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2 M. K. AOUF

1. I NTRODUCTION

LetAp(n) denote the class of functions of the form:

(1.1) f(z) = zp +
∞∑

k=n

akz
k (p < n; p, n ∈ N = {1, 2, ....}),

which are analytic and p-valent in the open unit discU = {z : |z| < 1}. Also let us put
Ap(p + 1) = A(p) andA = A(1). If f(z) ∈ Ap(n) is given by (1.1) andg(z) ∈ Ap(n) is given
by

(1.2) g(z) = zp +
∞∑

k=n

bkz
k .

Then the Hadamard product (or convolution )(f ∗ g)(z) of f(z) andg(z) is defined by

(1.3) (f ∗ g)(z) = zp +
∞∑

k=n

akbkz
k.

For a functionf(z) in Ap(n), we define

D0
pf(z) = f(z),

D1
pf(z) = D(D0

pf(z)) =
z

p
f

′
(z)

= zp +
∞∑

k=n

(
k

p
)akz

k,

and
Dσ

p f(z) = D(Dσ−1
p f(z)) (σ ∈ N).

It is easy to see that

(1.4) Dσ
p f(z) = zp +

∞∑
k=n

(
k

p
)σakz

k (σ ∈ N0 = N ∪ {0}) .

Whenp = 1 andn = 2, the differential operatorDσ
1 = Dσ was introduced by Salagean [15].

For complex parametersα1..., αr andβ1, ...., βs(βj ∈ C\{0,−1,−2, ...}, j = 1, .., s), we
define the generalized hypergeometric functionrFs(α1..., αr; β1, ...., βs; z)
by

rFs(α1..., αr; β1, ...., βs; z) =
∞∑

k=0

(α1)k......(αr)k

(β1)k.......(βs)k

.
zk

k!

(1.5) (r ≤ s + 1; r, s ∈ N0 ; z ∈ U),

where(θ)k is the Pochhammer symbol defined, in terms of the Gamma functionΓ by

(1.6) (θ)k =
Γ(θ + k)

Γ(θ)
=

{
1 (k = 0)
θ(θ + 1)....(θ + k − 1) (k ∈ N).

Corresponding to a functionhp(α1, ...., αr; β1, ...., βs; z) defined by
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INCLUSION AND NEIGHBORHOODPROPERTIES 3

hp(α1, ...., αr; β1, ...., βs; z) = zp
rFs(α1, ...., αr; β1, ...., βs; z),

we consider a linear operatorHp(α1, ...., αr; β1, ...., βs) : A(p) → A(p), defined by the convo-
lution

(1.7) Hp(α1, ...., αr; β1, ...., βs)f(z) = hp(α1, ...., αr; β1, ...., βs; z) ∗ f(z).

We observe that, for a functionf(z) of the form (1.1), we have

(1.8) Hp(α1, ...., αr; β1, ...., βs)f(z) = zp +
∞∑

k=n

Γkakz
k,

where

(1.9) Γk =
(α1)k−p......(αr)k−p

(β1)k−p......(βs)k−p (k − p)!
.

For convenience, we write

(1.10) Hp
r,s[α1] = Hp(α1, ....., αr; β1, .....βs).

The linear operatorHp
r,s[α1] was introduced and studied by Dziok and Srivastava [7].

We denote byTp(n) the subclass ofAp(n) consisting of functions of the form :

(1.11) f(z) = zp −
∞∑

k=n

akz
k (p < n; ak ≥ 0 (k ≥ n); p, n ∈ N).

For a given functiong(z) ∈ Ap(n) defined by

(1.12) g(z) = zp +
∞∑

k=n

bkz
k (p < n; bk ≥ 0 (k ≥ n); p, n ∈ N),

we introduce here a new subclassSg(n, p, q, λ, b, β) of the p-valently analytic function class
Tp(n) which consists of functionsf(z) ∈ Tp(n) satisfying the inequality :∣∣∣∣1b

{
z(f ∗ g)(1+q)(z) + λz2(f ∗ g)(2+q)(z)

λz(f ∗ g)(1+q)(z) + (1− λ)(f ∗ g)(q)(z)
− (p− q)

}∣∣∣∣ < β

(1.13) (z ∈ U ; p, n ∈ N ; q ∈ N0; p > q; 0 ≤ λ ≤ 1; b ∈ C\{0}; 0 < β ≤ 1).

