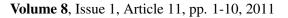


The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org



ON WEIGHTED TOEPLITZ OPERATORS

S.C. ARORA¹ AND RITU KATHURIA²

Received 20 November, 2010; accepted 8 July, 2011; published 28 November, 2011.

 1 Department of Mathematics, University of Delhi, Delhi 110007, India.

 2 Department of Mathematics, Motilal Nehru College, University of Delhi, Delhi 110021, India.

ritu.kathuria@yahoo.co.in

ABSTRACT. A weighted Toeplitz operator on $H^2(\beta)$ is defined as $T_\phi f = P(\phi f)$ where P is the projection from $L^2(\beta)$ onto $H^2(\beta)$ and the symbol $\phi \in L^2(\beta)$ for a given sequence $\beta = \langle \beta_n \rangle_{n \in \mathbb{Z}}$ of positive numbers. In this paper, a matrix characterization of a weighted multiplication operator on $L^2(\beta)$ is given and it is used to deduce the same for a weighted Toeplitz operator. The eigenvalues of some weighted Toeplitz operators are also determined.

Key words and phrases: Weighted Toeplitz operator, Weighted Toeplitz matrix, Multiplication operator, Eigenvalues.

2010 Mathematics Subject Classification. 47B35.

ISSN (electronic): 1449-5910

 $^{\ \, \}textcircled{c}$ 2011 Austral Internet Publishing. All rights reserved.

1. Introduction

Let $\beta = \{\beta_n\}_{n \in \mathbb{Z}}$ be a sequence of positive numbers with $\beta_0 = 1$, $0 < \frac{\beta_n}{\beta_{n+1}} \le 1$ for all $n \ge 0$ and $0 < \frac{\beta_n}{\beta_{n-1}} \le 1$ for all $n \le 0$. Consider the spaces [2], [4]:

$$L^{2}(\beta) = \left\{ f(z) = \sum_{n = -\infty}^{\infty} a_{n} z^{n} | a_{n} \in \mathbb{C}, \|f\|_{\beta}^{2} = \sum_{n = -\infty}^{\infty} |a_{n}|^{2} \beta_{n}^{2} < \infty \right\}$$

and

$$H^{2}(\beta) = \left\{ f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} | a_{n} \in \mathbb{C}, \|f\|_{\beta}^{2} = \sum_{n=0}^{\infty} |a_{n}|^{2} \beta_{n}^{2} < \infty \right\}$$

Then $(L^2(\beta), \|\cdot\|_\beta)$ is a Hilbert space [4] with an orthonormal basis given by $\left\{e_k(z) = \frac{z^k}{\beta_k}\right\}_{k \in \mathbb{Z}}$ and with an inner product defined by

$$\left\langle \sum_{n=-\infty}^{\infty} a_n z^n, \sum_{n=-\infty}^{\infty} b_n z^n \right\rangle = \sum_{n=-\infty}^{\infty} a_n \bar{b}_n \beta_n^2$$

Further, $H^2(\beta)$ is a subspace [4] of $L^2(\beta)$. Now, let

$$L^{\infty}(\beta) = \left\{ \phi(z) = \sum_{n = -\infty}^{\infty} a_n z^n | \phi L^2(\beta) \subseteq L^2(\beta) \text{ and } \right.$$

$$\exists \, c \in \mathbb{R} \text{ such that } \|\phi f\|_{\beta} \le c \|f\|_{\beta} \, \forall \, f \in L^2(\beta) \right\}$$

Then $L^{\infty}(\beta)$ is a Banach space with respect to the norm defined by

$$\|\phi\|_{\infty} = \inf\{c | \|\phi f\|_{\beta} \le c \|f\|_{\beta} \,\forall f \in L^2(\beta)\}.$$

Let $P: L^2(\beta) \to H^2(\beta)$ be the orthogonal projection of $L^2(\beta)$ onto $H^2(\beta)$. Then the weighted Toeplitz operator on $H^2(\beta)$ with symbol $\phi \in L^{\infty}(\beta)$ [4] is defined as

$$T_{\phi}(f) = P(\phi f)$$
.

