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1. I NTRODUCTION

LetA(n) denote the class of functionsf(z) of the form

(1.1) f(z) = z −
∞∑

k=n

ak+1z
k+1, (ak+1 ≥ 0; n ∈ N := {1, 2, 3, . . . }),

which are analytic in the open unit disk

∆ = {z : z ∈ C, |z| < 1}.

Following the earlier investigations by Goodman [5] and Ruscheweyh [8],
for anyf(z) ∈ A(n) andδ ≥ 0, we define the(n, δ)- neighborhood off(z) by
(1.2)

Nn,δ(f) :=

{
g ∈ A(n) : g(z) := z −

∞∑
k=n

bk+1z
k+1 and

∞∑
k=n

(k + 1)|ak+1 − bk+1| ≤ δ

}
.

In particular, for the identity function
e(z) = z,

we immediately have

(1.3) Nn,δ(e) :=

{
g ∈ A(n) : g(z) := z −

∞∑
k=n

bk+1z
k+1 and

∞∑
k=n

(k + 1)|bk+1| ≤ δ

}
.

First of all, we say that a functionf(z) ∈ A(n) is said to bestarlike of complex orderγ
(γ ∈ C− {0}), that is,f ∈ S∗n(γ), if it satisfies the inequality

(1.4) <
{

1 +
1

γ

(
zf ′(z)

f(z)
− 1

)}
> 0 (z ∈ ∆; γ ∈ C− {0}).

Furthermore, a functionf(z) ∈ A(n) is said to beconvexof complex orderγ (γ ∈ C − {0}),
that isf(z) ∈ Cn(γ), if it satisfies the inequality

(1.5) <
{

1 +
1

γ

(
zf ′′(z)

f ′(z)

)}
> 0 (z ∈ ∆; γ ∈ C− {0}).

The classesS∗n(γ) andCn(γ) stem essentially from the classes of starlike and convex functions
of complex order, which were considered by Nasr and Aouf [7] and Wiatrowski [10], respec-
tively (Refer also [4]).

Let Sn(γ, λ, β) denote the subclass ofA(n) consisting of functionsf(z) which satisfy the
following inequality∣∣∣∣1γ

[
λz3f ′′′(z) + (1 + 2λ)z2f ′′(z) + zf ′(z)

λz2f ′′(z) + zf ′(z)
− 1

]∣∣∣∣ < β

(z ∈ ∆; γ ∈ C− {0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1).

Let Rn(γ, λ, β) denote the subclass ofA(n) consisting of functionsf(z) which satisfy the
following inequality ∣∣∣∣1γ [

λz2f ′′′(z) + (1 + 2λ)zf ′′(z) + f ′(z)− 1
]∣∣∣∣ < β

(z ∈ ∆; γ ∈ C− {0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1).

The classSn(γ, λ, β) was studied by [6].
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Let A be class of functionsf(z) of the formf(z) = z +
∑∞

k=2 akz
k which are analytic in

the open unit disk∆ = {z : |z| < 1}. For f(z) belong toA, Sălăgean [9] has introduced the
following operator called the S̆alăgean operator:

D0f(z) = f(z),

D1f(z) = zf ′(z),
...

Dnf(z) = D(Dn−1f(z)) (n ∈ N := {1, 2, 3, . . . }).

Note that

Dnf(z) = z +
∞∑

k=2

knakz
k, n ∈ N0 = N ∪ {0}.

Now we can write the following equalities for the functionsf(z) belong to the classA(n).

D0f(z) = f(z),

D1f(z) = zf ′(z) = z −
∞∑

k=n

(k + 1)ak+1z
k+1,

D2f(z) = = D(Df(z)) = z −
∞∑

k=n

(k + 1)2ak+1z
k+1,

...

DΩf(z) = D(DΩ−1f(z)) = z −
∞∑

k=n

(k + 1)Ωak+1z
k+1 (Ω ∈ N ∪ {0}).

Finally, in the terms of the S̆alăgean operator, letSn(γ, λ, β, Ω) denote the subclass ofA(n)
consisting of functionsf(z) which satisfy the inequality

(1.6)

∣∣∣∣1γ
[
λDΩ+3f(z) + (1− λ)DΩ+2f(z)

λDΩ+2f(z) + (1− λ)DΩ+1f(z)
− 1

]∣∣∣∣ < β

(z ∈ ∆; γ ∈ C− {0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1; Ω ∈ N ∪ {0}).

