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2 S. ABRAMOVICH AND J. BARIC AND J. PECARIC

1. INTRODUCTION
Bohr’s inequality [8, page 499], statder anyz, w € C and for anyp, ¢ > 1 with é + é =1
(1.1) 2+ wl* < plz* + q|w]”

holds with equality iffw = (p — 1) 2.

This inequality has many extensions and generalizations, see all the references and their
references except/[6].

In Section 2 we extend Bohr’s theorem forw € R* by replacing the power 2 with powers
r > 2 and with powerd <r < 2.

In Section 3 we extend the following theorem provedLlin [Bfr integersn > 1, and for
x; >0,i=1,..,n the inequalitylrgkag {lz. — al} < v/(n —1) (b — a?) holds, wherea =

1 n _ 1 n 2
w2ic T and b= o500 a

In all the proofs we use the properties of superquadratic functions. Therefore we first quote
those definitions and theorems related to superquadracity we use in the sequel:

Definition 1.1. [1, Def2.1] A function f, defined on an interval = [0,{] or [0, c0) is Su-
perquadratic, if for each in I, there exists a real numbeéf(z) such that

(1.2) fy) = f(z) = C(x)(y — =) + f(ly — =)

forally € I.If —f is superquadratic thefis called subquadratic.

Theorem 1.1.[1}, Th2.3] The inequality
))n o

(1.3) f (/gdu> < / (f (g(s)) = f (‘9(8) —/gdu

holds for all probability measureg and all non-negative,—integrable functiong, if and only
if fis superquadratic.

The discrete version that follows from the above theorem is also used in the sequel:

Lemma 1.2. Suppose thaf is superquadratic. Let, > 0,1 <r <nandletz =3 ", Az,
where), > 0and) "_, A\, = 1. Then

D NS (@) = @)+ ) A (|2 — ).

In particular ifn = 2 we get from Lemm@a 1]2 thatfob < o < 1, a,b >0

(1.4) af(a)+(1—a) f(b) — f(aa+ (1 —a)bd)
> af(l-a)fb—al)+(1—a)f(a|b—al).

Lemma 1.3.[1, Lemma 2.2]Let f be a superquadratic function with(z) as in Definition 1.
Then

(i) f(0)<0.

(i) If f£(0) = f'(0) =0thenC(x) = f'(x) whereverf is differentiable at: > 0.

(i) If f >0, thenf is convex andf (0) = f/'(0) = 0.

The functionsf (z) = 2P, = > 0, are superquadratic fgr > 2, and subquadratic for
0<p<2[1]
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For the special casg(z) = = we get equalities ir} (1]2), (1.3), arjd (1.4) and in(L2)) =

21 = (x2)’.
2. BOHR’S TYPE INEQUALITIES AND EXTENTION OF THE PARALLELOGRAM LAW , VIA
SUPERQUADRATIC AND SUBQUADRATIC FUNCTIONS
In [5] the following theorems were proved:

Theorem 2.1. [5, Theoreml1,Corollaryl, TheoremRgt H be a complex separable Hilbert

space andB (H) the algebra of all bounded linear operators dh. Let|X| = (X*X)"?
forany X € B (H). Then for anyA, B € B (H) and anyp, ¢ € R with % + % =1

If 1 < p < 2the inequalities
) |A=B+|(1—-p) A= B> <plA]" +q|BI,

and 2 2 2 2

(i) |[A—B|"+[A—-(1-¢q)B" = p|A]" +¢|B]

hold.

Furthermore, in both (i) and (i), the equality holds jffi=¢ =2 or (1 — p) A = B.
ifp>2

(ii)) [A =B +|(1=p) A= B> > p|A] +q|B",

and 2 2 2 2

(iv) [A=B["+[A—(1—q)B]" <plA]"+¢|B]

hold.

Furthermore, in both (iii) and (iv), the equality holds {ff — p) A = B.
Ifp<1

V) [A=BI"+|(1-p) A= B> pl|A]" +¢|BI",

and

(Vi) [A— B +]|A—(1-q)B" 2 p|A]" +¢|B"

hold.

Furthermore, in both (v) and (vi), the equality holds(iff— p) A = B.