The above mapping is well defined, for if $f \in H^2(\beta) \subset L^2(\beta)$, then by definition, $\phi f \in L^2(\beta)$ and hence $P(\phi f) \in H^2(\beta)$.

2. MATRIX CHARACTERIZATION OF A WEIGHTED TOEPLITZ OPERATOR Clearly,

$$T_{\phi}e_{j} = P(\phi e_{j})$$

$$= P\left(\sum_{n=-\infty}^{\infty} a_{n} z^{n} \frac{z^{j}}{\beta_{j}}\right) = P\left(\sum_{n=-\infty}^{\infty} a_{n-j} \frac{z^{n}}{\beta_{j}}\right)$$

$$= \sum_{n=0}^{\infty} a_{n-j} \frac{z^{n}}{\beta_{j}} = \sum_{n=0}^{\infty} \left(\frac{\beta_{n} a_{n-j}}{\beta_{j}}\right) e_{n}.$$

If we denote the matrix of T_{ϕ} by $\langle \lambda_{ij} \rangle_{i,j=0}^{\infty}$, then

$$\begin{split} \lambda_{ij} &= \langle T_{\phi} e_j, e_i \rangle \\ &= \left\langle \sum_{n=0}^{\infty} \left(\frac{\beta_n a_{n-j}}{\beta_j} \right) e_n, e_i \right\rangle \\ &= \frac{\beta_i}{\beta_j} a_{i-j} \quad \text{for all } i, j = 0, 1, 2, \dots \,. \end{split}$$

One can observe that if we extend the matrix of T_{ϕ} to a bilaterally infinite matrix, then the matrix of M_{ϕ} , the weighted multiplication operator is obtained. In other words, if $\langle \lambda_{ij} \rangle_{i,j=-\infty}^{\infty}$ denotes the matrix of M_{ϕ} on $L^{2}(\beta)$ given by $M_{\phi}f = \phi f$ for all $f \in L^{2}(\beta)$, then

(2.1)
$$\lambda_{ij} = \frac{\beta_i}{\beta_j} a_{i-j}, \quad i, j = 0, \pm 1, \pm 2, \dots$$

The above matrix is of the form

Further, the matrix of T_{ϕ} can be easily identified as the lower right part as shown above.

It is interesting to note that the inducing function ϕ can be recaptured from the matrix of T_{ϕ} . The non positive Fourier coefficients of ϕ can be obtained from the matrix of T_{ϕ} by multiplying the entries in the 0-th row by $1, \frac{\beta_1}{\beta_0}, \frac{\beta_2}{\beta_0}, \ldots$, respectively whereas the non-negative Fourier coefficients can be obtained by multiplying the entries in the 0-th column by $1, \frac{\beta_0}{\beta_1}, \frac{\beta_0}{\beta_2}, \ldots$, respectively.

Definition 2.1. Let $w = \langle w_n \rangle_{n \in \mathbb{Z}}$ be a sequence of positive numbers and $0 < \omega_n < \infty$ for each n. The weighted Laurent matrix corresponding to w is a bilaterally infinite matrix $\langle \lambda_{ij} \rangle$ such that

(2.2)
$$\lambda_{i+1,j+1} = \frac{w_i}{w_j} \lambda_{i,j}, \quad i, j = 0, \pm 1, \pm 2, \dots.$$

Theorem 2.1. A necessary and sufficient condition that an operator on $L^2(\beta)$ be a weighted multiplication operator is that its matrix with respect to the orthonormal basis $\left\{e_k(z) = \frac{z^k}{\beta_k}\right\}_{k \in \mathbb{Z}}$ be a weighted Laurent matrix corresponding to the weight sequence $w = \left\{w_k = \frac{\beta_{k+1}}{\beta_k}\right\}_{k \in \mathbb{Z}}$.

