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2 S. M. KHAIRNAR AND M. M ORE

1. I NTRODUCTION

LetA denote the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k

which are analytic in the unit disc∆ = {z ∈ C : |z| < 1} and normalised asf(0) = f ′(z)−1 =
0. If f andg are analytic in∆, we say thatf is subordinate tog, written asf ≺ g orf(z) ≺ g(z),
if there exists a Schwarz functionw in ∆ such thatf(z) = g(w(z)). For a functionf(z)
belonging toA we say thatf(z) is α-spirallike function of complex orderd in ∆, if and only, if

(1.2) Re

{
eiα

d cos α

(
z
f ′(z)

f(z)

)}
> 0

for some realα, |α| < π/2, d 6= 0 complex.
We denote byS∗(η) andC(η) the subclass ofA consisting of all analytic functions which are

starlike and convex, respectively of orderη (0 ≤ η < 1) in ∆.
Forf ∈ A if

(1.3)

∣∣∣∣arg

(
zf ′(z)

f(z)
− η

)∣∣∣∣ < π

2
β (z ∈ ∆)

where0 ≤ η < 1 and0 < β ≤ 1, thenf is said to be strongly starlike of orderβ and typeη in
∆, denoted byS∗(β, η). Similarly if f ∈ A satisfies

(1.4)

∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)
− η

)∣∣∣∣ < π

2
β (z ∈ ∆)

for 0 ≤ η < 1 and0 < β ≤ 1, thenf is said to be strongly convex of orderβ and typeη in ∆,
denoted byC(β, η). It is very natural thatf ∈ A is in C(β, η), if and only, if zf ′ is in S∗(β, η).
Also note thatS∗(1, η) = S∗(η) andC(1, η) = C(η). The classesS∗(β, 0) andC(β, 0) are
studied extensively by Mocanu [12] and Nunokawa [16].

Denote byDλ : A → A the operator defined by

(1.5) Dλf(z) =
z

(1− z)λ+1
∗ f(z), (λ > −1).

The operatorDλf is called the Ruscheweyh derivative off of orderλ. It is obvious that
D0f = f, D1f = zf ′ and

Dαf(z) =
z(zα−1f(z))(α)

α!
, (α ∈ N0 = N ∪ {0}).

Noor [15] has introduced an integral operatorIn : A → A, anologous toDλf as follows.
Let fn(z) = z

(1−z)n+1 , n ∈ N0 andf
(−1)
n (z) be defined such that

(1.6) fn(z) ∗ f (−1)
n (z) =

z

(1− z)2
,

then

(1.7) Inf(z) = f (−1)
n (z) ∗ f(z) =

[
z

(1− z)n+1

](−1)

∗ f(z), (f ∈ A).

We notice thatI0f(z) = zf ′(z) andI1f(z) = f(z). The operatorIn is called the Noor integral
of n-th order off (cf. [3], [8]), which is very important operator used in defining several
subclasses of analytic functions.
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For real or complex numbersa, b, c different from0,−1,−2, · · · , the hypergeometric series
is defined by

(1.8) 2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k(1)k

zk

where(a)k is the Pochhamer symbol defined in terms of Gamma function by

(a)k =
Γ(a + k)

Γ(a)
= a(a + 1) · · · (a + k − 1) for k = 1, 2, 3, · · ·

and (a)0 = 1. We notice that the series (1.8) converges absolutely for allz ∈ ∆ so that it
represents an analytic function in∆. In particular,z 2F1(1, a; c; z) = φ(a, c; z) which is the
incomplete beta function. Alsoφ(a, 1; z) = z

(1−z)a , whereφ(2, 1; z) is Koebe function.
N. Shukla and P. Shukla [11] studied the mapping properties offµ function defined by

(1.9) fµ(a, b, c)(z) = (1− µ)z 2F1(a, b, c; z) + µz(z 2F1(a, b, c; z) (µ ≥ 0).

We define a function(fµ)(−1) on the lines of Noor [15] by

(1.10) fµ(a, b, c)(z) ∗ (fµ(a, b, c)(z))(−1) =
z

(1− z)λ+1
, (µ ≥ 0, λ > −1),

and introduce the linear operator

(1.11) Iλ
µ(a, b, c)f(z) = ((fµ(a, b, c)(z)))−1 ∗ f(z).

