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2 ZORAN D. MITROVIC

1. INTRODUCTION

Using the methods of the KKM theory, see for example [12, 17], in this paper we prove
certain results on the existence of zeros of multifunctions. As corollaries some results of Q. H.
Ansari [1], Q. H. Ansari and J. -C. Yao0![3], E. Tarafdar [15], F. E. Browdeér [5], W. Takahashi
[16] and Ky Fan[[8] 9] are obtained.

We shall use the following notation and results. Kelhe a nonempty subset of a topological
vector spaceX. We denote by the family of all subsets ofl. If A is a non-empty subset
of a topological vector spac&, we shall denote byntx(A) andco(A) the interior of A in
X and the convex hull ofi, respectively. LetX andY be two topological vector spaces. Let
F : X — 2Y be a multifunction. The inverse df defined by

e F~l(y)ifandonly ify € F(x).

Let C be a convex nonempty subset & A multifunction H(x,y) : C x C — 2¥ is
said to be diagonally quasiconvex inif, for any finite subsety,,...,y,} C C and any
Yo € co{yi, ..., yn}, We have

(1.1) mH(y0>yi) C H(yo, yo)-

=1
A multifunction H(z,y) : C x C' — 2Y is said to be diagonally quasiconcaveyiif, for any
finite subsefy,,...,y,} C C and anyy, € co{y1,...,y.}, we have

(1.2) H(yo,y0) € UH(yani)'

i=1
Remark 1.1. 1. LetH : C' x C — 2* be a multifunction, such that
H(z,y) = (¢(z,y), +o0), forallz,y € C,
where¢ : C' x C'— R is a single-valued function. Then the conditi@inI) reduces to

< .
(Yo, o) < lrg%cb(yo,yzh

and condition(1.2)) to

min (Yo, vi) < ¢(¥o, Yo),

1<i<n

and we have generalization of diagonally quasiconvex and diagonally quasiconcave
functions, see for examplel[2,/18].
2. LetH : C x C — 2% be a multifunction, such that

H(z,y) = ([[f(y) = z[l, +o0), forallz,y € C,
wheref : C — X is a single-valued function. Then the conditifinl]) reduces to

17 (%0) = yoll < max [|£(y:) = yoll,

1<i<n

and we obtain generalization of
(¢) almost affine mapping,

Lf Ay 4+ (1= Nye) = ul] < Al f(y1) = ul[ + (1= M| f(y2) — ull,
(77) and almost quasiconvex mapping,

[Lf Q4+ (1 = A)ya) =l < max{[[f(y1) — ull, [[f(y2) — ull},
see for example [7, 11, 12,113,/14].
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3. LetH : C' x C — 2Y be a multifunction, such that
H(z,y) ={z:2z—g(z,y) € K}, forallz,y € C,

whereY is a topological vector space with a closed and convex dérandg(zx,y) :

C x C' — Y is a single-valued function. Then the conditi¢h1)) reduces to, for
all z € Y the set{y : g(x,y) <k z} is convex and we have generalization of K-
guasiconvex function, see for examplé [6].

A multifunction G : X — 2Y is called a KKM-map if, for every finite subsétry, ..., z,}
of X, co{xy,...,z,} C U G(x;).

=1
The following version of Fan-KKM type theorem, see for example [12], will be used to prove
the main result of this paper.

Theorem 1.1.LetC be a nonempty convex set in a topological vector spaceor eachy € C
let G(y) be a nonempty closed subsetvind letG : ¢ — 2¢ be a KKM-map. If there is a

nonempty subse, of C' such that the intersectiorf| G(y) is compact and3, is contained
y€Bo
in a compact convex subset@fthen (| G(y) # 0.
yeC

2. EXISTENCE RESULTS

Theorem 2.1.Let X andY be topological vector space§; a nonempty convex subsetdf
andH : C x C' — 2Y a multifunction such that

(a) H(z,y) is a diagonally quasiconvex multifunctiongrand H (z, y) is nonempty for all

x,y € C,
(b) C= U intc{xr e C:0€ H(z,y)},
yeC

(c) there exists a non-empty subggtof C' such that intersection
ﬂ C\inte{r e C:0€ H(z,y)}
YyEBg
is compact and3, is contained in a compact convex subset’of
Then there existg, € C such tha) € H (yo, yo)-

Proof. Assume that
0¢ H(y,y) forally € C.

DefineG : C' — 2¢ by
Gly)=C\inte{r € C:0€ H(z,y)}.