Proof. For necessity, let M_{ϕ} be a weighted multiplication operator on $L^{2}(\beta)$. Then,

$$\lambda_{i,j} = \langle M_{\phi}e_j, e_i \rangle$$

$$= \langle \phi e_j, e_i \rangle$$

$$= \left\langle \sum a_n z^n \frac{z^j}{\beta_j}, e_i \right\rangle$$

$$= \left\langle \sum a_n \frac{\beta_{n+j}}{\beta_j} e_{n+j}, e_i \right\rangle$$

$$= a_{i-j} \frac{\beta_i}{\beta_j} \qquad i, j = 0, \pm 1, \pm 2, \dots$$

Further,

$$\begin{split} \lambda_{i+1,j+1} &= a_{i-j} \frac{\beta_{i+1}}{\beta_{j+1}} \\ &= \frac{w_i}{w_j} \lambda_{i,j} \quad \text{where} \ \ w_n = \frac{\beta_{n+1}}{\beta_n}, \ n \in \mathbb{Z} \end{split}$$

Hence from (2.2), the matrix of M_{ϕ} is a weighted Laurent matrix corresponding to the weight sequence $w = \langle w_n \rangle_{n \in \mathbb{Z}}$.

For sufficiency, let A be an operator on $L^2(\beta)$ with its matrix as the weighted Laurent matrix corresponding to the weighted sequence $w=\langle w_k\rangle_{k\in\mathbb{Z}}$ given by $w_k=\frac{\beta_{k+1}}{\beta_k}$. Now, since [2] an operator on $L^2(\beta)$ that commutes with the weighted shift operator M_z is a multiplication operator M_ϕ for some $\phi\in L^\infty(\beta)$, it is enough to prove that A commutes with M_z . The proof is immediate:

Given that

$$\langle Ae_{j+1}, e_{i+1} \rangle = \frac{w_i}{w_j} \langle Ae_j, e_i \rangle, \quad i, j = 0, \pm 1, \pm 2, \dots$$

Now,

$$\langle AM_z e_j, e_i \rangle = \langle Aw_j e_{j+1}, e_i \rangle$$

$$= w_j \langle Ae_{j+1}, e_i \rangle$$

$$= w_j \frac{w_{i-1}}{w_j} \langle Ae_j, e_{i-1} \rangle$$

$$= \langle Ae_j, w_{i-1} e_{i-1} \rangle$$

$$= \langle Ae_j, M_z^* e_i \rangle$$

$$= \langle M_z Ae_j, e_i \rangle, \quad i, j = 0, \pm 1, \pm 2, \dots$$

Thus $AM_z = M_z A$.

Since a weighted Toeplitz operator is defined to be the orthogonal projection of a weighted multiplication operator on $H^2(\beta)$, hence we are motivated to give the following definition.

Definition 2.2. Let $w = (w_0, w_1, w_2, \ldots)$ be a sequence of positive numbers and $0 < w_n < \infty$ for all non negative integers n. The weighted Toeplitz matrix corresponding to the weight sequence w is a unilaterally infinite matrix $\langle \lambda_{ij} \rangle$ such that $\lambda_{i+1,j+1} = \frac{w_i}{w_i} \lambda_{i,j}, i, j = 0, 1, 2, \dots$

Theorem 2.2. A necessary and sufficient condition that an operator on $H^2(\beta)$ be a weighted Toeplitz operator T_{ϕ} is that its matrix $\langle \lambda_{ij} \rangle$ with respect to the orthonormal basis $\left\{ e_k(z) = \frac{z^k}{\beta_k} \right\}_{k \in \mathbb{Z}^+ \cup \{0\}}$ is a weighted Toeplitz matrix corresponding to the weight sequence $w = \langle w_n \rangle$ given by $w_n = \langle w_n \rangle$ $\frac{\beta_{n+1}}{\beta_n}$, $n \in \mathbb{Z}^+ \cup \{0\}$.

Proof. For necessity, let T_{ϕ} be a weighted Toeplitz operator on $H^{2}(\beta)$. Then

$$\lambda_{i+1,j+1} = \langle T_{\phi}e_{j+1}, e_{i+1} \rangle$$

$$= \langle PM_{\phi}e_{j+1}, e_{i+1} \rangle$$

$$= \langle M_{\phi}e_{j+1}, P^*e_{i+1} \rangle$$

$$= \langle M_{\phi}e_{j+1}, e_{i+1} \rangle$$

$$= \frac{w_i}{w_i}\lambda_{i,j}, \quad i, j = 0, 1, 2, \dots$$

Thus the matrix of T_{ϕ} is a weighted Toeplitz matrix. For sufficiency, let A be an operator on $H^2(\beta) \text{ such that } \langle Ae_{j+1}, e_{i+1} \rangle = \frac{w_i}{w_j} \langle Ae_j, e_i \rangle \text{ where } w_k = \frac{\beta_{k+1}}{\beta_k} \text{ and } i, j, k = 0, 1, 2, \ldots$ We now prove that A is a weighted Toeplitz operator on $H^2(\beta)$.