Also, letRn(γ, λ, β, Ω) denote the subclass ofA(n) consisting off(z) which satisfy the in-
equality

(1.7)

∣∣∣∣1γ [
λ(DΩ+2f(z))′ + (1− λ)(DΩ+1f(z))′ − 1

]∣∣∣∣ < β,

(z ∈ ∆; γ ∈ C− {0}; 0 ≤ λ ≤ 1; 0 < β ≤ 1; Ω ∈ N ∪ {0}).

Clearly, in these cases of the classSn(γ, 0, 1, 0) we have the following relationship:

Sn(γ, 0, 1, 0) ⊂ Cn(γ), (n ∈ N, γ ∈ C− {0}).

The main object of the present paper is to investigate the(n, δ)-neighborhoods of the follow-
ing subclassesSn(γ, λ, β, Ω) andRn(γ, λ, β, Ω) of A(n).See also the earlier works [1, 2, 3].
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2. I NCLUSION RELATIONS INVOLVING THE (n, δ)-NEIGHBORHOOD Nn,δ(e)

In our investigation of the inclusion relations involving(n, δ)- neighborhood, we shall require
the following lemmas.

Lemma 2.1. Let the functionf(z) ∈ A(n) be defined by (1.1), thenf(z) is in the class
Sn(γ, λ, β, Ω) if and only if

(2.1)
∞∑

k=n

(k + 1)Ω+1(λk + 1)(k + β|γ|)ak+1 ≤ β|γ|.

Proof. We suppose thatf(z) ∈ Sn(γ, λ, β, Ω). Then by appealing the condition (1.6) we get,

(2.2) <
{

λDΩ+3f(z) + (1− λ)DΩ+2f(z)

λDΩ+2f(z) + (1− λ)DΩ+1f(z)
− 1

}
> −β|γ|

That is,

(2.3) <
{
−

∑∞
k=n(k + 1)Ω+1k(λk + 1)ak+1z

k+1

z −
∑∞

k=n(k + 1)Ω+1(λk + 1)ak+1zk+1

}
> −β|γ|, (z ∈ ∆)

Now choose the values ofz on the real axis and letz → 1− through real values. Then inequality
(2.3) immediately yields the desired condition (2.1).

Conversely, by applying the hypothesis (2.1) and letting|z| = 1, we find that∣∣∣∣λDΩ+3f(z) + (1− λ)DΩ+2f(z)

λDΩ+2f(z) + (1− λ)DΩ+1f(z)
− 1

∣∣∣∣
=

∣∣∣∣ ∑∞
k=n(k + 1)Ω+1k(λk + 1)ak+1z

k+1

z −
∑∞

k=n(k + 1)Ω+1(λk + 1)ak+1zk+1

∣∣∣∣
≤

β|γ|
{
1−

∑∞
k=n(k + 1)Ω+1(λk + 1)ak+1

}
1−

∑∞
k=n(k + 1)Ω+1(λk + 1)ak+1

= β|γ|.

Hence, by maximum modulus theorem, we havef(z) ∈ Sn(γ, λ, β, Ω), which evidently com-
pletes the proof of Lemma 2.1.

Similarly, we can prove the following result.

Lemma 2.2. Let the functionf(z) ∈ A(n) be defined by (1.1), thenf(z) is in the class
Rn(γ, λ, β, Ω) if and only if

(2.4)
∞∑

k=n

(k + 1)Ω+2(λk + 1)ak+1 ≤ β|γ|.

Theorem 2.3.Let

(2.5) δ =
β|γ|

(n + 1)Ω(λn + 1)(n + β|γ|)
(|γ| < 1),

thenSn(γ, λ, β, Ω) ⊂ Nn,δ(e).

Proof. Forf(z) ∈ Sn(γ, λ, β, Ω), Lemma 2.1 immediately yields

(n + 1)Ω+1(λn + 1)(n + β|γ|)
∞∑

k=n

ak+1 ≤ β|γ|
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so that

(2.6)
∞∑

k=n

ak+1 ≤
β|γ|

(n + 1)Ω+1(λn + 1)(n + β|γ|)
.