Suppose that

G(y) = 0 for somey € C.
Then

ye{reC:0e€ H(x,y)}
and thus

0€ H(y,y),

a contradiction of our assumption. Théfiy) is nonempty and closed ifi. From assumption

(c) we have, (| G(y) compact and3, is contained in a compact convex subset’of From
y€Bo
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assumptiorib) we have,

ﬂ G(y) = (U intc{r € C:0 € H(x,y)}) =0,

yeC yeC

andG cannot be a KKM-map. Therefore, exidtg, ..., y,} C C and some

Yo € co{yr, ..., yn} SUCh thaly, ¢ UG(?Jz‘)~

=1
So,
0€ H(yo,y;) foralli=1,... n.
From assumptiofia) we have,
0 € H(yo, Yo)-
|
Corollary 2.2. Let X andY be topological vector spaces,a nonempty compact convex subset
of X, andH : C' x C' — 2¥ a multifunction such that
(@) H(x,y) is a diagonally quasiconvex multifunctiongnand H (z, y) is a nonempty for

all z,y € C,
(b) C = U intc{z e C:0€ H(z,y)}.
yelC

Then there existg € C such that) € H (yo, yo)-

Corollary 2.3. Let X andY be topological vector space§; a nonempty convex subsetof
andletH, L : C x C — 2" be two multifunctions such that

(a) forall z,y € C, H(x,y) C L(x,y), L(z,y) is a diagonally quasiconvex multifunction
in y and andH (x, y) is a nonempty for alk, y € C,
(b) C= U intc{xr e C:0€ H(z,y)},

yeC
(c) there exists a non-empty subggtof C' such that intersection

() C\intc{z € C:0€ H(z,y)}
y€Bo
is compact and3, is contained in a compact convex subset’of
Then there existg € C such that) € L(yo, yo)-
Corollary 2.4. Let C' be a nonempty convex subset of a topological vector spgcand let
g : C' x C'— R be a function such that

(a) g(z,y) is a diagonally quasiconvex functionin
(b) C = U intc{xr € C: g(z,y) <0},

yeC
(c) there exists a non-empty subggtof C' such that intersection

ﬂ C\intc{r € C: g(z,y) <0}
yEBo
is compact and3, is contained in a compact convex subset’of
Then there existg, € C such thaty(yo, yo) < 0.

Corollary 2.5. Let C' be a nonempty convex subset of a topological vector spgcand let
f,g:C x C — C be two multifunctions such that
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(@) forall z,y € C, f(x,y) < g(x,y) and f(x, y) is a diagonally quasiconvex function in

Y,
(b) C = U intc{zr € C: g(z,y) < 0},
yel
(c) there exists a non-empty subggtof C' such that intersection

ﬂ C\inte{x € C:g(x,y) <0}
yEBo
is compact and3, is contained in a compact convex subset’of
Then there existg, € C such thatf (yo, y0) < 0.

3. APPLICATIONS

As the first application of our results we have the following results of F. E. Browder, Q. H.
Ansari and E. Tarafdar.

Theorem 3.1.[5] Let C be a nonempty compact convex subset of a topological vector space
X, and letS : C' — 2¢ be a multifunction such that

(1) for eachx € C, S(x) is convex andb(z) is nonempty,

(i7) for eachy € C, S~'(y) is openinC.
Then there exists, € C such thatz, € S(zo).

Proof. Taking H(z, y) = y — S(z) in Corollary[2.2.x

Theorem 3.2.[1] LetC be a nonempty convex subset of a topological vector sjg@nd let
S, T : C — 2¢ be two multifunctions. Assume that
(1) for eachz € C, co(S(z)) C T(x) andS(x) is nonempty,
(i) €= U intcS™Hy),
yeC

(ii7) there exists a nonempty subg@t of C' such that intersection() C'\ intcS~'(y) is
y€Bo
compact andB, is contained in a compact convex subset’of

Then there exists, € C such thatey € T'(zo).
Proof. Taking H (z, y) =y — S(z) andL(z, y) = y — co(S(z)) in Corollary[2.3.x

Theorem 3.3.[16] LetC' be a nonempty convex subset of a topological vector sja@nd let

T : C — 2¢ be a multifunction such that
(1) for eachz € C, T'(x) is convex and nonempty,
(i) for eachy € C, T~'(y) contains an open s&?, which may be empty,
(#11) UyecO, = C,
(iv) there exists a nonempty sEf contained in a compact convex sub&gtof C' such that
D = N,ex,0F is either empty or compact.

Then there existg, € C such thatzy € T'(zy).
Proof. Taking H(z,y) =y — T'(z) in Theorenj 2.]1a

As an application of our theorem on zeros of multifunctions we have the best approximations
theorems.