Let $N: L^2(\beta) \to L^2(\beta)$ be an operator given by $Ne_j = \frac{1}{w_i} e_{j+1}$.

Also, let M_z be denoted by M.

For each non negative integer n, consider the operator on $L^2(\beta)$ given by

$$A_n = N^{*n}APM^n.$$

Case (i): If $i, j \ge 0$ then,

$$\langle A_{n}e_{j}, e_{i} \rangle = \langle N^{*n}APM^{n}e_{j}, e_{i} \rangle$$

$$= \langle N^{*n-1}APM^{n-1}Me_{j}, Ne_{i} \rangle$$

$$= \frac{w_{j}}{w_{i}} \langle A_{n-1}e_{j+1}, e_{i+1} \rangle$$

$$= \prod_{k=0}^{n-1} \left(\frac{w_{j+k}}{w_{i+k}} \right) \langle A_{0}e_{j+n}, e_{i+n} \rangle$$

$$= \prod_{k=0}^{n-1} \left(\frac{w_{j+k}}{w_{i+k}} \right) \langle Ae_{j+n}, e_{i+n} \rangle$$

$$(2.3)$$

On the other hand,

(2.4)
$$\langle Ae_{j+n}, e_{i+n} \rangle = \prod_{k=0}^{n-1} \left(\frac{w_{i+k}}{w_{j+k}} \right) \langle Ae_j, e_i \rangle$$

From (2.3) and (2.4), we get that for $i, j \ge 0$

$$\langle A_n e_j, e_i \rangle = \langle A e_j, e_i \rangle$$

Case (ii): If i or j or both are negative, then for sufficiently large values of n, j + n and i + nare positive; so that the sequence $\{\langle A_n e_i, e_i \rangle\}$ is convergent.

Thus if p and q are trigonometric polynomials (finite linear combinations of the e_i 's, i = $0, \pm 1, \pm 2, \ldots$), then the sequence $\{\langle A_n p, q \rangle\}$ is convergent.

Also, $||A_n|| = ||N^{*n}APM^n|| \le ||N^{*n}|| ||A||| ||P||| ||M^n|| = ||A||$. Next we show that $\lim_{n\to\infty} \langle A_n f, g \rangle$ exists $\forall f, g \in L^2(\beta)$.

Let $f, g \in L^2(\beta)$. By Weierstrass Approximation theorem, every continuous function can be approximated by a polynomial. Hence $\forall \epsilon > 0, \exists$ polynomials p and q such that [1],

$$||g - q|| < \frac{\epsilon}{4(||A|| + 1)(||f|| + 1)}$$

and

$$||f - p|| < \frac{\epsilon}{8(||A|| + 1)(||q|| + 1)}$$

Now for n > m, consider

$$|\langle A_n f, g \rangle - \langle A_m f, g \rangle| = |\langle A_n f, g \rangle - \langle A_n f, q \rangle + \langle A_n f, q \rangle - \langle A_m f, q \rangle + \langle A_m f, q \rangle - \langle A_m f, g \rangle|$$

$$= ||A_n|| ||f|| ||g - q|| + |\langle A_n f, q \rangle - \langle A_m f, q \rangle| + ||A_m|| ||f|| ||g - q||$$

$$\leq 2||A|| ||f|| ||g - q|| + |\langle A_n f, q \rangle - \langle A_m f, q \rangle|$$

$$(2.5)$$

Consider

$$|\langle A_n f, q \rangle - \langle A_m f, q \rangle| \leq |\langle A_n f, q \rangle - \langle A_n p, q \rangle + \langle A_n p, q \rangle - \langle A_m p, q \rangle + \langle A_m p, q \rangle - \langle A_m f, q \rangle|$$

$$\leq ||A_n|| ||f - p|| ||q|| + ||A_m|| ||f - p|| ||q|| + |\langle A_n p, q \rangle - \langle A_m p, q \rangle|$$

$$\leq 2||A|| ||f - p|| ||q|| + \frac{\epsilon}{4}$$

$$< \frac{\epsilon}{4} + \frac{\epsilon}{4}$$

$$(2.6)$$

Putting from (2.6) in (2.5),

$$|\langle A_n f, g \rangle - \langle A_m f, g \rangle| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore $\langle A_n f, g \rangle$ is Cauchy in \mathbb{C} . Hence $\langle A_n f, g \rangle$ is convergent.