Forµ = 0 in (1.10) we obtain the operator introduced by K. I. Noor [15].
Forλ > −1 we have

(1.12)
z

(1− z)λ+1
=

∞∑
k=0

(λ + 1)k

k!
zk+1, (z ∈ ∆).

Using (1.8) and (1.12) in (1.10), we get

(1.13)
∞∑

k=0

(µk+1)(a)k(b)k

(c)k(1)k

zk+1 ∗ (fµ(a, b, c)(z))−1 =
∞∑

k=0

(λ + 1)k

k!
zk+1.

Thus(fµ)(−1) has the form

(fµ(a, b, c)(z))(−1) =
∞∑

k=0

(λ + 1)k(c)k

(µk+1)(a)k(b)k

zk+1, (z ∈ ∆).

Equation (1.11) implies

Iλ
0 (a, λ + 1, a)f(z) = f(z), I1

0 (a, 1, a)f(z) = zf ′(z).

It can be easily shown that

(1.14) z(Iλ
µ(a, b, c)f(z))′ = (λ + 1)Iλ+1

µ (a, b, c)f(z)− λIλ
µ(a, b, c)f(z).

For λ > −1 andµ ≥ 0 denoteKλ
µ(a, b, c, d, α, γ, β, η, A,B) the class of functionsf ∈ A

satisfying the condition∣∣∣∣∣arg

(
eiα

d cos α

z(Iλ
µ(a, b, c)f(z))′

Iλ
µ(a, b, c)g(z)

− γ

)∣∣∣∣∣ < π

2
β
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4 S. M. KHAIRNAR AND M. M ORE

(0 ≤ γ < 1; 0 < β ≤ 1; z ∈ ∆) for someg ∈ Sλ
µ(a, b, c, η, A, B), which is defined by

Sλ
µ(a, b, c, η, A, B) =

{
g ∈ A :

1

1− η

(
z(Iλ

µ(a, b, c)g(z))′

Iλ
µ(a, b, c)g(z)

)
− η ≺ 1 + Az

1 + Bz

}
(0 ≤ η < 1;−1 ≤ B < A ≤ 1; z ∈ ∆).

Notice thatK1
0(a, 1, a, 1, 0, γ, 1, η, 1,−1) andKλ

0 (a, λ + 1, a, 1, 0, γ, 1, η, 1,−1) are respec-
tively the classes of quasi-convex and close-to-convex functions of orderγ and typeη intro-
duced by Noor and Alkhorasani [14] and studied by Silverman [21].
FurtherKλ

0 (a, λ + 1, a, 1, 0, 0, β, 0, 1,−1) is the class of strongly close-to-convex functions of
orderβ as studied by Pommerenke [18]. For starlike functionf(z), Kλ

0 (a, λ+1, a, d, α, γ, 1, 0, 1,−1)
is the class ofα-spirallike functions of orderd.

For q(z) = 1 + c1z + c2z
2 + · · · which is analytic in∆ satisfies condition

q(z) ≺ 1 + Az

1 + Bz
, (z ∈ ∆),

if and only, if ∣∣∣∣q(z)− 1− AB

1−B2

∣∣∣∣ < A−B

1−B2
(B 6= −1, z ∈ ∆),

andRe q(z) > 1−A
2

(B = −1, z ∈ ∆). This result is due to Silverman and Silvia [22].

2. M AIN RESULTS

We will require the following Lemmas in proving our main results.

Lemma 2.1. [5] Leth be convex univalent in∆ with h(0) = 1 andRe(βh(z) + γ) > 0 (β, γ ∈
C). If p is analytic in∆ with p(0) = 1, then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) (z ∈ ∆)

implies
p(z) ≺ h(z) (z ∈ ∆).

Lemma 2.2. [11] Leth be convex univalent in∆ andw be analytic in∆ withRe w(z) ≥ 0. If
p is analytic in∆ andp(0) = h(0), then

p(z) + w(z)zp′(z) ≺ h(z) (z ∈ ∆)

implies
p(z) ≺ h(z) (z ∈ ∆).

Lemma 2.3. [16] Let p be analytic in∆ with p(0) = 1 andp(z) 6= 0 in ∆. Suppose that there
exists a pointz0 ∈ ∆ such that

(2.1) |arg p(z)| < π

2
θ for |z| < |z0|

and

(2.2) |arg p(z0)| =
π

2
θ (0 < θ ≤ 1).

