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ABSTRACT. In this paper we introduce and investigate two new subclasses of multivalently an-
alytic functions of complex order defined by using the familiar convolution structure of analytic
functions. In this paper we obtain the coefficient estimates and the consequent inclusion rela-
tionships involving the neighborhoods of thevalently analytic functions.
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2 M. K. AOUF

1. INTRODUCTION

Let A,(n) denote the class of functions of the form:

(1.2) f(2) :zp—i-Zakzk (p<mn;pneN={12..}),
k=n
which are analytic and p-valent in the open unit disc= {z : |z| < 1}. Also let us put
Ay(p+1) = A(p) andA = A(1). If f(2) € A,(n)is given by [1.1) ang(z) € A,(n) is given
by
(1.2) g(z) =2 + Zbkzk .
k=n

Then the Hadamard product (or convolutiofy)« ¢)(z) of f(z) andg(z) is defined by

(1.3) (fx9)(z) =27+ apbez”.
k=n

For a functionf(z) in A,(n), we define
Dyf(z) = f(2),

’

DLf(z) = D<D2f<z>>=§f (2)

and

It is easy to see that

(1.4) Dy f(z) = 2"+ Z(g)gakzk (0 € No=NU{0}).
k=n

Whenp = 1 andn = 2, the differential operatob{ = D” was introduced by Salagean [15].
For complex parametexs, ..., . and g, ...., B,(3; € C\{0,—1,-2,..},j = 1,..,5), we

define the generalized hypergeometric functidi(a ..., a.; 5y, ..., B; 2)

by

P Fs(oq.,ap; By, B 2) = Z (0)p-oor () Z—

(1.5) (r<s+1l;r,s€ Ny; z€U),
where(0); is the Pochhammer symbol defined, in terms of the Gamma funCtiby

00+ k) { 1 (k = 0)

(1.6) (G)kzwz 00 +1)...(0+k—1) (keN).

Corresponding to a functidp,(as, ...., a; B4, ..., B,; z) defined by
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hp(o, .oy @ Byy oo, Bgs 2) = 28 L Fg(ny ooy s By, ooy B3 2),
we consider a linear operatéf, (o, ...., a,; 34, ...., 3,) : A(p) — A(p), defined by the convo-
lution

(1.7) Hy(aq, ooy By, ooy B) f(2) = hp(o, ooy iy By oo, B3 2) * f(2).
We observe that, for a functiofi(z) of the form [1.1), we have

(18) Hp(al, ceeny Ol ﬁl’ ceeny ﬁs)f(z) = P + Z Fkakzk,
k=n

where

(19) Fk . ((Xl)k,p ...... (ar>k—p

a (B1)k=p-e-e-- (B)k—p (k —p)! '

For convenience, we write

(1.10) HY Jon] = Hp(ay, ooy o By e B)

The linear operatofi? [a;] was introduced and studied by Dziok and Srivastava [7].
We denote byl,,(n) the subclass afl,(n) consisting of functions of the form :

(1.112) f(z):zp—Zakzk (p<mn;ar >0 (k>n);pnéeN).
k=n

For a given functiory(z) € A,(n) defined by

(1.12) g(z) = 2"+ ) b2 (p<n;by > 0(k>n);p,neN),
k=n

we introduce here a new subclaSgn, p, ¢, A, b, 5) of the p-valently analytic function class
T,(n) which consists of functiong(z) € T, (n) satisfying the inequality :

1 { 2Afx9) () FALP(fxg)PH0(2) . q)}

b X)) + (L= N * 92) <7

b
(1.13) (zeU;p,ne N;qg€ No;p>q;0< A< 1;0e C\{0};0< 5 <1).

We note that :
(i) Sy(n,p,q,1,b,8) = Cy(n,p,q,b, )

2(f % g)FD) (2
={f:f€T,(n)and ‘%{IJF ((;c*gg))(l;(i))—(p—q)}‘<ﬁ

(1.14) (z€Usp,ne N;q€ No;p>q;b€ C\{0};0<3<1) };

(i) Sy(n,p,q,0,b,1) = Sy(n,p, q,b) (Prajapat et al [12]);

(ii)) S,(n,p,0,0,p(1 — ), 1) = T'S:(n,p,a)(p € N;0 < a < 1) (Ali etal. [2]);

(iv) Replacingn by n + p in (1.11) and(1.12) and taking the coefficients, in (1.12) as
follows :

(1.15) bk=<y_,gf;1> (v > —p),

then we have :
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Sy(n,p,q,0,b,1) = HY (v,b) (this class involving the familiar Ruscheweyh derivative)(Raina
and Srivastava [13]);

(vi) By taking the coefficient$; in (1.12) as follows :b, = Ty, > 0(k > n), whereT; is
given by(1.9), then we have :

Sy(n,p,q,0,b,1) = S*(n,p,q,b) (Prajapat et al[ [12]).