WhenH = CandB (H) = C, Theorenj 2.1 becomes the following theorem:
Theorem 2.2. [5, Theorem1,Corollaryl, Theorem2for any A, B € C and anyp,q € R
with }D + 5 = 1, we get that (i) to (vi) hold, furthermore,

(vit) if p>1,

|A— B> <p|A+q|Bf,
with equality iff (1 — p) A = B, which is exactly the classical Bohr’s inequality.
In the following we extend Theorem 2.1 fore R* to powers different than = 2.

Theorem 2.3.For anya, b € R* and for anyp,g € R with 1 + 1 =1
(i) forr > 2 and1 < p < 2 (¢ > 2) we get the inequality:

1 | .
(2.1) par+qu2ﬁ((p—1)a+b) —|—F|b—a|
andforg, 1 <¢q <2, (p>2) we getthat
(2.2) pa’ +qb" 2 =5 (a+ (¢ =) + o= [b—al’

equality holds in[(2]1) and (2.2) when> 2if p = ¢ = 2 anda = b. Moreover, if r = 2
equality holds in[(2]1) and (2.2) ip = ¢ = 2, which is the parallelogram law.
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(i) for 1 <r <2/ if p>2, (1 <qg<2),we getthat

(2.3) pa’ gl < o ((p-Da+d) + 5 b—al
and analogously it <p <2, (¢ > 2)

1 r 1 r
(2.4) pa’ + b < o5 (a+ (g = 1)) + 5= [b—al".
Forp=g=21<r<2 we getthat
(2.5) (a+b)" <2 @ +b)<(a+b)"+(b—a)

which we may consider as an extention of the parallelogram law.
(i) for r=2if 1 < p <2, (¢ > 2) we get that

(p—1Da+b?+[p—af <pa®+qp < (a+(g—1)b)° +[b—af”,
andif2 <p, (1 <¢<2)

(a+(@=1)b)"+[b—a|* <pa® +gb* < ((p—1)a+b)’+|b—al’.
Proof. From (1.4) we get for the superquadratic functipfw) = 2", r > 2, 0 < o < 1,
f=1—a that
(2.6) aa” + 0" > (aa+ pb) + (af" + Ba”)|b—al

= (aa+pBb) +aB (B +a ) |b—al .
By the substitutiont = ¢ - = p we get for0 < a < 1 after some manipulations th.6)
is equivalent to
1

(p—1)p—2
Asr > 2 we get thata”~' + 8"~ > -1, and forl < p < 2 we get p_ﬁp,.,z > .

Hence forr > 2 andl < p < 2 (¢ > 2) we get the inequalit 1), and far< ¢ < 2,
(p > 2) we get[2.R). Itis obvious that equality holds|in (2.1) dnd|(2.2) when2if p = ¢ = 2
anda = b. Itis also clear from[(2]6) andl (2.7) thatif= 2 equality holds in[(2]1) and (2.2) if
p = q =2 and in this case we get the parallelogram law.

Now, for1 < r < 2, f (z) = 2" is a subquadratic function. Hence we get for< o < 1
f=(1-a), a,b>0, a=1 g=1

p

(2.7) pa’ + qb" > (p—1)a+b)" + (ar_l —I—ﬁr_l) |b—al".

(2.8) pa’ +qb" < (p=Da+b)"+ (@ +67")|b—al.

(p—1)p—2
As1 <r <2 wegetthaty ' + "' <227 andifp > 2, oo < ~L> and hence if
p>2, (1<q<2),wegetfrom[2.B) thaf (2|3) holds and analogously i p < 2, (¢ > 2),
1 <r <2, we get from[(2.B) thaf (2}4) holds. Fpr=¢ =2,1 <r <2 we getthat

(a+b)" <27 (a"+b") < (a+b)" + (b—a)

which we may consider as an extention of the parallelogram law. The left hand side of this is
Inequality 4 in [10]
In caser = 2 we get from|[(2.]1) and (2/4) that far< p < 2

(p—1Da+b)*+|b—af* <pa®+qb®* < (a+(qg—1)b)° +[b—al’
holds and if2 < p, (1 < ¢ < 2)
(a+ (q=1)b> +[b—al* <pa®+qb”> < (p—Da+b)’+[b—al’.
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Remark 2.1. Forz > 0, Theorenj 2.B generalize Theorém|2.1. Indeedyfer 2 (2.1) is the
same as Theorem 2.1(i), and (2.2) is the same as Théorém 2[I(iy), (2.3) is the same as Theorem

[2.7(iii) and [2.4) is the same as Theorem 2.1(ii).

