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1. I NTRODUCTION

A continuous complex-valued mappingf = u + iv is defined asharmonicin a simply con-
nected complex domainD in the complex plane if it is satisfiesfzz̄ ≡ 0 on D, i.e.,u andv are
real harmonic functions inD. Such a harmonic functionf can be expressed as the canonical
representationf = h + ḡ, g(0) = 0, whereh andg are analytic andg denotes the function
z → g(z). In [3], it was shown that the mappingz → f(z) is sense-preserving and locally
univalent inD if and only if the JacobianJf = |h′|2 − |g′|2 > 0 in D. We observe that if
f = h + ḡ, then

h′ = fz =
1

2

(
∂f

∂x
− i

∂f

∂y

)
, g′ = fz̄ =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
are always (globally) analytic functions onD. In general, we do not requiref to be uni-
valent in D. The study of functions which are multivalent harmonic in the open unit disc
∆ = {z : |z| < 1} was indicated in [1], [4]. Forp ≥ 1, denote byH(p), the set of all mul-
tivalent harmonic functionsf = h + ḡ defined in∆, whereh and g are analytic functions
defined in∆ and of the form

(1.1) h (z) =
∞∑

n=1

an+p−1z
n+p−1, g (z) =

∞∑
n=1

bn+p−1z
n+p−1, ap = 1, |bp| < 1.

Various subclasses ofH(p) were studied in [1], [2] and others. Denote byPH(p) the class of all
multivalent harmonic functions of the form

(1.2) f (z) = p +
∞∑

n=1

an+p−1z
n+p−1 +

∞∑
n=1

bn+p−1zn+p−1,

such thatRef(z) > 0, wherep ≥ 1 is an integer. Forp = 1 various properties of the family
PH(1) and the subclasses ofPH(1) with real coefficients were studied in [5], [6], [7]. A well-
known family

P (p) =

{
h(z) = p +

∞∑
n=1

an+p−1z
n+p−1 : Reh(z) > 0, z ∈ ∆

}
is a subclass ofPH(p). We also define

P 0
H (p) = {f = h + ḡ ∈ PH(p) : g(0) = 0}

and

R0
H (p) =

{
f = h + ḡ ∈ H(p) :

1

p

(
h′

zp−1
+

(
g′

zp−1

))
∈ P 0

H(p)

}
.

If fj = hj + ḡj, j = 1, 2 are in the classH(p), then we define convolutionf1 ∗ f2 of f1 andf2

in the natural way ash1 ∗ h2 + g1 ∗ g2. If φ is a p-valent analytic function andf = h + ḡ is in
H(p), we define

f ∗̃φ = f ∗ (φ + φ̄) = h ∗ φ + g ∗ φ.

Clunie and Sheil-Small [3] consideredf ∗̃φ whenφ is analytic andf is convex harmonic univa-
lent in ∆. The object of this paper is to study certain geometric properties of familyR0

H (p, α)
of mappings obtained asf ∗̃φp,α whenf ∈ R0

H (p) andφp,α is defined by

(1.3) φp,α(z) = zp +
∞∑

n=2

p

p + (n− 1)α
zn+p−1,
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wherep ≥ 1 is an integer andα is a complex number different from−p,−p
2
,−p

3
, · · · . Note that

the functionφp,α is analytic in∆. Also,R0
H (p, 0) = R0

H (p).

2. M AIN RESULTS

Theorem 2.1. If F = H + Ḡ ∈ R0
H (p, α) andReα > 0, then there exists anf ∈ R0

H (p) so
that

F (z) =
p

α

∫ 1

0

ζ
p(1−α)−α

α f(zζ)dζ , z ∈ ∆.

Proof. Note that

φp,α(z) =
p

α

∫ 1

0

ζ
p
α
−1 zp

1− zζ
dζ , |ζ| ≤ 1.

whereReα > 0. Also for f = h + ḡ ∈ R0
H (p),

h(z) ∗ zp

1− zζ
= zp +

∞∑
n=2

ζn−1an+p−1z
n+p−1 =

h(zζ)

ζp

g(z) ∗ zp

1− zζ
=

∞∑
n=1

ζn−1bn+p−1z
n+p−1 =

g(zζ)

ζp .

Therefore,

H(z) = h(z) ∗ φp,α(z) =
p

α

∫ 1

0

ζ
p(1−α)−α

α h(zζ)dζ

and

G(z) = g(z) ∗ φp,α(z) =
p

α

∫ 1

0

ζ
p(1−α)−α

α g(zζ)dζ.

Hence

F (z) = H(z) + G(z)

=
p

α

∫ 1

0

ζ
p(1−α)−α

α

(
h(zζ) + g(zζ)

)
dζ

=
p

α

∫ 1

0

ζ
p(1−α)−α

α f(zζ)dζ.