Then we have

(2.3)
z0p

′(z0)

p(z0)
= ikθ
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where

(2.4) k ≥ 1

2
(s +

1

s
) when argp(z0) =

π

2
θ,

(2.5) k ≤ −1

2
(s +

1

s
) when argp(z0) = −π

2
θ,

where

(2.6) p(z0)
1/θ = ±is (s > 0).

Using Lemma (2.1), we obtain the following proposition.

Proposition 2.1. Let h(z) be convex univalent in∆ with h(0) = 1 andRe h(z) > 0. If a
functionf ∈ A satisfies the condition

1

1− η

(
z(Iλ+1

µ (a, b, c)f(z))′

Iλ+1
µ (a, b, c)f(z)

− η

)
≺ h(z) (0 ≤ η < 1; z ∈ ∆),

then
1

1− η

(
z(Iλ

µ(a, b, c)f(z))′

Iλ
µ(a, b, c)f(z)

− η

)
≺ h(z) (0 ≤ η < 1; z ∈ ∆).

Proof. Let

(2.7) p(z) =
1

1− η

(
z(Iλ

µ(a, b, c)f(z))′

Iλ
µ(a, b, c)f(z)

− η

)
wherep is analytic function withp(0) = 1. Using equation (1.14) we have

(1− η)p(z) + η =
z(Iλ

µ(a, b, c)f(z))′

Iλ
µ(a, b, c)f(z)

((1− η)p(z) + η)Iλ
µ(a, b, c)f(z) = z(Iλ

µ(a, b, c)f(z))′

(2.8) ((1− η)p(z) + η)Iλ
µ (a, b, c)f(z) = ((1 + λ)Iλ+1

µ (a, b, c)f(z)− λIλ
µ (a, b, c)f(z))

Taking logarithmic derivatives on both sides of (2.8) and multiplying byz, we have

p(z) +
zp′(z)

λ + η + (1− η)p(z)
=

1

1− η

(
z(Iλ+1

µ (a, b, c)f(z))′

Iλ+1
µ (a, b, c)f(z)

− η

)
, (z ∈ ∆.)

By applying Lemma (2.1) we havep ≺ h, consequently

1

1− η

(
z(Iλ

µ(a, b, c)f(z))′

Iλ
µ(a, b, c)f(z)

− η

)
≺ h(z), (z ∈ ∆).

Forh(z) = 1+Az
1+Bz

(−1 ≤ B < A ≤ 1) in Proposition (2.1), we have the following corollary.

Corollary 2.1. The inclusion relationSλ+1
µ (a, b, c, η, A, B) ⊂ Sλ

µ(a, b, c, η, A, B), for anyλ >
−1, µ ≥ 0 and0 ≤ η < 1, b = λ + 1, c = a, λ = µ = 0.

Also, if we haveh(z) =
(

1+z
1−z

)β
(0 < β ≤ 1) in Proposition (2.1), we get the following well

known inclusion relation.

Corollary 2.2. C(β, η) ⊂ S∗(β, η).
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6 S. M. KHAIRNAR AND M. M ORE

Proposition 2.2. Let h(z) be convex univalent in∆ with h(0) = 1 andRe h(z) > 0. If
f(z) ∈ A satisfies the condition

1

1− η

(
z(Iλ

µ(a, b, c)f(z))′

Iλ
µ(a, b, c)f(z)

− η

)
≺ h(z) (0 ≤ η < 1, z ∈ ∆),

then
1

1− η

(
zIλ

µ(a, b, c)F (z))′

Iλ
µ(a, b, c)F (z)

− η

)
≺ h(z) (0 ≤ η < 1, z ∈ ∆),

whereF is the integral operator defined by

(2.9) F (z) =
r + 1

zr

∫ z

0

tr−1f(t)dt (r > −1).

Proof. From relation (2.9), we have

(2.10) z(Iλ
µ(a, b, c)F (z))′ = (r + 1)Iλ

µ(a, b, c)f(z)− rIλ
µ(a, b, c)F (z).