P. M. Vast and J. D. Kéki¢ [13] generalize[(1]1) to the following: Faf, 2, ..., z, € C,
wi, wa, ...w, > 0andp > 1, we have

p n p—1 4
< (Z wz_l/(l—p)> Z w; |z
i=1

=1

n

P

=1

(2.9)

Equality holds iffw; |z1| = wa 22| = ... = wy, |2z,] @Nd2zZ; > 0, k,j =1,2,...,n
In the following theorem we refing (2.9) when > 0,7 = 1,...,n for p > 2, and get a
companion inequality of (219) far < p < 2.

Theorem 2.4.Letx; > 0 andw; > 0,7 =1, ...,n. Then forp > 2
(2.10)

n p n =1 5
<Z l‘z) < (Z wil/(l—p)> Z w;z?
=1

i=1

_(i 1 p>> Xn:wj

i=1

%Z 1/(1-p) wal/u )

=1

For 0 < p < 2 the inequality is reversed.

Proof. Forp > 2 andz > 0 f (z) = z* is superquadratic, therefore from Lemma] 1.2 we get

that
) p

1 n 1 n p 1 n
(2.11) - iy > <— i z> +— z(
An;a/x An;am An;a/

wherea; > 0,z; > 0,i=1,..,nandA4, = > a;.
Substitutinge; — £, 4 = 1, ..., n, we get from )

n n p n
1 S alt 1 1 3
(212) A—n .- a; xf Z —g : Z; + A_n 1 a;

A=) — 4y i =1,...,nin (2.12) leads to

1 n
ZCi——E a;T;
An. 77

Jj=1

The substitution,

D i Wi i=1

n n

wy |y 3 w0 =3 /0P

i=1 i=1

which is equivalent tq (2.10). This is a refinement[of(2.9),for 2 andz > 0.
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When0 < p <2andz > 0 f (z) = 2z is subquadratic, hence, in this case we get the reverse
inequality of [2.10). This can be seen as a companion inequalify df (2.9) Wkep < 2 and
x>0.1

In the following Theorem 2]5 we get a reversal of Bohr’s type inequality for superquadratic
functions by using the reversal of Jensen’s inequality that was established in [2, Theorem 3 and
Remark 3], see also][3]:

Let (a4, ..., a,) be areal n-tuple such that

(2.13) a1 >0, ¢; <0, i=2..n A,=)» a;>0.
=1

If z; > 0,i = 2,...,nandz = ALRZ?ZI a;z; > 0, then for a superquadratic functigh :
[0,00) — R the following inequality

1 < 1 < _ 1 <
(214)  f D aw | = Y af (w) ([T ml) - D af (lni— )

no_q n o1 L))
holds. Moreover wherf in a nonnegative superquadratic function, the following refinement of
the reversal of Jensen’s inequality is obtained:

> LY @)+ F o) - Y (e = 4D el ().
" =1 m =1

" oi=1

n

To get the reversal of Bohr’s inequality we choéér) = 27 , = > 0, p > 2in (2.15) and we
get:

Theorem 2.5.Letz; > 0,2, < 0,w; >0, w; <0,i=2,...,n, Y 2z >0, > w >0,
p > 2, then

(2.16) (i zl-)

p

holds.