Now let us define

$$\Phi: L^2(\beta) \times L^2(\beta) \to \mathbb{C}$$

as

$$\Phi\langle f, g \rangle = \lim_{n \to \infty} \langle A_n f, g \rangle$$

with addition and scalar multiplication defined as follows:

- (i) $\Phi\langle f_1 + f_2, g \rangle = \Phi\langle f_1, g \rangle + \Phi\langle f_2, g \rangle$
- (ii) $\Phi(\alpha f, g) = \alpha \Phi(f, g)$
- (iii) $\Phi\langle f, g_1 + g_2 \rangle = \Phi\langle f, g_1 \rangle + \Phi\langle f, g_2 \rangle$
- (iv) $\Phi\langle f, \alpha g \rangle = \bar{\alpha}\Phi\langle f, g \rangle$

Also, $|\Phi(f,g)| \leq ||A|| ||f|| ||g||$. Then Φ is a bounded sesquilinear function defined on $L^2(\beta) \times$ $L^2(\beta)$. Hence there exists a unique bounded linear operator A_{∞} on $L^2(\beta)$ such that

$$\Phi\langle f, g \rangle = \langle A_{\infty}f, g \rangle \quad \forall f, g \in L^2(\beta).$$

i.e.

$$\lim_{n \to \infty} \langle A_n f, g \rangle = \langle A_{\infty} f, g \rangle \quad \forall f, g \in L^2(\beta).$$

Thus, the sequence $\{A_n\}$ of operators is weakly convergent to an operator A_{∞} on $L^2(\beta)$. Further for all i and j,

$$\begin{split} \langle A_{\infty}e_{j},e_{i}\rangle &= \lim_{n\to\infty} \langle N^{*n}APM^{n}e_{j},e_{i}\rangle \\ &= \lim_{n\to\infty} \langle N^{*n+1}APM^{n+1}e_{j},e_{i}\rangle \\ &= \lim_{n\to\infty} \langle N^{*n}APM^{n}Me_{j},Ne_{i}\rangle \\ &= \frac{w_{j}}{w_{i}}\lim_{n\to\infty} \langle N^{*}APM^{n}e_{j+1},e_{i+1}\rangle \\ &= \frac{w_{j}}{w_{i}}\langle A_{\infty}e_{j+1},e_{i+1}\rangle \end{split}$$

Hence $\langle A_{\infty}e_{j+1},e_{i+1}\rangle=\frac{w_i}{w_i}\langle A_{\infty}e_j,e_i\rangle.$

Thus, A_{∞} is a Laurent operator on $L^2(\beta)$.

For $f, g \in H^2(\beta)$,

$$\langle PA_{\infty}f, g \rangle = \langle A_{\infty}f, Pg \rangle$$

$$= \langle A_{\infty}f, g \rangle$$

$$= \lim_{n \to \infty} \langle A_nf, g \rangle \quad \forall f, g \in H^2(\beta).$$

Now, A_n maps $H^2(\beta)$ to $H^2(\beta)$. Therefore, $A_n e_j \in H^2(\beta) \ \forall \ j \ge 0$. Also,

$$\langle A_n e_j, e_i \rangle = \langle A e_j, e_i \rangle \quad \forall i, j \ge 0.$$

 $\Rightarrow A_n e_j = A e_j.$

This is true for all j.

Thus $A_n = A$ on $H^2(\beta)$.

Hence

$$\langle PA_{\infty}f, g \rangle = \lim_{n \to \infty} \langle A_n f, g \rangle$$

$$= \langle Af, g \rangle \quad \forall f, g \in H^2(\beta)$$

$$\Rightarrow \qquad PA_{\infty}f = Af \quad \forall f.$$

Thus A is the compression of A_{∞} on $H^2(\beta)$. Therefore, A is a weighted Toeplitz operator.

