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ABSTRACT. We examine the possibility of a direct Fock representation of the recently ob-
tained non-trivial central extensiodsE H eis of the Heisenberg algebra, generated by elements
a,at, h and E satisfying the commutation relations, a'lcgmeis = b, [h, aflcpmes = 2 E

and[a, h|lcEHeis = Z E, wherea and a! are dual,h is self-adjoint, E is the non-zero self-
adjoint central element ande C \ {0}. We define the exponential vectors associated with the
CFE Heis Fock space, we compute their Leibniz function (inner product), we describe the action
of a, a’ and h on the exponential vectors and we compute the moment generating and char-
acteristic functions of the classical random variable corresponding to the self-adjoint operator
X=a+a +h.
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2 LUIGI ACCARDI AND ANDREAS BOUKAS

1. THE CENTRALLY EXTENDED HEISENBERG *—LIE ALGEBRA .

The generators, o' andh of the Heisenberg algebifdeis satisfy the Lie algebra commutation
relations

(11) [CL, aT]Heis =h ; [CL, h]Heis = [h7 aT]Heis =0
and the duality relations (throughout this paper wetfsto denote the dual of)
(1.2) (a)*=a'; ¥ =h

As shown in[[1], the Heisenberg algebra can be centrally extended tellealgebraC’ £ Heis
generated bya, af, h, E} with (non-zero) commutation relations among generators

(1-3) [a, aT]CEHeis =h+AFE; [h7 aT]CEHeis =zF; [aa h]CEHeis =zk

wherel € R, z = Rz + 132 € C, andE # 0 is the self-adjoint central element. The central
extensionC'EHeis of Heis is trivial if and only if z = 0. Duality relations[(1.R2) still hold.
CFEHeis is a nilpotent and thus solvableLie algebra.

Renaming: + \ E to justh in (1.3) we obtain the equivalent commutation relations

(14) [CL, aT]CEHeis =h ) [h7 aT]C'EHeis =z LK ) [CL, h]C’EHeis =zk

From now on we will us€ (1}4) anfl (1.2) as the defining commutation relatio$:a eis.

2. REPRESENTATIONS OF C'FHeis

As shown in [2], the generators o', h and E of CEHeis can be expressed in terms of the
generators of the SchradingerLie algebra generated Wy b7, b2, b*, bt b and 1 whereb, b
and1 are the generators of a Boson Heisenberg algebra with

(2.1) b,b] =1 b =1

andC'E Heis can therefore be represented (as a proper sub—algebra of the Schrddinger algebra)
on the usual Heisenberg Fock space defined as the Hilbert space completion of the linear span
of the exponential vectory(\) = e*' & ; A € C} (whered is the vacuum vector such that

b® = 0 and||®|| = 1) with respect to the inner product

(2.2) (y(A\), y(p)) = e
by using the well-known representation for non-negative integensd .

7

n 0
(2.3) MRy = A S lmoy(A+ o)

In this section we examine the possibility of constructing a direct Fock representaign/ééi s
in a manner similar to that used for the (non-extended) Heisenberg algebra.

Definition 2.1. A x—representation af' £ Heis as linear, densely defined operators on a Hilbert
spaceH with a cyclic unit vectord satisfying

(2.4) a®=0
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and such tha® is in the domain of all the operators of the form (2.12) below, where the expo-
nentials are meant in the sense of series expansion, is called a Fock representation.

In what follows we replace the central eleméntby the multiplication identity“1” and we
simply write |-, -] instead of]-, -|cgn.is- Notice that if the central extension of the Heisenberg
algebrais not trivial, i.e. it # 0, then® cannot be an eigenvector biwith eigenvalue\, € R
since then, denoting by, -) the (linear in the first, conjugate linear in the second argument)
Fock space inner product normalized/fio, ®) = 1, we have

(2.5) 0#£2=(D,[a,h]®) = (B, ah®) = (D,a\, ®) = A\ (B,ad) =0

Therefore we cannot sétd = )\, ® where), € R. That, in particular, excludes the option of
settingh ® = 0.