Proof. The functionf (z) = 2? p > 2, x > 0 is a non-negative superquadratic function and
therefore, satisfie§ (2.[15). For this function we make the following change of variables

(2.17) ria; =2, 1=1,...n.
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Forz; > 0 anda;, i = 1,...,n which satisfies[(2.13), we get that > 0, z; < 0,¢i = 2,...,n
Sor,z >0 and’ Zl‘ =2i=1,..n Therefore, inserting (2.17) in (2.15) we get

(2.18) AP (i zi>

n
> AN g a7 |al + AP

B i=1
—A- EE:CQ|GJ_

Replacing in 7)%- la;| " = w; and thereforey; = w; ]wi]ﬁ ,i=1,...,nwe get that6)
holds.n

3. UPPER BOUNDS FOR DEVIATIONS FROM A MEAN VALUE
In [6] A. Cipu proved the following theorem:

Theorem 3.1.Letn > 1 be an integer and:, z, ..., x,, be positive real numbers. Denote
a=23" xz;andb=1%" 27 then max ﬂxk——aH»< V(n—1)(b—a?).

We extend this theorem in the followmg two theorems:

Theorem 3.2.Letn > 1 be an integer andq, zs, ..., z,, be positive real numbers. Denote
a=>Y ., ar; and ¢ =>" ozt where0 <a; <1, i=1,...n > a; =1 p>2

17

then
1
_ S P
(3.1) max {|e —al} <T(c - a”)
where )
(1—ap)'

T — , ap = min (ay).

1<k<n

B =

1
oy (ag_l—%(l —»o@)pfl)

Remark 3.1. It is easy to see that Theorém[3.1 is a special case of Théorém 3.2 wherz
1
ap = o k= 1,...,71

Theorem 3.3.Let f be a positive superquadratic function {inoco), which satisfiesf (AB) <
f(A)f(B) forA>0,B >0.

Lety,z, ..., 2, be positive real numbers. Denate= ", & and d = £ Y% | f (),
then

fn=1)n
(32) s (fax =) < = s (A £ (a).

Remark 3.2. For o; = 1, i=1,...,n Theorerh 3|2 is a special case of Thedrerh 3.3.

Proof. (of Theorem[ 3.R) f (z) = 2? p > 2 is superquadratic and symmetric, therefore
applying Lemma 1]2

n n p n
(3.3) Z aprt — (Z Otk%) > Z o (|z; — al)”
=1 =1 =1

holds.

AJMAA Vol. 7, No. 1, Art. 1, pp. 1-9, 2010 AIJMAA


http://ajmaa.org

8 S. ABRAMOVICH AND J. BARIC AND J. PECARIC

Denotey = z;—a, i =1,..,n. Thenfrom}_" | a;y; = 0 we get from Holder’s inequality

( n—1
i=1

(o |ynl)”

Z%’%
n—1 L1 ) p n—1 Pl
= (Zai p(az‘|?/z‘|p)”> S (ZO‘Z) >_ailyl’

i=1

and

(an [yal)” < (1 = )" (Zaz|yz| _an|yn|>'

Therefore from[(3]3)

o (@™ + (1= )" ) Jyal” < (1= )" (e = a?)

which by taking into consideraation thaa(tapflljr‘(‘ip_:)p,l) is decreasing fod < o < 1 leads to
G.1)-»

Proof. (of Theoren.) The functioi is superquadratic of), o) , therefore from Lemma

[L3forn, =1 i=1,.
— [ () D i1 T 1 D iy Ti
(3.4) ;T—f(Tl)zﬁgf@—Tl)

holds.
In other words fory; = z; —a,i=1,...,n,

n

1
(3.5) =D fuh <d=[()
=1
holds.
From > ", y;, = 0 we get that|y,| = \— Z;‘: yl‘ . As f is positive, according to Lemma

[1.3itis convex and also increasing, and therefore

(3.6) Flwl) = F{]-D]

lyi > <f (nz_lly!>

n—
i=1

= f Zf n_|1yz )

< - )f1<2n_f(1|yzl)>>‘

Indeed, the left side inequality is becauseés increasing and the right side inequality follows
because ! is concave and is increasing.
As f satisfies alsg (AB) < f (A) f (B) we get that

37) f((n 1) (Z “'%')))s%xmm
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and from 3.5),[(3J6) andl (3.7) we obtain
1 n—1
) < LD <Zf<|yi|> - f(lyn|)> -
=1
From the last inequality ag(x) is positive and increasing, together with (3.5)
n—14+f(n—-1) fin—1) & f(n—1)
n_1 f(|yn|)§ﬁ;f“yibéﬁn(d_f(a))

holds, which is equivalent t¢ (3.2).
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