We note that :
(i) Sg(n, p, q, 1, b, β) = Cg(n, p, q, b, β)

= {f : f ∈ Tp(n) and

∣∣∣∣1b
{

1 +
z(f ∗ g)(2+q)(z)

(f ∗ g)(1+q)(z)
− (p− q)

}∣∣∣∣ < β

(1.14) (z ∈ U ; p, n ∈ N ; q ∈ N0; p > q; b ∈ C\{0}; 0 < β ≤ 1) } ;

(ii) Sg(n, p, q, 0, b, 1) = Sg(n, p, q, b) (Prajapat et al. [12]);
(iii) Sg(n, p, 0, 0, p(1− α), 1) = TS∗g (n, p, α)(p ∈ N ; 0 ≤ α < 1) (Ali et al. [2]);
(iv) Replacing n by n + p in (1.11) and(1.12) and taking the coefficientsbk in (1.12) as

follows :

(1.15) bk =

(
ν + k − 1

k − p

)
(v > −p),

then we have :
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4 M. K. AOUF

Sg(n, p, q, 0, b, 1) = Hp
n,q(v, b) (this class involving the familiar Ruscheweyh derivative)(Raina

and Srivastava [13]);
(vi) By taking the coefficientsbk in (1.12) as follows :bk = Γk ≥ 0(k ≥ n), whereΓk is

given by(1.9), then we have :
Sg(n, p, q, 0, b, 1) = S∗(n, p, q, b) (Prajapat et al. [12]).
Also we note that by choosing different values for the coefficientsbk defined in (1.12), we

obtain the following new classes :
(i) By taking the coefficientsbk in (1.12) as follows :bk = Γk ≥ 0(k ≥ n), whereΓk is given

by (1.9), then we have the new class :

S∗[α1](n, p, q, λ, b, β) =
{

f : f(z) ∈ Tp(n) and∣∣∣∣∣1b
{

z(Hp
r,s[α1]f)(1+q)(z) + λz2(Hp

r,s[α1]f)(2+q)(z)

λz(Hp
r,s[α1]f)(1+q)(z) + (1− λ)(Hp

r,s[α1]f)(q)(z)
− (p− q)

}∣∣∣∣∣ < β

(1.16) (z ∈ U ; r ≤ s + 1; p, n ∈ N ; p > q; 0 ≤ λ ≤ 1; b ∈ C\{0}; 0 < β ≤ 1);

(ii) By taking the coefficientsbk in (1.12) as follows :bk = (
k

p
)σ(k ≥ n; p, n ∈ N ; σ ∈ N0),

then we have the new class :

TS∗σ(n, p, q, λ, b, β) =
{

f : f ∈ Tp(n) and∣∣∣∣∣1b
{

z(Dσ
p f(z))(1+q) + λz2(Dσ

p f(z))(2+q)

λz(Dσ
p f(z))(1+q) + (1− λ)(Dσ

p f(z))(q)
− (p− q)

}∣∣∣∣∣ < β

(1.17) (z ∈ U ; p, n ∈ N ; q, σ ∈ N0; 0 ≤ λ ≤ 1; b ∈ C\{0}; 0 < β ≤ 1);

(iii) By taking the coefficientsbk in (1.12) as given by (1.15), then we have the new class :

Hp
n,q(ν, λ, b, β) =

{
f : f ∈ Tp(n) and∣∣∣∣1b

{
z(Dν,pf(z))(1+q) + λz2(Dν,pf(z))(2+q)

λz(Dν,p
p f(z))(1+q) + (1− λ)(Dν,pf(z))(q)

− (p− q)

}∣∣∣∣ < β

(1.18)
(z ∈ U ; p, n ∈ N ; q ∈ N0; ν ∈ R; p > max{q,−ν}; 0 ≤ λ ≤ 1; b ∈ C\{0}; 0 < β ≤ 1);

where the symbolDν,1f(z) = Dνf(z) for ν = n ∈ N0 was named the n- th order Ruscheweyh
derivative off(z) ∈ A by Al-Amiri [1].

Now, following the earlier investigation by Goodman [8], Ruscheweyh [14], and others in-
cluding Altintas and Owa [3], Altintas et al. ([4] and [5] ), Murgusundaramoorthy and Srivas-
tava [9], Raina and Sirvastava [13], Aouf [6], Prajapat et al. [12] and Srivastava and Orhan [16]
( see also [10], [11] and [17] ), we define the(n, δ)− neighborhood of a functionf(z) ∈ Tp(n)
by (see, for example, [5], p. 1668)

(1.19) Nn,δ(f) =

{
g : g ∈ Tp(n), g(z) = zp −

∞∑
k=n

bkz
k and

∞∑
k=n

k |ak − bk| ≤ δ

}
.