As shown in[[2], for all\, x € C we have that

(2.6) e gnal _ gpat xa Aph A (nz-22)
2.7) gera — ena (g4 uh+ %)
(2.8) oA phth _ o Aa Az

(2.9) elth rat _ ohaf juh Apz
(2.10) ae'h = e (a4 1 %)

and

(2.11) petat — oAl (h+A2)

In general, foru, v, w,y € C the centrally extended Heisenberg group elements

(2.12) g(u,v,w,y) := eual gvh gwagyE

obey (se€l]?2] for a proof) the nonlinear group law

(2.13) g9, 8,7,6) g(A, B,C, D) =

2 2

A A
— gla+A,B+B+vA~+C, (72 +5A) e (”2 +WB> Z46+D)

Definition 2.2. For «, § € C we define the exponential vectot«, 3) by

(2.14) (e, B) = e 1 D

In the following proposition we compute the sesquilinear form (“Fock space inner product”) as-
sociated with two such exponential vectors. In analogy with [5] we refer to that as the “Leibniz
function”.
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Proposition 2.1. (Leibniz function) Forw € Clet f;,(w) = (®,e¥" ®). Then, foralla, 3, A, B €
C

<¢(a,ﬂ),1/;(A, B)> _ ((" e A4a B) 7+(24- +A[3) )(@’e(@A+B+B)h@>
= 6((0‘ 2416 B) z4+(24 +Aﬁ) )fh(@A"‘B'f‘B)

and

215) ([l A)IP = (o, B), (o, ) = (@290 gy jaf? + 286)
Proof. Using (2.18) and the fact that* ® = ® we have

= < h(b aa Aa]L Bh®>
< (I) erﬂL aa aAh (Az az) th)>
eTA(Azf )< ﬁhq) Aal e o(@A+B)h (I)>
TA(AZ_M)( 5h<1> eAal p@A+B) R, aea(&A+B)2(I)>

A2

<th> eAaJr (aA+B)h(I)>

S— \/
l\')

<Aa th) (ocA—f—B)h(I))

alay )z+a A2 (Pl Ao ABE g (@ABIh )
A5 B) z+( &-&-AB z) ﬁhq) eaA+B)h(I)>

(e
(SFA+aB) (28 +AD)2) (g (@, GABHR) 1 )

A+aB ) Z+( O‘A +AB) z) fh A—|—B+ﬁ)
which for A = o and B = [ yields

(e, A = (W(a, B), d(a, B)) = e* (@™ +2002) £ (ja 2 1 2% 5)
|

Minimal requirements orf;, : C — C so that the Leibniz functiofy(«, 3), ¢ (A, B)) of
Propositiory 2./ is positive semi-definite is thfatis an analytic function such that:

(i) fn(0) =1

(i) fp(w) > 0forallw € R

(i) fn(w) = f(w) for allw € C (so that the Leibniz function is Hermitian)

(iv) fi(w) = e* for all w € C (so that we recover the Heisenberg algebra Fock space)

(V) 525 |weo f(w) = (@, hF ®) > 0 forall k > 0 (so thatl|a!" h™ || > 0 for all n,m > 0, see
Corollary[2.2 below)
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Corollary 2.2. Forall n,k >0

(2.16) || h* |2 = Z i MZU @Mw( ) (Z) (0> ’20‘—22 n! (@, B 230 @)

p=0 o=0 6=0

wherez¥) = z(x — 1) --- (x — y + 1) with (¥ = 1. By condition (v) onf;,,

(2.17) ™ R* ®|| > 0
Proof. By Propositionf 2.1, forv, 5, A, B € R

- ; an-l—k an—l—k
HCL h (I)H dan aﬁk’a B=0 DA 9 Bk’A B=0 W(Oé ﬁ)aw(Aa B)>
anJrk anJrk

(cx A+aB)2+ LA2+A62 a
Do 05 =70 B AT OBF == el D) (g e asB O g)

from which the result follows with the use of the Leibniz rule for derivatives.
|

Unlike the non-extended Heisenberg case, vectors of the fofrd are not orthogonal. For
example,(aT2 ®,al ®) = 2 £ 0. Of course, in the Heisenberg algebra case0. In general:

Proposition 2.3.Foralln > k£ >0

(2 18) <CLT i — S k kE—p 06(0') n! Z% 5 k—p—c <(I) hP (I)>
. por it n, 2k—p—i p o ok—p—0o ’
where
0 if o is odd
(2.19) alo) =41 ifo=0

3:5-7-...-(20—1) ifoiseven
Proof. By Propositiof 2.1, fon, € R

ik Tk an+k Aat wat
<CL CI),CL q)> = 8)\”8 k|>‘ H= 0< CI),G CI)>
an+k
= aAna k|)‘ =p= 0< ()‘70) @a¢(ﬂao) (I)>
n-+k 2 2

and the result follows by making repeated use of the Leibniz rule for derivatives and the fact
that
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or
a_M’;L:O <(I)7 eMh Q)> = ) (q), h? CI>>
gm0 T = alo)2E3
MU
6k—p—0 A2u )\2 (k—p—0) gk—p—a .
Wh:oe 7 F = = (with 00 := 1)

The Leibniz function of Proposition 2.1 does not define an inner product for arbitrand
h. If it did, then we could apply the Cauchy-Schwartz inequality/ter, 5) = e’ efh @ and
1 (0,0) = &, and we would have that

(2.20) [(W(e, B), ®)] < [[(&(a, B)I| || @
which, by Propositioh 2]1 and the fact tHakt|| = 1, becomes

(2.21) fu(B)] < Rllel+2B)az) £ (1412 L oRp)

and so, by condition (ii) orfy,

R((|a|?2+28) az ’fh<B)‘
(222 S

which, for3 = 0 anda = 1, implies that

1
2.23 L S
(2.23) © =D, )
while, for 5 = 0 anda = ¢, it implies that
(2.24) ¥ < (D, M D)

Therefore, [(2.23) and (2.24) are necessary conditions for the Leibniz function of Proposition
[2.] to define an inner product.

The problem of finding examples ¢f for which the Leibniz function of Propositign 2.1 defines
an inner product is open. The natural choigg@v) = cosh(w) and f;,(w) = €™, wherec > 0,

do not work since in both cases we can findc,, a1, 5;, as, 3, for which ||c; ¥ (aq, 8,) +

c2 (g, B1)]|? is either negative or has non-zero imaginary part. For examplg;far) = v
andz = 1 we find that|| — ¢(—2, —1) + 2¢(1, —2)||*> < 0. Similarly, for f;(w) = cosh(w)
andz = 1 we find that|[(—1,1) — (1, —1) — (=1, —1)|]* < 0.

The action ofu, ™ andh on the exponential vectors(«, 3) is described in the following:

Proposition 2.4. (The action of:, ' and/ on the exponential vectors) For all 5 € C
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W60, 0) = o leolated)
9, o’z

) = g-leavlaea+ )+ (5 +57) vian
0

M) = Ay, B+€) oz (a0

In the Heisenberg case, correspondingite- 1, 3 = 0 andz = 0, lettingy(«) = ¥ («, 0) we
are reduced to the well known representation

0
a'y(e) = a_|e:0y(a+€)
€

ayla) = ay(a)
ly(a) = y(a)
Proof. We have that

0 0
CLTw(Oé,ﬁ) —af eaa* B — a ‘5:0 e(a+e)aT Bhd — a |€:Ow(a T 5)

Similarly, by (2.13) and the fact that® = 0,

, 2
ah(a,B) = ae®™ ' d=e" (a+ah+ %)eﬂhq)

2
o’z
— eo‘aTaeﬁhCID—l—ozea“TheBhCD—i—Te‘“ﬂeﬁhfb

2
= eaaTeﬂh(a—i-ﬁE)CI)—i-ozea“Theﬁh<l>+%e‘“ﬁem‘@

2
oz
= eaaTeﬂhBZCI)—i—aea“TheﬁhCD—l—Teo“ﬂeﬁhfb

a 2
_ 8_ |e:0 eaaT e(ea+ﬁ)h(1)+ <Oé2Z —f-ﬁZ) eaaT Bh P
€

2

= 83 o V(e + B) + (% + ﬁ2> (e, B)
€
and also, again by (2.113),

hip(e,f) = he* & =e" (h+az)e’ ®

= eaatheﬁhcb—f—eo‘atazeﬁh@
0

= 3. =0 e e P 4oz Pl P
€

— % le—o (a, B+ €) + az(a, B)