We next give the interrelation between classesR0
H (p, α) andR0

H (p).

Theorem 2.2. If F ∈ R0
H (p, α) , then there exists a functionf in R0

H (p) such that

(2.1) f(z) =
α

p
[zFz(z) + z̄Fz̄(z)] + (1− α)F (z).

Conversely, iff ∈ R0
H (p), then there existsF ∈ R0

H (p, α) such thatF is a solution of(2.1).

Proof. SinceF ∈ R0
H (p, α) , there existsf ∈ R0

H (p) so thatF (z) =
(
f(z)∗̃φp,α(z)

)
. Also, it

is a routine manipulation to prove that
αz

p
φ′p,α(z) + (1− α)φp,α(z) = φp,0(z).

Therefore we have
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f(z) = f(z)∗̃φp,0(z) = f(z)∗̃
(

αz

p
φ′p,α(z) + (1− α)φp,α(z)

)
=

α

p

(
f(z)∗̃zφ′p,α(z)

)
+ (1− α)

(
f(z)∗̃φp,α(z)

)
=

α

p
[zFz(z) + z̄Fz̄(z)] + (1− α)F (z).

Conversely, supposef (z) = zp +
∑∞

n=2 an+p−1z
n+p−1 +

∑∞
n=2 bn+p−1zn+p−1 is in R0

H (p)
and let

(2.2) F (z) = zp +
∞∑

n=2

An+p−1z
n+p−1 +

∞∑
n=2

Bn+p−1zn+p−1,

be a solution of(2.1). On comparing both sides of(2.1), we have

(2.3) An+p−1 =
p

p + α(n− 1)
an+p−1 , Bn+p−1 =

p

p + α(n− 1)
bn+p−1, n ≥ 2.

ThenF ∈ R0
H (p, α) because

F (z) =
(
h(z) ∗ φp,α(z)

)
+
(
g(z) ∗ φp,α(z)

)
= f(z)∗̃φp,α(z).

Corollary 2.3. A functionF (z) = H(z) + G(z) whereH andG are the form(1.1), is in the
familyR0

H (p, α) if and only ifF satisfies the condition
(2.4)

Re

{
(α + p(1− α))H ′(z) + (ᾱ + p(1− ᾱ)) G′(z)

pzp−1
+

αH ′′(z) + ᾱG′′(z)

pzp−2

}
> 0, z ∈ ∆.

Proof. If F = H + G ∈ R0
H (p, α), then by Theorem(2.2) there existsf = h + g ∈ R0

H (p)
such that(2.1) is satisfied and

h(z) =
α

p
zH ′(z) + (1− α)H(z) , g(z) =

ᾱ

p
zG′(z) + (1− ᾱ)G(z).

Sincef = h + g ∈ R0
H (p), it follows that

0 < Re

(
h′(z)

zp−1
+

(
g′(z)

zp−1

))
< Re

{
h′(z) + g′(z)

zp−1

}
= Re

{
(α + p(1− α))H ′(z) + (ᾱ + p(1− ᾱ)) G′(z)

pzp−1
+

αH ′′(z) + ᾱG′′(z)

pzp−2

}
.

Conversely, suppose that

F (z) = H(z) + G(z)

= zp +
∞∑

n=2

p

p + α(n− 1)
an+p−1z

n+p−1 +
∞∑

n=2

p

p + α(n− 1)
bn+p−1zn+p−1

satisfies(2.4), wherean+p−1 andbn+p−1 are the coefficients off ∈ R0
H (p). Then using the

arguments in Theorem(2.2), it follows that the function

f (z) = h(z) + g(z) =
α

p
[zH ′(z) + z̄G′(z)] + (1− α)

[
H(z) + G(z)

]
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is in the classR0
H (p). Hence, by Theorem(2.2), F ∈ R0

H (p, α).

Theorem 2.4. R0
H (p, α) is convex.

Proof. ForF1 = H1 + G1, F2 = H2 + G2 ∈ R0
H (p, α),we have to show that

λF1 + (1− λ)F2 = λH1 + (1− λ)H2 + λG1 + (1− λ)G2

is in R0
H (p, α) for anyλ ∈ [0, 1]. In view of Corollary(2.3), we only need to show thatλF1 +

(1− λ)F2 satisfies(2.4). This follows because

Re(
(α + p(1− α))(λH ′

1 + (1− λ)H ′
2) + (ᾱ + p(1− ᾱ))(λG′

1 + (1− λ)G′
2)

pzp−1

+
α(λH ′′

1 + (1− λ)H ′′
2 ) + ᾱ(λG′′

1 + (1− λ)G′′
2)

pzp−2
)

= λRe

{
(α + p(1− α))H ′

1 + (ᾱ + p(1− ᾱ))G′
1

pzp−1
+

αH ′′
1 + ᾱG′′

1

pzp−2

}
+(1− λ)Re

{
(α + p(1− α))H ′

2 + (ᾱ + p(1− ᾱ))G′
2

pzp−1
+

αH ′′
2 + ᾱG′′

2

pzp−2

}
> 0.