Also we note that by choosing different values for the coefficiéptdefined in [(1.1R), we
obtain the following new classes :

(i) By taking the coefficients, in (1.13) as follows b, = I, > 0(k > n), wherel' is given
by (1.9), then we have the new class :

Sty (20,05, 8) = {  [(2) € Ty(n) and

L[ )0 @) A2l )00
b | N(HEaa] )0 (2) + (1 = N (HE [ )@ (z) 1
(1.16) (zeUyr<s+LipneN;p>q0<I<1;beC\{0};0<3<1);

(i) By taking the coefficient$;, in (1.12) as follows b, = (=)?(k > n;p,n € N;o € Ny),
p

then we have the new class :

TSZ(”?Z)?(L )‘7b7 ﬂ) - {f : f S Tp(ﬂ) and

1| 2(Dgf(2)"+ + X22(Dg f(z)) 2+
b Az(Dg f(2)) 040 + (1 — \)(Dg f(2))@ —(p—q) | <8
(1.17) (z€U;p,n € N;q,0 € Nj;0 <A< 1,0 C\{0};0< 5 <1);

(iii) By taking the coefficients,, in (I.12) as given by (1.15), then we have the new class :
HE (v, A,b,8) = {f : f € T,(n) and

1 Z(Dyapf(z>>(1+q) + )\ZQ(DV’pf(Z)>(2+Q)
‘E {Az(D]';va(z))(Hq) + (1 — )\)(Du,pf(z))(q) —(p- C])}

<p

(1.18)
(z€U;p,n € N;q € No;v € R;p>max{q,—v}0< A< 1;0 e C\{0};0 < 5 <1);

where the symbaD”! f(z) = D" f(z) for v = n € N, was named the n- th order Ruscheweyh
derivative of f(z) € A by Al-Amiri [1].

Now, following the earlier investigation by Goodman [8], Ruscheweéyh [14], and others in-
cluding Altintas and Owa_ 3], Altintas et al.[([4] and [5] ), Murgusundaramoorthy and Srivas-
tava [9], Raina and Sirvastava [13], Aoluf [6], Prajapat et all [12] and Srivastava and Orhan [16]
( see also[10]/[11] and [17] ), we define the 6)— neighborhood of a functiofi(z) € T,(n)
by (see, for examplel, [5], p. 1668)

(1.19)  N.s(f) = {g g €Ty(n),g(z) = 2" =Y bFand > klay— bl < 5} .
k=n k=n

In particular, if

(1.20) h(z) =2 (p € N),
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we immediately have

(1.21) N, 5(h) = {g tg €Ty(n),g(z) = 2" = > b2* and Y kb < 5} .
k=n k=n

Also, let P,(n,p, q, A\, b, 3) denote the subclass @f(n) consisting of functiong(z) of the
form (I1.11) which satisfy the inequality :

% ) (z % g)1+D) (2
{02 ) )<
(1.22) (z€Uipn € Nig€ Nojp > g; A > 0:b € C\{0}0 < f < 1),
where
P (a=0),
(1.23) 0(p,q) = I { pp—1)...(p—q+1) (¢#0).

We note that :
(i) Py(n,p,q,0,b,8) = Py(n,p,q,b,8)={f: feT,(n)and

(9)
‘% {—U *;;)q &) 0(p, Q)”
(1.24) < f(zeU;pneN;qge Nosp>q;be C\{0};0<3<1) };
(“) Pg(n’paqv 1’b75) = Lg(n7paQ7bvﬁ)
« ) (140)
= {f:fETp(n) and‘% {H—Z;g—ﬂp,q)ﬂ <p
(1.25) (zeU;p,n€ N;q€ Nosp>q;be C\{0};0<5<1) }.

Remark 1.1. Throughout our present paper, we assume ttatq) is defined by[(1.23).

2. NEIGHBORHOODS FOR THE CLASSES S,(n,p, ¢, A\, b, 3) AND P,(n,p, q, \, b, 3)

In our investigation of the inclusion relations involviig, s(h), we shall require Lemmas
2.1 and 2.2 below.

