

$$g(x) = \frac{x \ln x}{x - 1}$$
 for $x > 1$.

From g'(x) > 0, it follows that g(x) is strictly increasing, and hence $g(a_2) < g(b_2)$. Since

 $\frac{b_2}{a_2} < \frac{b_1}{a_1}$, the inequality (2.4) holds. Assuming the inequality (2.1) is true for m = k, we show that the inequality (2.1) is also true for m = k + 1, that is, we prove that

(2.5)
$$\frac{b_{2k+2}}{a_{2k+2}} < \frac{b_{2k+1}}{a_{2k+1}} < \frac{b_{2k+3}}{a_{2k+3}}$$

The left side of (2.5) is equivalent to

(2.6)
$$b_{2k}(a_{2k}-a_{2k-1})f\left(\frac{a_{2k+1}}{a_{2k}}\right) > a_{2k}(b_{2k}-b_{2k-1})f\left(\frac{b_{2k+1}}{b_{2k}}\right).$$

Since f(x) is strictly decreasing and $\frac{b_{2k}}{a_{2k}} < \frac{b_{2k+1}}{a_{2k+1}}$, $f\left(\frac{a_{2k+1}}{a_{2k}}\right) > f\left(\frac{b_{2k+1}}{b_{2k}}\right)$. From $\frac{b_{2k}}{a_{2k}} < \frac{b_{2k-1}}{a_{2k-1}}$, we have

$$b_{2k}(a_{2k}-a_{2k-1}) > a_{2k}(b_{2k}-b_{2k-1}).$$

Thus (2.6) holds.

We prove the right side of (2.5).

Case
$$\frac{b_{2k}}{a_{2k}} \ge \frac{b_{2k+2}}{a_{2k+2}}$$
. The right side of (2.5) is equivalent to

$$(2.7) a_{2k}(b_{2k+2} - b_{2k}) \ln a_{2k+1} < b_{2k}(a_{2k+2} - a_{2k}) \ln b_{2k+1}.$$

Since $\frac{b_{2k}}{a_{2k}} \ge \frac{b_{2k+2}}{a_{2k+2}}$, we have

$$a_{2k}(b_{2k+2} - b_{2k}) \le b_{2k}(a_{2k+2} - a_{2k})$$

From $1 < \frac{b_1}{a_1} < \frac{b_{2k+1}}{a_{2k+1}}$, we have $\ln a_{2k+1} < \ln b_{2k+1}$. Thus (2.7) holds.

Case $\frac{b_{2k}}{a_{2k}} < \frac{b_{2k+2}}{a_{2k+2}}$. The right side of the inequality (2.5) is equivalent to

$$(2.8) b_{2k+2}(a_{2k+1}-a_{2k-1})g\left(\frac{a_{2k+2}}{a_{2k}}\right) < a_{2k+2}(b_{2k+1}-b_{2k-1})g\left(\frac{b_{2k+2}}{b_{2k}}\right)$$

Since g(x) is strictly increasing and $\frac{b_{2k}}{a_{2k}} < \frac{b_{2k+2}}{a_{2k+2}}$, $g(\frac{a_{2k+2}}{a_{2k}}) < g(\frac{b_{2k+2}}{b_{2k}})$. From $\frac{b_{2k-1}}{a_{2k-1}} < \frac{b_{2k+1}}{a_{2k+1}}$ and $\frac{b_{2k+2}}{a_{2k+2}} < \frac{b_{2k+1}}{a_{2k+1}}$, we have $b_{2k+2}(a_{2k+1} - a_{2k-1}) < a_{2k+2}(b_{2k+1} - b_{2k-1})$. Thus the inequality (2.8) holds.

Proposition 2.2. If $a \leq 1$, then $a_n < b_n$.

Proof. Case b > 1. $a_n \le 1 < b_n$. Case b = 1. $a_n < 1 = b_n$. Case b < 1. We can show this by induction.

Corollary 2.3. If n is an odd number, then $a_n < b_n$.

Proof. Case $a \le 1$. From Proposition 2.2, it is obvious. *Case* 1 < a. Using Theorem 2.1, $1 < \frac{b_1}{a_1} \le \frac{b_{2m-1}}{a_{2m-1}}$.

Corollary 2.4. If n is an even number and $a \leq 1$, then $a_n < b_n$.

Proof. Case $a \leq 1$. From Proposition 2.2, it is obvious.

3. CONJECTURES

Conjecture 3.1. If *n* is an even number and 1 < a, there is only one real $\epsilon_{a,n}$ such that $b \leq a + \epsilon_{a,n} \iff a_n \leq b_n$.

Using Theorem 2.1,

$$a_{2m+2} < b_{2m+2} \Longleftrightarrow \frac{b_{2m+1}}{a_{2m+1}} < \frac{\ln b}{\ln a} \Longrightarrow \frac{b_{2m-1}}{a_{2m-1}} < \frac{\ln b}{\ln a} \Longleftrightarrow a_{2m} < b_{2m}.$$

If Conjecture 3.1 is true, $\epsilon_{a,2m} \ge \epsilon_{a,2m+2}$. So there exists $\alpha = \lim_{m \to \infty} \epsilon_{a,2m}$.

Conjecture 3.2. If 1 < a, then $\lim_{m\to\infty} \epsilon_{a,2m} = 0$.

REFERENCES

[1] Crux Mathematicorum, 5 (24) (1998), 259.