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1. I NTRODUCTION

Bohr’s inequality [8, page 499], states:for anyz, w ∈ C and for anyp, q > 1 with 1
p
+ 1

q
= 1

(1.1) |z + w|2 ≤ p |z|2 + q |w|2

holds with equality iffw = (p− 1) z.
This inequality has many extensions and generalizations, see all the references and their

references except [6].
In Section 2 we extend Bohr’s theorem forz, w ∈ R+ by replacing the power 2 with powers

r ≥ 2 and with powers1 ≤ r ≤ 2.

In Section 3 we extend the following theorem proved in [6]:For integersn > 1, and for
xi ≥ 0, i = 1, ..., n the inequalitymax

1≤k≤n
{|xk − a|} ≤

√
(n− 1) (b− a2) holds, wherea =

1
n

∑n
i=1 xi and b = 1

n

∑n
i=1 x2

i .

In all the proofs we use the properties of superquadratic functions. Therefore we first quote
those definitions and theorems related to superquadracity we use in the sequel:

Definition 1.1. [1, Def2.1] A functionf , defined on an intervalI = [0, l] or [0,∞) is su-
perquadratic, if for eachx in I, there exists a real numberC(x) such that

(1.2) f(y)− f(x) ≥ C(x)(y − x) + f(|y − x|)
for all y ∈ I. If −f is superquadratic thenf is called subquadratic.

Theorem 1.1. [1, Th2.3]. The inequality

(1.3) f

(∫
gdµ

)
≤
∫ (

f (g (s))− f

(∣∣∣∣g (s)−
∫

gdµ

∣∣∣∣)) dµ (s)

holds for all probability measuresµ and all non-negativeµ−integrable functionsg, if and only
if f is superquadratic.

The discrete version that follows from the above theorem is also used in the sequel:

Lemma 1.2. Suppose thatf is superquadratic. Letxr ≥ 0, 1 ≤ r ≤ n and letx̄ =
∑n

r=1 λrxr

whereλr ≥ 0 and
∑n

r=1 λr = 1. Then
n∑

r=1

λrf(xr) ≥ f(x̄) +
n∑

r=1

λrf(|xr − x̄|).

In particular ifn = 2 we get from Lemma 1.2 that for0 ≤ α ≤ 1, a, b ≥ 0

αf (a) + (1− α) f (b)− f (αa + (1− α) b)(1.4)

≥ αf ((1− α) |b− a|) + (1− α) f (α |b− a|) .

Lemma 1.3. [1, Lemma 2.2]Letf be a superquadratic function withC(x) as in Definition 1.
Then

(i) f(0) ≤ 0.
(ii) If f(0) = f ′(0) = 0 thenC(x) = f ′(x) whereverf is differentiable atx > 0.
(iii) If f ≥ 0, thenf is convex andf (0) = f ′(0) = 0.

The functionsf (x) = xp, x ≥ 0, are superquadratic forp ≥ 2, and subquadratic for
0 ≤ p ≤ 2, [1].
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For the special casef (x) = x2 we get equalities in (1.2), (1.3), and (1.4) and in (1.2)C (x) =
2x = (x2)

′
.

2. BOHR ’ S TYPE INEQUALITIES AND EXTENTION OF THE PARALLELOGRAM LAW , VIA

SUPERQUADRATIC AND SUBQUADRATIC FUNCTIONS

In [5] the following theorems were proved:

Theorem 2.1. [5, Theorem1,Corollary1,Theorem2]:Let H be a complex separable Hilbert
space andB (H) the algebra of all bounded linear operators onH. Let |X| = (X∗X)1/2

for anyX ∈ B (H) . Then for anyA, B ∈ B (H) and anyp, q ∈ R with 1
p

+ 1
q

= 1.

If 1 < p ≤ 2 the inequalities
(i) |A−B|2 + |(1− p) A−B|2 ≤ p |A|2 + q |B|2 ,
and
(ii) |A−B|2 + |A− (1− q) B|2 ≥ p |A|2 + q |B|2
hold.
Furthermore, in both (i) and (ii), the equality holds iffp = q = 2 or (1− p) A = B.

If p ≥ 2
(iii) |A−B|2 + |(1− p) A−B|2 ≥ p |A|2 + q |B|2 ,
and
(iv) |A−B|2 + |A− (1− q) B|2 ≤ p |A|2 + q |B|2
hold.
Furthermore, in both (iii) and (iv), the equality holds iff(1− p) A = B.

