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1. I NTRODUCTION

Letf(x) be a convex function on the closed interval[a, b], the well known Hermite-Hadamard’s
inequalities are expressed as

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

The middle term of inequality(1) is called the arithmetic mean of the functionf(x) on the
interval [a; b]; the right term in(1) is the arithmetic mean of numbersf(a) andf(b).

It is well known that Hermite-Hadamard’s inequalities are an important cornerstone in math-
ematical analysis and optimization. There exists a very extensive literature on its refinements
and generations, please refer to [1, 2, 3, 10, 11] and the references therein.

In 1976, the generations of Hermite-Hadamard’s inequalities were obtained by Vasić and
Lackovíc [15] and Lupaş [9]:

Theorem A. Letp, q be given positive numbers anda1 < a < b < b1. Then the inequalities

(1.2) f

(
pa + qb

p + q

)
≤ 1

2y

∫ M+y

M−y

f(x) dx ≤ pf(a) + qf(b)

p + q

hold forM = pa+qb
p+q

, and all continuous convex functionsf : [a1, b1] → R iff

y ≤ b− a

p + q
min {p, q}.

If p = q = 1 andy = b−a
2

, (1.2) are the Hermite-Hadamard’s inequalities.
In 1998, S. S. Dragomir and B. Mond [4] proved that

Theorem B. Let f : I → [0,∞) be a log-convex mapping onI, a, b ∈ I with a < b. Then we
have

(1.3) f [A(a, b)] ≤ 1

b− a

∫ b

a

G[f(x), f(a + b− x)] dx ≤ G[f(a), f(b)],

whereA is arithmetic mean,G geometric mean andI an interval of real numbers. In what
follows,I will be used to denote an interval of real numbers.

Log-convex function is defined in [12, p.7] and presented as :

Definition. A functionf : I → [0,∞) is said to belog-convexor multiplicatively convexif
log f is convex, or, equivalently, if for allx, y ∈ I andt ∈ [0, 1] one has inequality:

(1.4) f(tx + (1− t)y) ≤ [f(x)]t[f(y)]1−t.

Sincef = exp(log f), it follows that a log-convex function is convex, but the converse may
not necessarily be true [12, p.7]. Following directly from (1.4), by the arithmetic-geometric
mean inequality, we have

(1.5) [f(t)]t[f(y)]1−t ≤ tf(t) + (1− t)f(y)

for all x, y ∈ I andt ∈ [0, 1].
Moreover, in 1999, weighted power mean was defined by Jeong Sheok Vme and Young Ho

Kim [8, p. 49] as
Mp(r; a, b) = [rap + (1− r)bp]1/p (0 ≤ r ≤ 1)

for a, b > 0, p 6= 0 .
Let p = 1. Then

M1(r; a, b) = ra + (1− r)b , A(r; a, b)
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is weighted arithmetic mean, and letp = 0,

M0(r; a, b) = lim
p→0

Mp(r; a, b) = arb1−r , G(r; a, b)

is weighted geometric mean.
In 1998, Feng Qi [13] proved that the weighted power meanMp(r; a, b) is increasing in both

p and r and in botha and b. For more information about weighted power mean please see
[13, 14].

In this paper, motivated by S. S. Dragomir’s results, we will use weighted arithmetic mean
and weighted geometric mean to extend the Hermite-Hadamard’s inequalities. Some new in-
equalities will be deduced.

Theorem 1. Let f : I → [0,∞) be a log-convex mapping onI, anda, b ∈ I with a < b. Then
we have two inequalities:

(1.6) f [A(r; a, b)] ≤ 1

2y

∫ M+y

M−y

A[r; f(x), f(2A− x)] dx ≤ A[r; f(a), f(b)]

for M = pa+qb
p+q

andy ≤ b−a
p+q

min {p, q};

(1.7) f [A(r; a, b)] ≤ 1

b− a

∫ b

a

G[r; f(x), f(a + b− x)] dx ≤ G[r; f(a), f(b)],

wherer = p
p+q

andp, q are positive numbers.