In particular, if

(1.20) h(z) = zp (p ∈ N),
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we immediately have

(1.21) Nn,δ(h) =

{
g : g ∈ Tp(n), g(z) = zp −

∞∑
k=n

bkz
k and

∞∑
k=n

k |bk| ≤ δ

}
.

Also, letPg(n, p, q, λ, b, β) denote the subclass ofTp(n) consisting of functionsf(z) of the
form (1.11) which satisfy the inequality :∣∣∣∣1b

{[
(1− λ)

(f ∗ g)(q)(z)

zp−q
+ λ

(f ∗ g)(1+q)(z)

(p− q)zp−q−1

]
− θ(p, q)

}∣∣∣∣ < β

(1.22) (z ∈ U ; p, n ∈ N ; q ∈ N0; p > q; λ ≥ 0; b ∈ C\{0}; 0 < β ≤ 1),

where

(1.23) θ(p, q) =
p!

(p− q)!
=

{
1 (q = 0) ,

p(p− 1)....(p− q + 1) (q 6= 0).

We note that :
(i) Pg(n, p, q, 0, b, β) = Pg(n, p, q, b, β) = { f : f ∈ Tp(n) and∣∣∣∣1b

[
(f ∗ g)(q)(z)

zp−q
− θ(p, q)

]∣∣∣∣
< β (z ∈ U ; p, n ∈ N ; q ∈ N0; p > q; b ∈ C\{0}; 0 < β ≤ 1) } ;(1.24)

(ii) Pg(n, p, q, 1, b, β) = Lg(n, p, q, b, β)

=

{
f : f ∈ Tp(n) and

∣∣∣∣1b
[
(f ∗ g)(1+q)(z)

(p− q)zp−q−1
− θ(p, q)

]∣∣∣∣ < β

(1.25) (z ∈ U ; p, n ∈ N ; q ∈ N0; p > q; b ∈ C\{0}; 0 < β ≤ 1) } .

Remark 1.1. Throughout our present paper, we assume thatθ(p, q) is defined by (1.23).

2. NEIGHBORHOODS FOR THE CLASSES Sg(n, p, q, λ, b, β) AND Pg(n, p, q, λ, b, β)

In our investigation of the inclusion relations involvingNn,δ(h), we shall require Lemmas
2.1 and 2.2 below.

Lemma 2.1. Let the functionf(z) ∈ Tp(n) be defined by(1.11). Thenf(z) is in the class
Sg(n, p, q, λ, b, β) if and only if

(2.1)
∞∑

k=n

(k + β |b| − p)[1 + λ(k − q − 1)]θ(k, q)bkak ≤ β |b| [1 + λ(p− q − 1)]θ(p, q),

Proof. Let a functionf(z) of the form (1.11) belong to the classSg(n, p, q, λ, b, β).
Then, in view of (1.11),(1.12) and (1.13), we obtain the following inequality

(2.2) Re

{
z(f ∗ g)(1+q)(z) + λz2((f ∗ g)(2+q)(z)

λz(f ∗ g)(1+q)(z) + (1− λ)(f ∗ g)(q)(z)
− (p− q)

}
> −β |b| (z ∈ U),

or, equivalently,

Re


−

∞∑
k=n

(k − p)[1 + λ(k − q − 1)]θ(k, q)akbkz
k−p

[1 + λ(p− q − 1)]θ(p, q)−
∞∑

k=n

[1 + λ(k − q − 1)]θ(k, q)akbkzk−p

 > −β |b|
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(2.3) (z ∈ U).

Settingz = r (0 ≤ r < 1) in (2.3), we observe that the expression in the denominator of the
left-hand side of (2.3) is positive forr = 0 and also for all(0 < r < 1). Thus, by lettingr → 1−

through real values, (2.3) leads us to the desired assertion of Lemma 2.1.
Conversely, by applying the hypothesis (2.1) and letting|z| = 1, we find from (1.13) that∣∣∣∣ z(f ∗ g)(1+q)(z) + λz2((f ∗ g)(2+q)(z)

λz(f ∗ g)(1+q)(z) + (1− λ)(f ∗ g)(q)(z)
− (p− q)