Let

p(z) =
1

1− η

(
z(Iλ

µ(a, b, c)F (z))′

Iλ
µ(a, b, c)F (z)

− η

)
,

wherep is analytic withp(0) = 1. By (2.10) we obtain

(2.11) r + η + (1− η)p(z) = (r + 1)
Iλ
µ(a, b, c)f(z)′

Iλ
µ(a, b, c)F (z)

.

Differentiating logarithmically both sides of (2.11) we get

p(z) +
zp′(z)

r + η + (1− η)p(z)
=

1

1− η

(
z(Iλ

µ(a, b, c)f(z))′

Iλ
µ(a, b, c)f(z)

− η

)
.

Finally by Lemma (2.1), we have

1

1− η

(
z(Iλ

µ(a, b, c)F (z))′

Iλ
µ(a, b, c)F (z)

− η

)
≺ h(z) (z ∈ ∆).

Takingh(z) = 1+Az
1+Bz

(−1 ≤ B < A ≤ 1) in Proposition (2.2), the following result can be
derived.

Corollary 2.3. If f(z) ∈ Sλ
µ(a, b, c, η, A, B), thenF (z) ∈ Sλ

µ(a, b, c, η, A, B) whereF is the
operator defined by (2.9).

Notice that, forh(z) =
(

1+z
1−z

)β
(0 < β ≤ 1) in Proposition (2.2) and in view of Corollary

(2.2), all functions belonging to the classesS∗(β, η) and C(β, η), respectively, preserve the
angles under the integral operator defined in (2.9).

Theorem 2.1.Letf ∈ A and0 < β ≤ 1, 0 ≤ γ < 1. If∣∣∣∣∣arg

(
eiα

d cos α

z(Iλ+1
µ (a, b, c)f(z))′

Iλ+1
µ (a, b, c)g(z)

− γ

)∣∣∣∣∣ < π

2
β

for someg ∈ Sλ+1
µ (a, b, c, η, A, B), then∣∣∣∣∣arg

(
eiα

d cos α

z(Iλ
µ(a, b, c)f(z))′

Iλ
µ(a, b, c)g(z)

− γ

)∣∣∣∣∣ < π

2
θ
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whereθ (0 < θ ≤ 1) is the solution of the equation:

(2.12) δ =

 θ + 2
π

tan−1

(
θ sin π

2
(1−t1)

(1−η)(1+A)
1+B

+η+λ+θ cos π
2
(1−t1)

)
for B 6= −1

θ for B = −1

and

(2.13) t1 =
2

π
sin−1

(
(1− η)(A−B)

(1− η)(1− AB) + (η + λ)(1−B2)

)
.

Proof. Let

p(z) =
1

1− γ

(
eiα

d cos α

z(Iλ
µ(a, b, c)f(z))′

Iλ
µ(a, b, c)g(z)

− γ

)
.

Simplifing using (1.14), we get

((1− γ)p(z) + γ)Iλ
µ(a, b, c)g(z) =

eiα

d cos α

(
(1 + λ)Iλ+1

µ (a, b, c)f(z)− λIλ
µ(a, b, c, )f(z)

)
.

Differentiating above relation and multiplying byz, we obtain

(1− γ)zp′(z)Iλ
µ(a, b, c)g(z) + ((1− γ)p(z) + γ)z(Iλ

µ(a, b, c)g(z))′

=
eiα

d cos α

(
(1 + λ)z(Iλ+1

µ (a, b, c)f(z))′ − λz(Iλ
µ(a, b, c)f(z))′

)
.(2.14)

Notice that from Corollary (2.1),g ∈ Sλ+1
µ (a, b, c, η, A, B) implies

g ∈ Sλ
µ(a, b, c, η, A, B). Let

q(z) =
1

1− η

(
z(Iλ

µ(a, b, c)g(z))′

Iλ
µ(a, b, c)g(z)

− η

)
.

Using (1.14) again, we get

(2.15) (1− η)q(z) + η + λ = (λ + 1)
Iλ+1
µ (a, b, c)g(z)

Iλ
µ(a, b, c)g(z)

.

Relations (2.14) and (2.15) together imply

p(z) +
zp′(z)

(1− η)q(z) + η + λ
=

eiα

d cos α

1

(1− γ)

(
zIλ+1

µ (a, b, c)f(z)

Iλ+1
µ (a, b, c)g(z)

− γ

)
.