Lemma 2.1. Let the functionf(z) € T,(n) be defined by1.11). Thenf(z) is in the class
Sy(n,p, g, A, b, 8) if and only if
2.1) > (k+B[bl = p)[1 + Ak — g = 1)]0(k, @)brar < B[b] [1+ Ap — ¢ — DIO(p, q),

k=n

Proof. Let a functionf(z) of the form [1.1]) belong to the clas§(n, p, ¢, A, b, 3).
Then, in view of [1.I[L)(1.12) and[(1.13), we obtain the following inequality

Afx9)0(2) FA2((f 9P 9() _ ,
(2.2) Re{)\z(f*g)(1+Q)(z) AN @) (p q)} > =B (2 €U),

or, equivalently,

_ kfj (k = p)[1+ Ak — g — 1]0(k, )axbpz*—"

o0

L+ Ap—q—1)]0(p,q) = > [L+ Ak —q—1)|0(k, q)arbyz*P

k=n

Re > —Gp|
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(2.3) (z€U).

Settingz = r (0 < r < 1) in (2.3), we observe that the expression in the denominator of the
left-hand side of[ (2]3) is positive for= 0 and also for al(0 < r < 1). Thus, by letting — 1~
through real valueg| (2.3) leads us to the desired assertion of Lemjma 2.1.

Conversely, by applying the hypothegis {2.1) and letfiig= 1, we find from [1.1B) that

2(f # 9) 49 (2) + A2((f # 9) 4 (2)
N[ )T (2) + (1= N[ % ) (2)

io: (k= p)[L+ Ak — q = 1)]0(k, q)arbpz"""

—(p—2q)

LA g - 1)6p.q) 51 Ak - g = DJO(k bt
S (k= p)[L+ Atk — g — DJO(K, )agby
< h=n -
1+ Ap—q—1)0(p,q) — gﬂ1+M —q— 1)|0(k, q)arby

311147 = D10.0) ~ £ 14 Ak =0 = DBk

< — 81Hl.

H+A@—Q—waﬂ%—ZH+*%—Q—DW%ﬂmwk

k=n

Hence, by the maximum modulus theorem, we hag € S,(n, p, ¢, A, b, 3), which evidenlty
completes the proof of Lemnja 2.1.
Similarly, we can prove the following lemma.

Lemma 2.2. Let the functionf(z) € T,(n) be given by[(1.11). Thefiz) € P,(n,p,q, A, b, 3)
if and only if

[e.9]

(2.4) > Ip—a+ Ak —p)o(k, Q)bsar, < Bb] (p — q)-

k=n
Our first inclusion relationV,, s() is given in the following theorem.

Theorem 2.3.1If
nB bl [1 + Xp —q—1)]0(p,q)

_ q
(@8) b2 bo (k2 m) andd = ¢ o+ A — g - D(m b, F
then
(26) Sg(nap7 q7)\ab7 ﬂ) C Nn,é(h)

Proof. Let f(z) € Sy(n,p, q, X\, b, 3).Then, in view of the assertiop (2.1) of Lemfna]2.1, and the
given condition that
b, > b, (k>n),

we have -
(n+ 66| = p)[1 + A — g = 1)]0(n, q)bn i
}:k+ﬂ%! [+ Ak — ¢ — D)]O(k, q)bray,
(2.7) < B[1+Ap—q—1)]6(p,q),
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which readily yields

N BIo[[1+Ap — g —1))0(p.q)
2.8 .
o 2% S G B = L+ X =g — Lo
Making use of[(2.]l) again, in conjunction with (P.8), we get

14+ AXn—q—1)]0(n,q)b, i kay,

<BBI[L+Mp—q—1)]0(p,q) + (p— BIBNL+An—q—1)0(n, )by Y _ ar

Bo[[1+Ap —q—1)]0(p,q)

< B+ Mp —q—1)]0(p,q) + (p— Bb])

(n+ 8o - p)
_ nBbl[L+Ap—q—1)]0(p, q)
(n+ 810 —p) '
Hence
. nB (bl [1+ Xp—q—1)]0(p,q) B
@9 D kS R A g - D 0 7

which, by means of the definitiof (1]21), establishes the inclusion relgtion (2.6) asserted by
Theoren 2.31

Remark 2.1. (i) Putting A\ = 0 and = 1 in Theoren{ 2.3, we obtain the result obtained by
Prajapat et al. [[12], Theorem 3];

(y—i—n—l—p—l v >

(ii) Putting A = 0 and$ = 1, replacingn by n+ p and choosing,, = n
—p), in Theorenj 2.8, we obtain the result obtained by Raina and Srivastava [ [13], Theorem 3].