If p < 1
(v) |A−B|2 + |(1− p) A−B|2 ≥ p |A|2 + q |B|2 ,
and
(vi) |A−B|2 + |A− (1− q) B|2 ≥ p |A|2 + q |B|2
hold.
Furthermore, in both (v) and (vi), the equality holds iff(1− p) A = B.

WhenH = C andB (H) = C, Theorem 2.1 becomes the following theorem:

Theorem 2.2. [5, Theorem1,Corollary1,Theorem2]: For any A, B ∈ C and anyp, q ∈ R
with 1

p
+ 1

q
= 1, we get that (i) to (vi) hold, furthermore,

(vii) if p > 1,
|A−B|2 ≤ p |A|2 + q |B|2 ,

with equality iff (1− p) A = B, which is exactly the classical Bohr’s inequality.

In the following we extend Theorem 2.1 forx ∈ R+ to powers different thanr = 2.

Theorem 2.3.For anya, b ∈ R+ and for anyp, q ∈ R with 1
p

+ 1
q

= 1

(i) for r ≥ 2 and1 < p ≤ 2 (q ≥ 2) we get the inequality:

(2.1) par + qbr ≥ 1

2r−2
((p− 1) a + b)r +

1

2r−2
|b− a|r

and forq, 1 < q ≤ 2, (p ≥ 2) we get that

(2.2) par + qbr ≥ 1

2r−2
(a + (q − 1) b)r +

1

2r−2
|b− a|r

equality holds in (2.1) and (2.2) whenr > 2 if p = q = 2 anda = b. Moreover, if r = 2
equality holds in (2.1) and (2.2) ifp = q = 2, which is the parallelogram law.
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(ii) for 1 ≤ r ≤ 2, if p ≥ 2, (1 < q ≤ 2) , we get that

(2.3) par + qbr ≤ 1

2r−2
((p− 1) a + b)r +

1

2r−2
|b− a|r

and analogously if1 < p ≤ 2, (q ≥ 2)

(2.4) par + qbr ≤ 1

2r−2
(a + (q − 1) b)r +

1

2r−2
|b− a|r .

For p = q = 2, 1 ≤ r ≤ 2 we get that

(2.5) (a + b)r ≤ 2r−1 (ar + br) ≤ (a + b)r + (b− a)r

which we may consider as an extention of the parallelogram law.
(iii) for r = 2 if 1 < p ≤ 2, (q ≥ 2) we get that

((p− 1) a + b)2 + |b− a|2 ≤ pa2 + qb2 ≤ (a + (q − 1) b)2 + |b− a|2 ,

and if2 ≤ p, (1 < q ≤ 2)

(a + (q − 1) b)2 + |b− a|2 ≤ pa2 + qb2 ≤ ((p− 1) a + b)2 + |b− a|2 .

Proof. From (1.4) we get for the superquadratic functionf (x) = xr, r ≥ 2, 0 ≤ α ≤ 1,
β = 1− α that

αar + βbr ≥ (αa + βb)r + (αβr + βαr) |b− a|r(2.6)

= (αa + βb)r + αβ
(
βr−1 + αr−1

)
|b− a|r .

By the substitution1
α

= q 1
1−α

= p we get for0 < α < 1 after some manipulations that (2.6)
is equivalent to

(2.7) par + qbr ≥ 1

(p− 1) pr−2
((p− 1) a + b)r +

(
αr−1 + βr−1

)
|b− a|r .

As r ≥ 2 we get thatαr−1 + βr−1 ≥ 1
2r−2 and for1 ≤ p ≤ 2 we get 1

(p−1)pr−2 ≥ 1
2r−2 .

Hence forr ≥ 2 and1 < p ≤ 2 (q ≥ 2) we get the inequality (2.1), and for1 < q ≤ 2,
(p ≥ 2) we get (2.2). It is obvious that equality holds in (2.1) and (2.2) whenr > 2 if p = q = 2
anda = b. It is also clear from (2.6) and (2.7) that ifr = 2 equality holds in (2.1) and (2.2) if
p = q = 2 and in this case we get the parallelogram law.

Now, for 1 ≤ r ≤ 2, f (x) = xr is a subquadratic function. Hence we get for0 < α < 1
β = (1− α) , a, b ≥ 0, α = 1

q
, β = 1

p

(2.8) par + qbr ≤ 1

(p− 1) pr−2
((p− 1) a + b)r +

(
αr−1 + βr−1

)
|b− a|r .