With arguments similar to the proof of Proposition (2.1) we obtain the first part of the result.
By using the result of Silverman and Silvia [22], we have

(2.16)

∣∣∣∣q(z)− 1− AB

1−B2

∣∣∣∣ < A−B

1−B2
(B 6= −1, z ∈ ∆)

and

(2.17) Re q(z) >
1− A

2
(B = −1, z ∈ ∆).

Relation (2.16) and (2.17) together imply

(1− η)q(z) + η + λ = ρei π
2
φ

where
(1− η)(1− A)

1−B
+ η + λ < ρ <

(1− η)(1 + A)

1 + B
+ η + λ

AJMAA, Vol. 7, No. 2, Art. 15, pp. 1-11, 2011 AJMAA
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8 S. M. KHAIRNAR AND M. M ORE

−t1 < φ < t1 for B 6= −1 whent1 is given by (2.13) and

(1− η)(1− A)

2
+ η + λ < ρ < ∞, −1 < φ < 1 for B = −1.

Notice thatp(z) is analytic in∆ with p(0) = 1 andRe p(z) > 0 in ∆ in view of the assumption
and Lemma (2.2) withw(z) = 1

(1−η)q(z)+η+λ
. Thusp(z) 6= 0 in ∆.

If there exists a pointz0 ∈ ∆ such that conditions (2.1) and (2.2) are satisfied, then by Lemma
(2.3) we obtain (2.3) by the restrictions (2.4), (2.5) and (2.6).

Firstly suppose thatp(z0)
1/θ = is (s > 0). For the caseB 6= −1, we obtain

arg

(
p(z0) +

z0p
′(z0)

(1− η)q(z0) + η + λ

)
= arg p(z0) + arg(1 + iθk(ρei π

2
θ)−1)

≥ π

2
θ + tan−1

(
θk sin π

2
(1− θ)

ρ + θk cos π
2
(1− θ)

)
≥ π

2
θ + tan−1

(
θ sin π

2
(1− t1)

(1− η) (1+A)
1+B

+ η + λ + θ cos π
2
(1− t1)

)
≥ π

2
δ

whereδ andt1 are given by (2.12) and (2.13), respectively. Likewise for the caseB = −1, we
have

arg

(
p(z0) +

z0p
′(z0)

(1− η)q(z0) + η + λ

)
≤ −π

2
θ.

This is a contradiction to the assumption of our theorem. Now, suppose thatp(z0)
1/θ =

−is (s > 0). For the caseB 6= −1, applying the same method as before, we obtain

arg

(
p(z0) +

zp′(z0)

(1− η)q(z0) + η + λ

)
≤ −π

2
θ − tan−1

(
θ sin π

2
(1− t1)

(1−η)(1+A)
1+B

+ η + λ + θ cos π
2
(1− t1)

)
= −π

2
δ,

whereδ andt1 are given by (2.12) and (2.13), respectively. Similarly for the caseB = −1, we
have

arg

(
p(z0) +

z0p
′(z0)

(1− η)q(z0) + η + λ

)
≤ −π

2
θ.

These are contradictions to the assumption.
Consequently, the proof of the theorem is complete.

Next we note some interesting results that can be derived from Theorem (2.1).

Corollary 2.4. The inclusion relation

Kλ+1
µ (a, b, c, d, α, β, η, A,B) ⊂ Kλ

µ(a, b, c, d, α, β, η, A,B),

holds forλ > −1, µ ≥ 0,Re a > 0, d ∈ C \ {0}, 0 < β ≤ 1, 0 ≤ η < 1, 0 ≤ γ < 1, and
−1 ≤ B < A ≤ 1.

Takingλ = 0, µ = 0, b = 1, c = a in Theorem (2.1), we obtain the following result.
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Corollary 2.5. Letf ∈ A. If∣∣∣∣arg

(
eiα

d cos α

(zf ′(z))′

g′(z)
− γ

)∣∣∣∣ < π

2
β (0 ≤ γ < 1, 0 < β ≤ 1),

for someg ∈ S1
0(a, 1, a, η, A, B), then∣∣∣∣arg

(
eiα

d cos α

zf ′(z)

g(z)
− γ

)∣∣∣∣ < π

2
θ

whereθ (0 < θ ≤ 1) is the solution of equation (2.12).