If the weight sequence $w_n = \frac{\beta_{n+1}}{\beta_n}$ is known, the Fourier coefficients of ϕ can be obtained from the matrix of T_{ϕ} by the following set of equations.

$$a_0 = \lambda_{0,0}$$

$$a_k = \lambda_{k,0} \frac{\beta_0}{\beta_k} = \frac{\lambda_{k,0}}{\beta_k}$$

$$a_{-k} = \lambda_{0,k} \frac{\beta_k}{\beta_0} = \lambda_{0,k} \beta_k.$$

Let the compression of the bilateral weighted shift operator M on $H^2(\beta)$ be denoted by U. Then $U:H^2(\beta)\to H^2(\beta)$ and

$$Ue_j = w_j e_{j+1}, \quad j = 0, 1, 2, \dots$$

It may be recalled that $\{w_n\}$ is the weight sequence $w_n = \frac{\beta_{n+1}}{\beta_n}$, $n = 0, 1, 2, \ldots$ Also, then

$$U^*e_j = w_{j-1}e_{j-1}$$
.

Theorem 2.3. A necessary and sufficient condition that an operator T on $H^2(\beta)$ be a weighted Toeplitz operator is that TU = UT; that is it commutes with the unilateral shift U.

Proof. Let T be a weighted Toeplitz operator on $H^2(\beta)$.

Then
$$\langle Te_{j+1}, e_{i+1} \rangle = \frac{w_i}{w_j} \langle Te_j, e_j \rangle$$
.

Now,

$$\begin{split} \langle TUe_j, e_i \rangle &= \langle Tw_j e_{j+1}, e_i \rangle \\ &= w_j \langle Te_{j+1}, e_i \rangle \\ &= w_j \frac{w_{i-1}}{w_j} \langle Te_j, e_{i-1} \rangle \\ &= w_{i-1} \langle Te_j, e_{i-1} \rangle \\ &= \langle Te_j, U^*e_i \rangle \\ &= \langle UTe_j, e_i \rangle \end{split}$$

Thus TU = UT.

Conversely, let TU = UT.

Then

$$\langle TUe_{j}, e_{i} \rangle = \langle UTe_{j}, e_{i} \rangle$$

$$\Rightarrow \quad \langle Ue_{j}, T^{*}e_{i} \rangle = \langle Te_{j}, U^{*}e_{i} \rangle$$

$$\Rightarrow \quad \langle w_{j}e_{j+1}, T^{*}e_{i} \rangle = \langle Te_{j}, w_{i-1}e_{i-1} \rangle$$

$$\Rightarrow \quad \langle Te_{j+1}, e_{i} \rangle = \frac{w_{i-1}}{w_{j}} \langle Te_{j}, e_{i-1} \rangle$$

Changing i to i + 1 on both sides we get

$$\langle Te_{j+1}, e_{i+1} \rangle = \frac{w_i}{w_j} \langle Te_j, e_i \rangle$$

This shows that the matrix of T is a weighted Toeplitz matrix. Hence by above theorem, T is a weighted Toeplitz operator.

3. EIGENVALUES OF SOME WEIGHTED TOEPLITZ OPERATORS

Now we try to find the eigenvalues of some weighted Toeplitz operators.

Theorem 3.1. If $\phi = \alpha z$, then $\lambda \in \mathbb{C}$ is an eigenvalue of T_{ϕ} only if it satisfies the relation $a_n = \left(\frac{\alpha}{\lambda}\right)^n a_0 \ \forall \ n \ where \ f = \sum_{n=0}^{\infty} a_n z^n$ is the corresponding eigenvector.