As 1 ≤ r ≤ 2 we get thatαr−1 + βr−1 ≤ 22−r and if p > 2, 1
(p−1)pr−2 < 1

2r−2 and hence if
p ≥ 2, (1 < q ≤ 2) , we get from (2.8) that (2.3) holds and analogously if1 < p ≤ 2, (q ≥ 2) ,
1 ≤ r ≤ 2, we get from (2.8) that (2.4) holds. Forp = q = 2, 1 ≤ r ≤ 2 we get that

(a + b)r ≤ 2r−1 (ar + br) ≤ (a + b)r + (b− a)r

which we may consider as an extention of the parallelogram law. The left hand side of this is
Inequality 4 in [10]

In caser = 2 we get from (2.1) and (2.4) that for1 ≤ p ≤ 2

((p− 1) a + b)2 + |b− a|2 ≤ pa2 + qb2 ≤ (a + (q − 1) b)2 + |b− a|2

holds and if2 ≤ p, (1 < q ≤ 2)

(a + (q − 1) b)2 + |b− a|2 ≤ pa2 + qb2 ≤ ((p− 1) a + b)2 + |b− a|2 .
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Remark 2.1. For x ≥ 0, Theorem 2.3 generalize Theorem 2.1. Indeed, forr = 2 (2.1) is the
same as Theorem 2.1(i), and (2.2) is the same as Theorem 2.1(iv), (2.3) is the same as Theorem
2.1(iii) and (2.4) is the same as Theorem 2.1(ii).

P. M. Vasíc and J. D. Kěckić [13] generalize (1.1) to the following: Forz1, z2, ..., zn ∈ C,
w1, w2, ...wn > 0 andp > 1, we have

(2.9)

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
p

≤

(
n∑

i=1

w
1/(1−p)
i

)p−1 n∑
i=1

wi |zi|p .

Equality holds iffw1 |z1| = w2 |z2| = ... = wn |zn| andzkzj ≥ 0, k, j = 1, 2, ..., n.
In the following theorem we refine (2.9) whenzi ≥ 0, i = 1, ..., n for p ≥ 2, and get a

companion inequality of (2.9) for1 < p ≤ 2.

Theorem 2.4.Letxi ≥ 0 andwi > 0, i = 1, ..., n. Then forp ≥ 2

(2.10)(
n∑

i=1

xi

)p

≤

(
n∑

i=1

w
1/(1−p)
i

)p−1 n∑
i=1

wix
p
i

−

(
n∑

i=1

w
1/(1−p)
i

)−1 n∑
j=1

wj

∣∣∣∣∣xj

n∑
i=1

w
1/(1−p)
i −

n∑
i=1

xiw
1/(1−p)
i

∣∣∣∣∣ .
For 0 < p ≤ 2 the inequality is reversed.

Proof. For p ≥ 2 andx ≥ 0 f (x) = xp is superquadratic, therefore from Lemma 1.2 we get
that

(2.11)
1

An

n∑
i=1

aix
p
i ≥

(
1

An

n∑
i=1

aixi

)p

+
1

An

n∑
i=1

ai

(∣∣∣∣∣xi −
1

An

n∑
j=1

ajxj

∣∣∣∣∣
)p

,

whereai > 0, xi ≥ 0, i = 1, ..., n andAn =
∑n

i=1 ai.
Substitutingxi → xi

ai
, i = 1, ..., n, we get from (2.11)

(2.12)
1

An

n∑
i=1

a
(1−p)
i xp

i ≥
1

Ap
n

(
n∑

i=1

xi

)p

+
1

An

n∑
i=1

ai

(∣∣∣∣∣xi

ai

− 1

An

n∑
j=1

xj

∣∣∣∣∣
)p

.

The substitutiona(1−p)
i = wi, i = 1, ..., n in (2.12) leads to

1∑n
i=1 w

1/(1−p)
i

n∑
i=1

wix
p
i

≥ 1(∑n
i=1 w

1/(1−p)
i

)p

(
n∑

i=1

xi

)p

+
1(∑n

i=1 w
1/(1−p)
i

)p+1

n∑
j=1

wj

∣∣∣∣∣xj

n∑
i=1

w
1/(1−p)
i −

n∑
i=1

xiw
1/(1−p)
i

∣∣∣∣∣
which is equivalent to (2.10). This is a refinement of (2.9) forp ≥ 2 andx ≥ 0.
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When0 < p ≤ 2 andx ≥ 0 f (x) = xp is subquadratic, hence, in this case we get the reverse
inequality of (2.10). This can be seen as a companion inequality of (2.9) when0 < p ≤ 2 and
x ≥ 0.