Proposition 2.5. On the linear span of the exponential vectors of Definitioh 2.2, the operators
a,a” andh defined in Propositioh 2|4 satisfy, a] = h, [h,al] = 2, [a,h] = 2, (a')* = a and
h* = h.
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Proof. We have

0
(W(a, B),a’ (A, B)) = &kzo (Y(a, B), V(A + € B))
9 15 ) (S 1 (A1) B) Z> (@, @ ATI+BD) b g

a2A+aB ‘“‘2 +A (ea+B))z) (® 6(&A+B+ea+3)hq)>

0’z 5 B) 5 (oA 7 _ _

_2_

= -l (blasea+ 5. 0(A, B + (7 +52) (wla5)0(4.5)

2
= (a (o, B),¥(A, B))

Similarly (¢(a, 3), h(A, B)) = (hi(a, 3),%(A, B)). Thus(a")* = a andh* = h. To

prove that the extended Heisenberg commutation relafions (1.4) are satisfied on the exponential
domain, we notice that usm-13) to put expressions that invd|Veanda in “normal order”

i.e. al is on the left,x is in the middle and: is on the right, we find that

[a,a']¥(a, B) = (aa’—a' a) (o, B) = (aa’—a' a) e*™ " & = e*" heP" dtaz e P @

and also
hw(a,ﬁ) he™ " d = heP' 4 aze® D
Thereforda, '] (a, 3) = hb(a, 3). Similarly, [b, '] (o, 8) = 2 ¥(a, 8) andfa, h] ¢ (a, 5) =
z(a, B).
|

3. RANDOM VARIABLES

If s € R, ® is the Fock vacuum vector and is a self-adjoint operator on a Fock space then
(@, esX ®) and (P, e'*X ®) can be viewed, respectively, as the moment generating and char-
acteristic functions of a classical random variable. In this section we compute the moment
generating and characteristic functions of the self-adjoint opefatera + a' 4 h with respect

to the sesquilinear form of Propositipn P.1.

Lemma 3.1. Forall X,Y € span{a,a’, h, E}

XY X Y 5 [XY] of QIVIXYHX,[XY])

Proof. This is a special case of the general Zassenhaus formula (converse of the BCH formula).
See (2] for a proofy

Lemma3.2.Forall s e R

w

2
(31) e’ (a+at+h) _ esaT 5@ 6(37+5) h 6% (2—22)4-% (z—2)

Proof. By Lemmg 3.1, withX = s (a + af) andY = s h, we have
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e’ (a+at+h) — ¢ (a+at) e’ h 67% [s (a+at),sh] eé (2 [s hy[s (a+at),s h]]+[s (a+at),[s (a+at),s h]])

2 3 :
es(atal) gsh = [atal,h] 5 (2[h[a+al ]l +[a+al [a+al h]])

f _2 (-
6s(a—i—a )€Sh6 5 (2—2)

Similarly,
e’ (a+at) — e (at+a) — esaT esaeghe% (—2s3 2453 2)
Therefore
t h T th 1 263 3 h s2 2
es(a—i-a +h)  _ 59 esa T h o5 (—2s8°z2+s°2) _s e 2 (2—2)
52 s3 > 52 >
— e af 5@ e(7+5) h e (z—22)+%5 (2—2)
1

Proposition 3.3. (Moment generating and Characteristic functions) (i) Foralk R

B3 2
(3.2) (@, (@t @) = (57 57) e I <85 - S)
(i) Forall s e R

3 o 2
(3.3) (@, s el h) gy _ o~( ) e g (‘SE N )

wheref, is as in Propositiof 2]1.
Proof. By Lemmd 3.2 and the fact that* ® = & we have

2
<<I>, e’ (a+af+h) (I)> _ <(I), esaT 5 e 6(7-‘1-5) h 6% (2-22)+% (2—2) (I)>

= e
2
The proof of (ii) is similar. It can also be directly obtained from (i) by replaciry i s.
|
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