Corollary 1. If a, b ∈ I with 0 ≤ a < b andf is nondecreasing onI, we get

(1.8) f [G(r; a, b)] ≤ 1

b− a

∫ b

a

G[r; f(x), f(a + b− x)] dx ≤ G[r; f(a), f(b)],

where0 ≤ r ≤ 1.

Corollary 2. Let g : I → R be a convex mapping onI anda, b ∈ I with 0 ≤ a < b. Then we
have

g[A(r; a, b)] ≤ ln

[
1

b− a

∫ b

a

exp
[
A[r; g(x), g(a + b− x)]

]
dx

]
(1.9)

≤ A[r; g(a), g(b)],

where0 ≤ r ≤ 1.

The following theorem for log-convex functions also holds.

Theorem 2. Let f : I → (0,∞) be a log-convex mapping onI, 0 ≤ r ≤ 1 anda, b ∈ I with
a < b, then we have

f [A(r; a, b)] ≤ exp

[
1

2y

∫ M+y

M−y

ln f(x) dx

]
(1.10)

≤ 1

2y

∫ M+y

M−y

G
[
f(x), f(2M − x)

]
dx

≤ 1

2y

∫ M+y

M−y

f(x) dx

≤ L
[
f(M − y), f(M + y)

]
,

whereM = ra + (1− r)b and the logarithmic meanL(p, q) = p−q
ln p−ln q

.
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Corollary 3. Let g : I → R be a convex mapping onI, 0 ≤ r ≤ 1 anda, b ∈ I with a < b,
then we have

exp g[A(r; a, b)] ≤ exp

[
1

2y

∫ M+y

M−y

g(x) dx

]
(1.11)

≤ 1

2y

∫ M+y

M−y

exp

[
g(x) + g(2M − x)

2

]
dx

≤ 1

2y

∫ M+y

M−y

exp g(x) dx

≤ E
[
f(M − y), f(M + y)

]
.

whereM = ra + (1− r)b and the exponential meanE(p, q) = exp p−exp q
p−q

.

2. PROOFS OF THEOREMS

Proof of Theorem 1.It is clear that∫ M+y

M−y

f(x) dx =

∫ M+y

M−y

f(2M − x) dx.

ApplyingA(r; a, b) = ra+(1−r)b with r = p
p+q

to inequality(1.2), we obtain the inequalities
(1.6) immediately.

Sincef is log-convex, we have

f [ta + (1− t)b] ≤ [f(a)]t[f(b)]1−t,

f [(1− t)a + b] ≤ [f(a)]1−t[f(b)]t

for all t ∈ [0, 1] .
If we multiply the above inequalities and take weighted geometric mean, we obtain

G
[
r; f(ta + (1− t)b), f((1− t)a + tb)

]
≤ G

[
r; f(a), f(b)

]
for all t ∈ [0, 1].

Integrating this inequality on [0,1], we get∫ 1

0

G
[
r; f(ta + (1− t)b), f((1− t)a + tb)

]
d t ≤ G

[
r; f(a), f(b)

]
.

If we change the variablex := ta + (1− t)b, t ∈ [0, 1], we obtain∫ 1

0

G
[
r; f(ta + (1− t)b), f((1− t)a + tb)

]
d t =

1

b− a

∫ b

a

G[r; f(x), f(a + b− x)] dx

and the second inequality in (1.7) is proved.
Let us reconsider the generalization of Hermite-Hadamard’s inequalities (1.2). Applying the

log-convex functionsf : I → [0,∞) to (1.2), we have

ln

[
f

(
pa + qb

p + q

)]
≤ 1

2y

∫ M+y

M−y

ln f(x) dx ≤ p ln f(a) + q ln f(b)

p + q
.