Therefore,R0
H (p, α) is convex.

In order to show thatR0
H (p, α) is also compact, we need the following.

Lemma 2.5. If f = h + ḡ ∈ R0
H (p), then h′+g′

pzp−1 ∈ P (p). Conversely, ifh
′+g′

pzp−1 ∈ P (p), h(0) =

g(0) =
(

h′

pzp−1

)
z=0

− 1 =
(

g′

pzp−1

)
z=0

= 0, thenf = h + ḡ ∈ R0
H (p)

Proof. If f = h + ḡ ∈ R0
H (p), since

Re

{
1

p

[
h′

zp−1
+

(
g′

zp−1

)]}
> 0 ⇒ Re

{
h′ + g′

pzp−1

}
> 0

the required result is obtained.

Conversely, ifh
′+g′

pzp−1 ∈ P (p) restricted by the given conditions onh andg, then h′

pzp−1 +
(

g′

pzp−1

)
∈

PH(p). In view of the conditions of normalization, it follows thatf = h + ḡ ∈ R0
H (p).

Remark 2.1. P (p) is compact and soR0
H (p) is compact.

Theorem 2.6.R0
H (p, α) is compact.

Proof. If {Fn} is a sequence of functions inR0
H (p, α) whereFn = Hn + Gn, then by Theorem

(2.2),
α

p

(
zH ′

n + zG′
n

)
+ (1− α)

(
Hn + Gn

)
∈ R0

H (p) .

SinceR0
H (p) is compact and so ifFn → F = H + Ḡ, then

α(zH ′ + zG′)

pzp−1
+ (1− α)

(
H + G

)
∈ R0

H (p) .

HenceR0
H (p, α) is compact becauseF = H + G ∈ R0

H (p, α) by Theorem(2.2).

Theorem 2.7. If Reα > 0, thenR0
H (p, α) ⊂ R0

H(p).
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Proof. Let F ∈ R0
H(p, α) andReα > 0. Then there existsf ∈ R0

H(p) such that

F = H + G = (h(z) ∗ φp,α(z)) + (g(z) ∗ φp,α(z)).

SinceReα > 0, it follows that

0 < Re

{
h′

zp−1
+

(
g′

zp−1

)}

= Re

{
h′ + g′

zp−1

}
= Re

{
pH ′ + pG′

pzp−1
−
(

α(p− 1)H ′ + α(p− 1)G′

pzp−1
− αH ′′ + αG′′

pzp−2

)}
< Re

(
H ′ + G′

zp−1

)
.

However,

H(0) = G(0) =
(

H′

pzp−1

)
z=0

− 1 =
(

G′

pzp−1

)
z=0

= 0.

Hence by Lemma(2.5), it follows thatF = H + G ∈ R0
H(p).

Lemma 2.8. [7] If q(z) = zp +
∑∞

n=2 cn+p−1z
n+p−1 and Re

(
q′(z)
pzp−1

)
> 0, then|cn+p−1| ≤

2p
n+p−1

, n ≥ 1. The estimate is sharp.

Theorem 2.9. If F (z) = zp +
∑∞

n=2 An+p−1z
n+p−1 +

∑∞
n=2 Bn+p−1zn+p−1 is in R0

H (p, α),
then

||An+p−1| − |Bn+p−1|| ≤
2p2

(n + p− 1)|p + (n− 1)α|
, n ≥ 1.

The estimate is sharp.

Proof. In view of Theorem(2.2), there exists

f (z) = h(z) + g(z) = zp +
∞∑

n=2

an+p−1z
n+p−1 +

∞∑
n=2

bn+p−1zn+p−1 ∈ R0
H (p)

so thatF = f ∗̃φp,α , whereAn+p−1 andBn+p−1 are given by(2.3). From Lemma(2.5),

Re

{
h′ + g′

pzp−1

}
= Re

{
1 +

∞∑
n=2

n + p− 1

p
(an+p−1 + bn+p−1)z

n−1

}
> 0,

and from Lemma(2.5), we have

(2.5) |an+p−1 + bn+p−1| ≤
2p

n + p− 1
.

From(2.3) and(2.5) we obtain

||An+p−1| − |Bn+p−1|| =
p

|p + (n− 1)α|
||an+p−1| − |bn+p−1||

≤ p

|p + (n− 1)α|
|an+p−1 + bn+p−1|

≤ 2p2

(n + p− 1)|p + (n− 1)α|
.
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