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

k=n

(k − p)[1 + λ(k − q − 1)]θ(k, q)akbkz
k−p

[1 + λ(p− q − 1)]θ(p, q)−
∞∑

k=n

[1 + λ(k − q − 1)]θ(k, q)akbkzk−p

∣∣∣∣∣∣∣∣
≤

∞∑
k=n

(k − p)[1 + λ(k − q − 1)]θ(k, q)akbk

[1 + λ(p− q − 1)]θ(p, q)−
∞∑

k=n

[1 + λ(k − q − 1)]θ(k, q)akbk

≤
β |b|

{
[1 + λ(p− q − 1)]θ(p, q)−

∞∑
k=n

[1 + λ(k − q − 1)]θ(k, q)akbk

}
[1 + λ(p− q − 1)]θ(p, q)−

∞∑
k=n

[1 + λ(k − q − 1)]θ(k, q)akbk

= β |b| .

Hence, by the maximum modulus theorem, we havef(z) ∈ Sg(n, p, q, λ, b, β), which evidenlty
completes the proof of Lemma 2.1.

Similarly, we can prove the following lemma.

Lemma 2.2. Let the functionf(z) ∈ Tp(n) be given by (1.11). Thenf(z) ∈ Pg(n, p, q, λ, b, β)
if and only if

(2.4)
∞∑

k=n

[p− q + λ(k − p)]θ(k, q)bkak ≤ β |b| (p− q).

Our first inclusion relationNn,δ(h) is given in the following theorem.

Theorem 2.3. If

(2.5) bk ≥ bn (k ≥ n) andδ =
nβ |b| [1 + λ(p− q − 1)]θ(p, q)

(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn

(p > |b|),

then

(2.6) Sg(n, p, q, λ, b, β) ⊂ Nn,δ(h).

Proof. Let f(z) ∈ Sg(n, p, q, λ, b, β).Then, in view of the assertion (2.1) of Lemma 2.1, and the
given condition that

bk ≥ bn (k ≥ n),

we have

(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn

∞∑
k=n

ak

≤
∞∑

k=n

(k + β |b| − p)[1 + λ(k − q − 1)]θ(k, q)bkak

(2.7) ≤ β |b| [1 + λ(p− q − 1)] θ(p, q),

AJMAA, Vol. 7, No. 1, Art. 4, pp. 1-10, 2010 AJMAA
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which readily yields

(2.8)
∞∑

k=n

ak ≤
β |b| [1 + λ(p− q − 1)]θ(p, q)

(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn

.

Making use of (2.1) again, in conjunction with (2.8), we get

[1 + λ(n− q − 1)]θ(n, q)bn

∞∑
k=n

kak

≤ β |b| [1 + λ(p− q − 1)]θ(p, q) + (p− β |b|)[1 + λ(n− q − 1)]θ(n, q)bn

∞∑
k=n

ak

≤ β |b| [1 + λ(p− q − 1)]θ(p, q) + (p− β |b|)β |b| [1 + λ(p− q − 1)]θ(p, q)

(n + β |b| − p)

=
nβ |b| [1 + λ(p− q − 1)]θ(p, q)

(n + β |b| − p)
.

Hence

(2.9)
∞∑

k=n

kak ≤
nβ |b| [1 + λ(p− q − 1)]θ(p, q)

(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn

= δ (p > |b|),

which, by means of the definition (1.21), establishes the inclusion relation (2.6) asserted by
Theorem 2.3.

Remark 2.1. (i) Puttingλ = 0 andβ = 1 in Theorem 2.3, we obtain the result obtained by
Prajapat et al. [ [12], Theorem 3];

(ii) Puttingλ = 0 andβ = 1, replacingn by n+p and choosingbn = (
ν + n + p− 1

n
)(ν >

−p), in Theorem 2.3, we obtain the result obtained by Raina and Srivastava [ [13], Theorem 3].

In a similar manner, by applying the assertion (2.5) of Lemma 2.2 instead of the assertion
(2.1) of Lemma 2.1 to functions in the classPg(n, p, q, λ, b, β), we can prove the following
inclusion relationship.

Theorem 2.4. If

(2.10) bk ≥ bn (k ≥ n) andδ =
n(p− q)β |b|

[(p− q) + λ(n− p)] θ(n, q)bn

(λ > 1),

then

(2.11) Pg(n, p, q, λ, b, β) ⊂ Nn,δ(h).