In the following Theorem 2.5 we get a reversal of Bohr’s type inequality for superquadratic
functions by using the reversal of Jensen’s inequality that was established in [2, Theorem 3 and
Remark 3] , see also [3]:

Let (a1, ..., an) be a real n-tuple such that

(2.13) a1 > 0, ai ≤ 0, i = 2, ..., n, An =
n∑

i=1

ai > 0.

If xi ≥ 0, i = 2, ..., n andx = 1
An

∑n
i=1 aixi ≥ 0, then for a superquadratic functionf :

[0,∞) → R the following inequality

(2.14) f

(
1

An

n∑
i=1

aixi

)
≥ 1

An

n∑
i=1

aif (xi) + f (|x− x1|)−
1

An

n∑
i=2

aif (|xi − x1|)

holds. Moreover whenf in a nonnegative superquadratic function, the following refinement of
the reversal of Jensen’s inequality is obtained:

f

(
1

An

n∑
i=1

aixi

)
(2.15)

≥ 1

An

n∑
i=1

aif (xi) + f (|x− x1|)−
1

An

n∑
i=1

aif (|xi − x1|) ≥
1

An

n∑
i=1

aif (xi) .

To get the reversal of Bohr’s inequality we chosef (x) = xp , x ≥ 0, p ≥ 2 in (2.15) and we
get:

Theorem 2.5. Let z1 ≥ 0, zi ≤ 0, w1 > 0, wi ≤ 0, i = 2, ..., n,
∑n

i=1 zi > 0,
∑n

i=1 wi > 0,
p ≥ 2, then (

n∑
i=1

zi

)p

(2.16)

≥

(
n∑

i=1

wi |wi|
p

1−p

)p−1 n∑
i=1

wi |zi|p

+

∣∣∣∣∣∣
( n∑

i=1

zi

)
−
∑n

i=1 wi |wi|
p

1−p

w
1

1−p

1

z1

∣∣∣∣∣∣
p

−

(
n∑

i=1

wi |wi|
p

1−p

)p−1 n∑
i=2

wi

∣∣∣∣∣∣zi −
∑n

i=1 wi |wi|
p

1−p

w
1

1−p

1

z1

∣∣∣∣∣∣
p

holds.

Proof. The functionf (x) = xp p ≥ 2, x ≥ 0 is a non-negative superquadratic function and
therefore, satisfies (2.15). For this function we make the following change of variables

(2.17) xiai = zi, i = 1, ..., n.
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For xi ≥ 0 andai, i = 1, ..., n which satisfies (2.13), we get thatz1 ≥ 0, zi ≤ 0, i = 2, ..., n,∑n
i=1 zi ≥ 0 and

∣∣∣ zi

ai

∣∣∣ = zi

ai
i = 1, ..., n. Therefore, inserting (2.17) in (2.15) we get

A−p
n

(
n∑

i=1

zi

)p

(2.18)

≥ A−1
n

n∑
i=1

ai |ai|−p |zi|p + A−p
n

∣∣∣∣∣
((

n∑
i=1

zi

)
−
∑n

i=1 ai

a1

z1

)∣∣∣∣∣
p

−A−1
n

n∑
i=2

ai |ai|−p

∣∣∣∣zi −
ai

a1

z1

∣∣∣∣p .

Replacing in (2.17)ai |ai|−p = wi and thereforeai = wi |wi|
p

1−p , i = 1, ..., n we get that (2.16)
holds.

3. UPPER BOUNDS FOR DEVIATIONS FROM A M EAN VALUE

In [6] A. Cipu proved the following theorem:

Theorem 3.1. Let n > 1 be an integer andx1, x2, ..., xn be positive real numbers. Denote
a = 1

n

∑n
i=1 xi and b = 1

n

∑n
i=1 x2

i , then max
1≤k≤n

{|xk − a|} ≤
√

(n− 1) (b− a2).

We extend this theorem in the following two theorems:

Theorem 3.2. Let n > 1 be an integer andx1, x2, ..., xn be positive real numbers. Denote
a =

∑n
i=1 αixi and c =

∑n
i=1 αix

p
i , where 0 < αi < 1, i = 1, ..., n

∑
αi = 1, p ≥ 2,

then

(3.1) max
1≤k≤n

{|xk − a|} ≤ T (c− ap)
1
p

where

T =
(1− α0)

1− 1
p

α
1
p

0

(
αp−1

0 + (1− α0)
p−1) 1

p

, α0 = min
1≤k≤n

(αk) .