On the other hand, we also find from (2.1) and (2.6) that
∞∑

k=n

(k + 1)Ω+1(λk + 1)(k + β|γ|)ak+1 ≤ β|γ|

⇒
∞∑

k=n

(k + 1)Ω+1(λk + 1)(k + 1− 1 + β|γ|)ak+1 ≤ β|γ|

⇒ (n + 1)Ω+1(λn + 1)
∞∑

k=n

(k + 1)ak+1

≤ β|γ|+ (1− β|γ|)(n + 1)Ω+1(λn + 1)
∞∑

k=n

ak+1

≤ β|γ|+ (1− β|γ|)(n + 1)Ω+1(λn + 1)
β|γ|

(n + 1)Ω+1(λn + 1)(n + β|γ|)

= β|γ|+ (1− β|γ|) β|γ|
n + β|γ|

=
(n + 1)β|γ|
n + β|γ|

.

Thus
∞∑

k=n

(k + 1)ak+1 ≤
β|γ|

(n + 1)Ω(λn + 1)(n + β|γ|)
= δ,

which, in view of (1.3) proves Theorem 2.3.
Similarly, by applying Lemma 2.2 instead of Lemma 2.1. We can prove the following.

Theorem 2.4.Let

δ =
β|γ|

(n + 1)Ω+1(λn + 1)

thenRn(γ, λ, β, Ω) ⊂ Nn,δ(e).

3. NEIGHBORHOOD PROPERTIES FOR THE FUNCTION CLASSES S(α)
n (γ, λ, β, Ω) AND

R(α)
n (γ, λ, β, Ω)

In this section, we determine the neighborhood for each of the classes

S(α)
n (γ, λ, β, Ω) and R(α)

n (γ, λ, β, Ω),

which we define as follows. A functionf(z) ∈ A(n) is said to be in the classS(α)
n (γ, λ, β, Ω)

if there exists a functiong(z) ∈ Sn(γ, λ, β, Ω) such that

(3.1)

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1− α, (z ∈ ∆, 0 ≤ α < 1).

Analogously, a functionf(z) ∈ A(n) is said to be in the classR(α)
n (γ, λ, β, Ω) if there exists a

functiong(z) ∈ Rn(γ, λ, β, Ω) such that inequality (3.1) holds true.
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Theorem 3.1. If g(z) ∈ Sn(γ, λ, β, Ω) and

α = 1− δ(n + 1)Ω(λn + 1)(n + β|γ|)
(n + 1)Ω+1(λn + 1)(n + β|γ|)− β|γ|

,

then
Nn,δ(g) ⊂ S(α)

n (γ, λ, β, Ω).

Proof. Assuming thatf(z) ∈ Nn,δ(g). We find from the definition (1.2) that
∞∑

k=n

(k + 1)|ak+1 − bk+1| ≤ δ,

which readily implies the coefficient inequality

(3.2)
∞∑

k=n

|ak+1 − bk+1| ≤
δ

n + 1
(n ∈ N).

Next, sinceg(z) ∈ Sn(γ, λ, β, Ω), we have from equation (2.6)

(3.3)
∞∑

k=n

bk+1 ≤
β|γ|

(n + 1)Ω+1(λn + 1)(n + β|γ|)
,

so that ∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ <

∑∞
k=n |ak+1 − bk+1|
1−

∑∞
k=n bk+1

≤ δ

n + 1
· 1

1− β|γ|
(n+1)Ω+1(λn+1)(n+β|γ|)

=
δ(n + 1)Ω(λn + 1)(n + β|γ|)

(n + 1)Ω+1(λn + 1)(n + β|γ|)− β|γ|
= 1− α,

which completes the proof of Theorem 3.1.
The proof of Theorem 3.2 is similar to that of Theorem 3.1, and hence the details are omitted.

Theorem 3.2. If g(z) ∈ Rn(γ, λ, β, Ω) and

α = 1− δ(n + 1)Ω+1(λn + 1)

(n + 1)Ω+2(λn + 1)− β|γ|
,

then
Nn,δ(g) ⊂ R(α)

n (γ, λ, β, Ω).
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