Remark 2.1. For d = 1, α = 0 we obtain the corresponding result of Cho and Kim[3]. Further,
if we takeβ = 1, A = 1 andB = −1 along withd = 1 andα = 0 in Corollary (2.5) we notice
that every quasi-convex function of orderγ and typeβ is close-to-convex of orderγ and typeθ
which is exactly the result obtained by Noor[13].

Takingµ = λ = γ = 0, b = 1, c = a, B → A (A < 1) andg(z) = z in Theorem (2.1) we
obtain the following result.

Corollary 2.6. Letf ∈ A and0 < δ ≤ 1. If∣∣∣∣arg

(
eiα

d cos α
(f ′(z) + zf ′′(z))

)∣∣∣∣ < π

2
δ,

then ∣∣∣∣arg

(
eiα

d cos α
f ′(z)

)∣∣∣∣ < π

2
θ,

whereθ (0 < θ ≤ 1) is the solution of the equation

δ = θ +
2

π
tan−1 θ.

Note that takingα = 0, d = 1 in Corollary (2.6) we obtain the result by Cho and Kim[3].

Theorem 2.2.Letf ∈ A and0 < δ ≤ 1, 0 ≤ γ < 1. If∣∣∣∣∣arg

(
z(Iλ

µ(a, b, c)f(z))′

Iλ
µ(a, b, c)g(z)

− γ

)∣∣∣∣∣ < π

2
δ

for someg ∈ Sλ
µ(a, b, c, η, A, B), then∣∣∣∣∣arg

(
z(Iλ

µ(a, b, c)F (f(z)))′

Iλ
µ(a, b, c)F (g(z))

− γ

)∣∣∣∣∣ < π

2
θ

whereF is as defined by (2.9) andθ (0 < θ ≤ 1) is the solution of the equation given by (2.12).

Proof. Let

p(z) =
1

1− γ

(
eiα

d cos α

z(Iλ
µ(a, b, c)F (f(z)))′

Iλ
µ(a, b, c)F (g(z))

− γ

)
.

Sinceg ∈ Sλ
µ(a, b, c, η, A, B), Proposition (2.2) implies that

F (g(z)) ∈ Sλ
µ(a, b, c, η, A, B). Proposition (2.2) implies thatF (g(z)) ∈ Sλ

µ(a, b, c, η, A, B). In
view of (2.10) we have

((1− γ)p(z) + γ)Iλ
µ(a, b, c)F (g(z)) =

eiα

d cos α

[
(r + 1)z(Iλ

µ(a, b, c)f(z))′ − rz(Iλ
µ(a, b, c)F (f(z)))′

]
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Simplifying further we obtain

((1− γ)zp′(z) + ((1− γ)p(z) + γ)((1− η)q(z) + r + η)

=
eiα

d cos α
(r + 1)

z(Iλ
µ(a, b, c)f(z))′

(Iλ
µ(a, b, c)F (g(z)))

where

q(z) =
1

1− η

(
z(Iλ

µ(a, b, c)F (g(z)))′

Iλ
µ(a, b, c)F (g(z))

− η

)
.

Consequently, we have

1

1− γ

(
eiα

d cos α

z(Iλ
µ(a, b, c)f(z))′

Iλ
µ(a, b, c)g(z)

− γ

)
= p(z) +

zp′(z)

(1− η)q(z) + η + r
.

Now following arguments similar to the proof of Theorem (2.1) the required result follows.
Theorem (2.2) yields immediately the following result.

Corollary 2.7. If f(z) ∈ Kλ
µ(a, b, c, d, α, γ, β, η, A,B), then

F (f(z)) ∈ Kλ
µ(a, b, c, d, α, β, η, A,B), whereF is the integral operator defined by (2.9).

Remark 2.2. If we chooseµ = 0, λ = 1, b = 1, c = a and µ = 0, b = λ + 1, c = a with
d = 1, α = 0, β = 1, A = 1 andB = −1 in Corollary (2.7), respectively, then we obtain the
corresponding results of Noor and Alkhorasani[14]. Moreover, takingµ = 0, b = λ + 1, c =
a, γ = 0, A = 1, B = −1 andδ = 1 in Corollary (2.7), we get the classical result by Bernardi
[1], which inturn implies the result by Libera[7].
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