Remark 3.1. It is easy to see that Theorem 3.1 is a special case of Theorem 3.2 wherep = 2,
αk = 1

n
, k = 1, ..., n.

Theorem 3.3.Letf be a positive superquadratic function on[0,∞), which satisfiesf (AB) ≤
f (A) f (B) for A > 0, B > 0.

Let x1, x2, ..., xn be positive real numbers. Denotea =
∑n

i=1
xi

n
and d = 1

n

∑n
i=1 f (xi) ,

then

(3.2) max
1≤k≤n

(f (|xk − a|)) ≤ f (n− 1) n

n− 1 + f (n− 1)
(d− f (a)) .

Remark 3.2. For αi = 1
n
, i=1,...,n Theorem 3.2 is a special case of Theorem 3.3.

Proof. (of Theorem 3.2) f (x) = xp p ≥ 2 is superquadratic and symmetric, therefore
applying Lemma 1.2

(3.3)
n∑

i=1

αkx
p
i −

(
n∑

i=1

αkxi

)p

≥
n∑

i=1

αk (|xi − a|)p

holds.
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Denote yi = xi−a, i = 1, ..., n. Then from
∑n

i=1 αiyi = 0 we get from Hölder’s inequality

(αn |yn|)p =

(∣∣∣∣∣
n−1∑
i=1

αiyi

∣∣∣∣∣
)p

≤

(
n−1∑
i=1

αi |yi|

)p

=

(
n−1∑
i=1

α
1− 1

p

i (αi |yi|p)
1
p

)p

≤

(
n−1∑
i=1

αi

)p−1 n−1∑
i=1

αi |yi|p ,

and

(αn |yn|)p ≤ (1− αn)p−1

(
n∑

i=1

αi |yi|p − αn |yn|p
)

.

Therefore from (3.3)

αn

(
αp−1

n + (1− αn)p−1) |yn|p ≤ (1− αn)p−1 (c− ap)

which by taking into consideraation that (1−α)p−1

α(αp−1+(1−α)p−1)
is decreasing for0 < α < 1 leads to

(3.1).

Proof. (of Theorem 3.3) The functionf is superquadratic on[0,∞) , therefore from Lemma
1.2 forλi = 1

n
, i = 1, ..., n

(3.4)
n∑

i=1

f (xi)

n
− f

(∑n
i=1 xi

n

)
≥ 1

n

n∑
i=1

f

(
xi −

∑n
i=1 xi

n

)
holds.

In other words foryi = xi − a, i = 1, ..., n,

(3.5)
1

n

n∑
i=1

f (|yi|) ≤ d− f (a)

holds.
From

∑n
i=1 yi = 0 we get that |yn| =

∣∣−∑n−1
i=1 yi

∣∣ . As f is positive, according to Lemma
1.3 it is convex and also increasing, and therefore

f (|yn|) = f

(∣∣∣∣∣−
n−1∑
i=1

yi

∣∣∣∣∣
)
≤ f

(
n−1∑
i=1

|yi|

)
(3.6)

= f

(
(n− 1)

n−1∑
i=1

f−1 (f (|yi|))
n− 1

)

≤ f

(
(n− 1) f−1

(∑n−1
i=1 f (|yi|)
n− 1

))
.

Indeed, the left side inequality is becausef is increasing and the right side inequality follows
becausef−1 is concave andf is increasing.

As f satisfies alsof (AB) ≤ f (A) f (B) we get that

(3.7) f

(
(n− 1) f−1

(∑n−1
i=1 f (|yi|)
n− 1

))
≤ f (n− 1)

n− 1

n−1∑
i=1

f (|yi|)
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and from (3.5), (3.6) and (3.7) we obtain

f (|yn|) ≤
f (n− 1)

n− 1

(
n−1∑
i=1

f (|yi|)− f (|yn|)

)
.

From the last inequality asf(x) is positive and increasing, together with (3.5)

n− 1 + f (n− 1)

n− 1
f (|yn|) ≤

f (n− 1)

n− 1

n∑
i=1

f (|yi|) ≤
f (n− 1)

n− 1
n (d− f (a))

holds, which is equivalent to (3.2).
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[4] W-S. CHEUNG, J. PĚCARIĆ and D. ZHAO, On Bohr’s inequalities, In:Inequalities and applica-
tions, TH. M. RASSIAS, ed.,to appear.
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