Hence, we get

(2.1) f

(
pa + qb

p + q

)
≤ exp

[
1

2y

∫ M+y

M−y

ln f(x) dx

]
≤ p+q

√
f(a)pf(b)q.
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From inequality (2.1), we have

f

(
pα + qβ

p + q

)
≤ p+q

√
f(α)pf(β)q

for all α, β ∈ I.
If we chooseα = ta + (1− t)b, β = (1− t)a + tb, then we get the inequality

(2.2) f [A(r; a, b)] ≤ G[r; f(ta + (1− t)b), f((1− t)a + tb)]

for all t ∈ [0, 1].
Integrating this inequality (2.2) on[0, 1] over t, we obtain the first inequality in (1.7). The

theorem 1 is proved completely.

Proof of Corollary 1.Sincef is nondecreasing onI, andA(r; a, b) ≥ G(r; a, b), we get

f [A(r; a, b)] ≥ f [G(r; a, b)].

So the inequalities (1.8) hold.

Proof of Corollary 2.Define the mappingf :→ (0,∞), f(x) = exp g(x), which is clearly
log-convex onI. Using theorem 1, we obtain

exp g[A(r; a, b)] ≤ 1

b− a

∫ b

a

G[r; exp g(x), exp g(a + b− x)] dx

≤ G[r; exp g(a), exp g(b)].

By taking the logarithm in both sides, we get the inequalities (1.9).

Proof of Theorem 2.The first inequality is proved in (2.1).
We now have

G
[
r; f(x), f(2M − x)

]
= exp

[
ln

(
G(r; f(x), f(2M − x))

)]
for all x ∈ [a, b].

Integrating this equality on[a, b] and using the well known Jensen’s integral inequality for
the convex mapping exp(.), we have

1

2y

∫ M+y

M−y

G
[
r; f(x), f(2M − x)

]
dx

=
1

2y

∫ M+y

M−y

exp

[
ln

(
G(r; f(x), f(2M − x))

)]
dx

≥ exp

[
1

2y

∫ M+y

M−y

ln
(
G(r; f(x), f(2M − x))

)
dx

]
= exp

[
1

2y

∫ M+y

M−y

A
(
r; f(x), f(2M − x)

)
dx

]
= exp

[
1

2y

∫ M+y

M−y

ln f(x) dx

]
.

Since it is obvious that∫ M+y

M−y

ln f(x) dx =

∫ M+y

M−y

ln f(2M − x) dx,

the second inequality in (1.10) is proved.
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By the monotonicity of weighted power mean, we have the inequality

G
[
r; f(x), f(2M − x)

]
≤ A

[
r; f(x), f(2M − x)

]
for x ∈ [a, b]. By integration, we obtain

(2.3)
1

2y

∫ M+y

M−y

G
[
r; f(x), f(2M − x)

]
dx ≤ 1

2y

∫ M+y

M−y

f(x) dx

and the third inequality (1.10) is proved.
To prove the last inequality, we use the log-convexity off . Thus, we have

(2.4) f
[
t(M − y) + (1− t)(M + y)

]
≤ [f(M − y)]t[f(M + y)]1−t

for all t ∈ [0, 1].
Integrating (2.4) overt on [0, 1], we get

(2.5)
∫ 1

0

f
[
t(M − y) + (1− t)(M + y)

]
d t ≤

∫ 1

0

[f(M − y)]t[f(M + y)]1−t d t.

As we know, ∫ 1

0

f
[
t(M − y) + (1− t)(M + y)

]
d t =

1

2y

∫ M+y

M−y

f(x) dx

and ∫ 1

0

[f(M − y)]t[f(M + y)]1−t d t = L
[
f(M − y), f(M + y)

]
.

Applying these two equations to the inequality (2.5), we obtain the fourth inequality.
The proof is complete.

Proof of Corollary 3.Using the same method of proof of theorem 2 withexp g(x) instead of
f(x), we obtain the inequalities (1.11). The details will be omitted.
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[9] A. LUPAŞ, A generalization of Hermite Hadamard’s inequality for convex functions,Univ.
Beograd Publ. Fak., Ser. Mat. Fiz., 544-576(1976), pp. 115–121.
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