In a similar manner, by applying the assertipn{2.5) of Lemima 2.2 instead of the assertion
(2.7) of Lemmd 21 to functions in the clagy(n,p, ¢, A, b, 3), we can prove the following
inclusion relationship.

Theorem 2.4.1If
n(p —q)B|b|

(2.10) by > b, (k>n)andd = SR (A>1),
then
(2.11) Py(n,p,q,\,b,8) C Ny s(h).

Remark 2.2. (i) We note that the result obtained by Prajapat et al. [[[12], Theorem 4 ] is not
correct. The correct result is given By (2.10) with= 1;

(i) We note that the result obtained by Raina and Srivastava [ [13], Theorem 4 ] is not correct.
The correct result is given by (2]10) by takiig= 0, 5 = 1, replacingr by n + p and choosing

v+n+p—1
b= (" )W > —p).
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3. NEIGHBORHOODS FOR THE CLASSES S\ (n, p,q, A, b, 8) AND P! (n,p,q, A, b, 8)

In this section, we determine the neighborhood for each of the classes

S!(]a)(nap7Q7)\abvﬁ) and Pg(a)(n7p’Q7A7b7/6)7

which we define as follows. A functiofiz) € 7,(n) is said to be in the claﬁ“)(n, Py q, A\, b, B) if
there exists a functioh(z) € S,(n, p, g, A, b, 3) such that

(3.1) @— <p—a (z€U; 0<a<p—q).
k(z)

Analogously, a functiory'(z) € T,(n) is said to be in the clasB\” (n, p, ¢, A, b, 3) if there

exists a functiork(z) € P,(n, p, ¢, A, b, 3) such that the inequality (3.1) holds true.

g

Theorem 3.1.1f k(z) € Sy(n,p, ¢, A\, b, 3) and

3.2
(a):p_ (n+ B[b] — p)[1 + A(n — ¢ —1)]0(n,q)by
n{(n+ B0 —p)[l +A(n —q—1)]0(n, )b, — B[] [L + Ap —q—1)]0(p, )}’
then
(3.3) Nos(k) € S5 (n,p,q, A, b, B),
where

6 <pn [1= B0l [1+Mp—q—1))0(p,q).

(3.4) A(n+ B —p)[1+ ANn—q—1)]0(n, q)bn}_l] .
Proof. Suppose thaf(z) € N, ;(k). We find from [1.19) that

(3.5) > klay — bl <6,
k=n
which readily implies that
= J
(3.6) ;|ak—bk| == (n € N).

Next, sincek(z) € Sy(n,p, ¢, A, b, 3), we have [cf. equation (4.8)] that

- BIbl[1+Xp—q—1)0(p,q)
G ;bk = (n+ 36l = p)[1 + A(n — g = 1)]0(n, q)b,’
so that N
2y &
k(2) -y

< 6(n+Bb] —p)[1 + A(n — g —1)]0(n, q)b,
— n{(n+ Bl =p)[l+An—q—1)]0(n,q)b, — B[] [1+Ap—q—1)]0(p,q)}
88) =p-—aq,

provided thaty is given by ). Thus, by the above definitigiiz) € Séa)(n,p, q, A\, b, ) for
a given by [3.2). This evidently proves Theorgm|31.
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Remark 3.1. (i) Putting A = 0 in Theorenj 3.JL, we obtain the result obtained by Prajapat et al.
[[12], Theorem 5 withy = 0 |;

(ii) Putting A = 0, 8 = 1, replacingn by n + p and choosing,, = ( v n:p -1 ) (v >
—p), in Theorenj 3./, we obtain the result obtained by Raina and Srivastava [ [13], Theorem 5].

The proof of Theorerp 3|2 below is similar to that of Theofen 3.1 above, therefore, we omit
the details involved.

Theorem 3.2.1f k(z) € Py(n,p,q, A, b,3) and
d[(p — q) + A(n — p)|(n, 9)b,

(39) T =9 + A =)o, )b, — (0 — @)B B}
then

(3.10) Nos(k) € P{(n,p,q,\b, ),

where

(3.11) o < pn [1 — (=Bl {llp—q) +An—p)]o(n,qb,} "]

Remark 3.2. (i) We note that the result obtained by Prajapat et &l. [[[12], Theorem 6 ] is not
correct. The correct result is given By (3.9) with= 1;

(i) We note that the result obtained by Raina and Srivastava [ [13], Theorem 6 ] is not correct.
The correct result is given by (3.9) by taking= 0 and/ = 1, replacingn by n + p and

<1/+n;p—1 ) (

choosingb,, = v > —p).
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