Proof. Let λ be an eigenvalue of T_{ϕ} . Then, for some $0 \neq f \in H^2(\beta)$, we must have

$$\Rightarrow T_{\phi}f = \lambda f$$

$$\Rightarrow \alpha z f = \lambda f$$

$$\Rightarrow \alpha \sum_{n=0}^{\infty} a_n z^{n+1} = \lambda \sum_{n=0}^{\infty} a_n z^n$$

$$\Rightarrow \alpha \sum_{n=0}^{\infty} a_{n-1} z^n = \lambda \sum_{n=0}^{\infty} a_n z^n$$

$$\Rightarrow \alpha \sum_{n=0}^{\infty} \beta_n e^n = \lambda \sum_{n=0}^{\infty} a_n \beta_n e_n$$

$$\Rightarrow \alpha a_{n-1} = \lambda a_n, \forall n$$

$$(3.1)$$

Taking $n = 1, 2, \ldots$, we get

$$a_1 = \frac{\alpha}{\lambda} a_0, \quad a_2 = \frac{\alpha}{\lambda} a_1 = \left(\frac{\alpha}{\lambda}\right)^2 a_0 \dots a_0$$
 so on.

In general, $a_n = \left(\frac{\alpha}{\lambda}\right)^n a_0$.

Observation 1. From equation (3.1) above, we get that $\lambda = \frac{a_n}{a_{n-1}} \alpha$. Hence the eigenspace of T_{ϕ} consists of all functions f such that $\sum a_n$ is a geometric series.

Observation 2. For the weighted Toeplitz operator T_{ϕ} induced by $\phi = \alpha z$, zero can not be an eigenvalue.

Theorem 3.2. Zero can not be an eigenvalue of a weighted Toeplitz operator induced by $\phi(z) = z^k$.

Proof. Suppose λ is an eigenvalue of T_{ϕ} . Then $\exists 0 \neq f$ such that

$$(3.2) \Rightarrow T_{\phi}f = \lambda f$$

$$\Rightarrow z^{k}f = \lambda f$$

$$\Rightarrow \sum_{n=k} a_{n-k}\beta_{n}e_{n} = \lambda \sum_{n=k} a_{n}\beta_{n}e_{n}$$

$$\Rightarrow \lambda = \frac{a_{n-k}}{a_{n}} \quad \forall n$$

so $\lambda = 0$ gives that $a_n = 0 \ \forall \ n$. Hence f = 0 which is a contradiction.

In [4], Lauric has discussed in detail the weighted Toeplitz operator induced by the function $\phi(z)=az+\frac{b}{z}$. We now investigate the nature of the eigenvalues of this operator.

Theorem 3.3. If $\phi(z) = az + \frac{b}{z}$, then λ is an eigenvalue of T_{ϕ} if it satisfies $aa_{n-1} + ba_{n+1} = \lambda a_n \forall n$.

Proof. Clearly, for a given eigenvalue $\lambda \in \mathbb{C}$, we must have $0 \neq f$ satisfying $T_{\phi}f = \lambda f$.

$$\Rightarrow \left(az + \frac{b}{z}\right) \sum a_n z^n = \lambda \sum a_n z^n$$

$$\Rightarrow \left(az + \frac{b}{z}\right) \sum a_n \beta_n e_n = \lambda \sum a_n \beta_n e_n$$

This gives us the relation

$$(3.3) aa_{n-1} + ba_{n+1} = \lambda a_n \quad \forall \ n \,.$$

Observation. If a = b = 1 then $\phi(z) = z + \frac{1}{z}$ and from equation (3.3)we get $\lambda = \frac{a_0 + a_2}{a_1}$ and so on.

Further, if we choose $\lambda = 2$, then corresponding eigenvectors constitute the set of all functions $f = \sum a_n z^n$ such that $\langle a_n \rangle$ is an arithmetic progression.

REFERENCES

- [1] A. BROWN and P.R. HALMOS, Algebraic properties of Toeplitz operators. *Journal serie Angew Math.*, 213 (1963), pp. 89–102.
- [2] A. L. SHIELDS, Weighted shift operators and analytic function theory, *Topics in Operator Theory, Math. Surveys 13, Amer. Math. Soc.*, Providence, R.I., 1974.
- [3] S. C. ARORA and RITU KATHURIA, Algebraic properties of weighted Toeplitz operator, *Mathematical Sciences Research Journal*, **14** (11) (2010), pp. 262–270.
- [4] VASILE LAURIC, On a weighted Toeplitz operator and its commutant, *International Journal of Mathematics and Mathematical Sciences*, **6** (2005), pp. 823–835.