Remark 2.2. (i) We note that the result obtained by Prajapat et al. [ [12], Theorem 4 ] is not
correct. The correct result is given by (2.10) withβ = 1;

(ii) We note that the result obtained by Raina and Srivastava [ [13], Theorem 4 ] is not correct.
The correct result is given by (2.10) by takingλ = 0 , β = 1, replacingn by n+p and choosing

bn = (
ν + n + p− 1

n
)(ν > −p).
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3. NEIGHBORHOODS FOR THE CLASSES S
(α)
g (n,p,q, λ,b, β) AND P

(α)
g (n,p,q, λ,b, β)

In this section, we determine the neighborhood for each of the classes

S(α)
g (n, p, q, λ, b, β) and P (α)

g (n, p, q, λ, b, β),

which we define as follows. A functionf(z) ∈ Tp(n) is said to be in the classS(α)
g (n, p, q, λ, b, β) if

there exists a functionk(z) ∈ Sg(n, p, q, λ, b, β) such that

(3.1)

∣∣∣∣f(z)

k(z)
− 1

∣∣∣∣ < p− α (z ∈ U ; 0 ≤ α < p− q).

Analogously, a functionf(z) ∈ Tp(n) is said to be in the classP (α)
g (n, p, q, λ, b, β) if there

exists a functionk(z) ∈ Pg(n, p, q, λ, b, β) such that the inequality (3.1) holds true.

Theorem 3.1. If k(z) ∈ Sg(n, p, q, λ, b, β) and
(3.2)

α = p− δ(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn

n {(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn − β |b| [1 + λ(p− q − 1)]θ(p, q)}
,

then

(3.3) Nn,δ(k) ⊂ S(α)
g (n, p, q, λ, b, β),

where
δ ≤ pn

[
1− β |b| [1 + λ(p− q − 1)]θ(p, q) .

(3.4) . {(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn}−1] .

Proof. Suppose thatf(z) ∈ Nn,δ(k). We find from (1.19) that

(3.5)
∞∑

k=n

k |ak − bk| ≤ δ,

which readily implies that

(3.6)
∞∑

k=n

|ak − bk| ≤
δ

n
(n ∈ N).

Next, sincek(z) ∈ Sg(n, p, q, λ, b, β), we have [cf. equation (2.8)] that

(3.7)
∞∑

k=n

bk ≤
β |b| [1 + λ(p− q − 1)]θ(p, q)

(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn

,

so that ∣∣∣∣f(z)

k(z)
− 1

∣∣∣∣ ≤
∞∑

k=n

|ak − bk|

1−
∞∑

k=n

bk

≤ δ(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn

n {(n + β |b| − p)[1 + λ(n− q − 1)]θ(n, q)bn − β |b| [1 + λ(p− q − 1)]θ(p, q)}
(3.8) = p− α,

provided thatα is given by (3.2). Thus, by the above definition,f(z) ∈ S
(α)
g (n, p, q, λ, b, β) for

α given by (3.2). This evidently proves Theorem 3.1.
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Remark 3.1. (i) Puttingλ = 0 in Theorem 3.1, we obtain the result obtained by Prajapat et al.
[ [12], Theorem 5 withq = 0 ];

(ii) Puttingλ = 0 , β = 1, replacingn by n + p and choosingbn =

(
ν + n + p− 1

n

)
(ν >

−p), in Theorem 3.1, we obtain the result obtained by Raina and Srivastava [ [13], Theorem 5].

The proof of Theorem 3.2 below is similar to that of Theorem 3.1 above, therefore, we omit
the details involved.

Theorem 3.2. If k(z) ∈ Pg(n, p, q, λ, b, β) and

(3.9) α = p− δ[(p− q) + λ(n− p)]θ(n, q)bn

n {(p− q) + λ(n− p)]θ(n, q)bn − (p− q)β |b|}
,

then

(3.10) Nn,δ(k) ⊂ P (α)
g (n, p, q, λ, b, β),

where

(3.11) δ ≤ pn
[
1 − (p− q)β |b| . { [(p− q) + λ(n− p)] θ(n, q)bn}−1] .

Remark 3.2. (i) We note that the result obtained by Prajapat et al. [ [12], Theorem 6 ] is not
correct. The correct result is given by (3.9) withβ = 1;

(ii) We note that the result obtained by Raina and Srivastava [ [13], Theorem 6 ] is not correct.
The correct result is given by (3.9) by takingλ = 0 andβ = 1, replacingn by n + p and

choosingbn = (
ν + n + p− 1

n
) (ν > −p).
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