Theorem 3.4. (Best approximations theorem) L&tbe a nonempty compact convex subset of a
normed space&, and letf, g : C' — X be two continuous functions. Assume that for any finite
subset{y,,...,y,} € Cand anyy € co{y1,...,Yn},

lg(y) — f()Il < max [|g(y:) — f(W)l,

T 1<i<n
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that there exists, € C such thatl|g(z¢) — f(xo)|| = ing llg(x) — f(x0)]]-
xe

Proof. Assume that for each € C, ||g(x) — f(z)|| > ing llu — f(z)|]. Taking
ue

H(z,y) = (llg(y) = f@)[| = llg(@) = f(@)]], +-00), 2,y € C,
in Corollary[2.2. From assumption

lg(y) = FWII < max |lg(y:) — F(W)I],

1<i<n
it is easily shown that{ is a diagonally convex. If{ satisfies condition
C= U intc{x € C:0€ H(x,y)},
yeC
then there existg, € C such that € H(yy, yo) that s,

g(yo) — fwo)ll < 1lg(yo) — f(wo)ll,
and we have a contradiction. Hence,
C # U intc{r e C:0€ H(x,y)},

yeC
and existsey € C such that) ¢ H(zo,y) for eachy € C, that is,

ll9(zo) = f(zo)ll < [lg(y) — f(zo)]]
i
In view of RemarK 1.[L, we have as corollary the following result of J. B. Prolla .

Theorem 3.5.[11] Let C' be a nonempty compact convex subset of a normed spaeead
g : C' — (C a continuous, almost affine, onto mapping. Then, for each continuous mapping
f: C — X there exists an, € C such thafl|g(zo) — f(z0)|| = ing llu — f(x0)]]-

ue

Remark 3.1. If g(z) = z,2 € C, Theoren] 34 reduces to well-known best approximations
theorem of Ky Fan [9].

Theorem 3.6. (Simultaneous approximations theoreff)]) Let X be a normed space, a
nonempty convex compact subseXofG; : C x C — 2¢, i = 1,...,n, continuous mappings
with compact and convex values and> 1. If x — G;(x,-), 1 = 1,...,n are convex, thatis,
forall xy,z0,y € Cand\ € [0, 1],

/\Gz(‘rhy) + (1 - A)Gl(‘r%y) C GZ()"TI + (]‘ - /\)IQJy)7 1= 17 sy

then there exists, € C such that

> IGi(wo, o)
=1

Qg s

Proof. Taking

Z 1Gi(y, = Z 1Gi(z, z)
in Corollary[2.2 and it is S|m|Iar to the proof of Theor-3|4

Theorem 3.7.(Theorem 3.6([12]) LetC' be a nonempty, convex subset of a topological vector
space. LetA C C' x C'andB C C' x C satisfy

(1) AC B,

(e 77 +OO>
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(77) For eachy € C the sectionz € C|(z,y) € A} is openinC,

(17i) For eachx € C the section{y € C|(z,y) € A} is nonempty, and the sectidy <
C|(z,y) € B} is convex,

(iv) C has a nonempty compact convex sulidesuch that the sefx € C|(z,y) ¢ A for
all y € By} is compact.

Then there exists, € C such that(x, z¢) € B.
Proof. Taking H (z, y) = (z,y) — AandL(z,y) = (z,y) — B in Corollary[2.3.x
Remark 3.2. If A = B, Theoreni 37 reduces to result of Ky Fan [8].

Theorem 3.8. (Theorem 3.46[12]) Let C' be a nonempty, convex subset of topological vector
space)Y anormed space. Lgt: C' x C' — Y be a continuous function, affine inthat is, for
all x, Y1, yo € C and\ € [O, 1],

f@, Ay + (1= Ny2) = Af(z,y1) + (1= M) f(2, 92).
Assume the following conditions hold:
(1) C has a nonempty compact convex suligesuch that the set
D =A{zeC:||f(z,y)ll = |f(z,z)|/ forall y € By}

is compact,
(17) foranyz € C, f(z,y) = 0 has at least one solutionin C.

Then there exists a poipt € C such thatf (yo, y0) = 0.
Proof. We using corollary 2]4. Leg(z,y) = ||f(z,y)|| — || f(z,z)|| forall z,y € C. Since

function f affine iny we have that functiog is diagonally quasiconvex iin. From assumption
(1) we have that there exists a nonempty suliedf C' such that intersection

m C\ intc{zr € C: g(x,y) <0}
y€Bo

is compact and3y is contained in a compact convex subset'ofif there existse € C' such that
g(xz,z) < 0then

|1 (@, 2)[| < |[f (2, 2)|

and we have a contradiction. Hence, becatigecontinuous, we have

C# | JlzeC:|If @yl < |If @)},

yeC

and so there exists € C such that
Lf ()|l = [|f (2, )| forall y € C.
From assumptioii) we havef(x,y) = 0 for somey € C, hencef (z,z) = 0. &

We prove the existence of solutions to the variational-like inequality problem (VLIP) of Q.
H. Ansari and J. -C. Yao, find € C such that

(T'(@),n(y,7)) >0, forally € C,
using our result of zeros of multifunctions. We will use the following definition.

Definition 3.1. [3] Let X be a locally convex topological space with topological diéaland
C a nonempty subset of. For a given bifunctiom) : C x C — X, an operatofl’ : C — X*
is called
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(1) n—pseudomonotone if,
(T(x),n(y,z)) > 0implies(T'(y),n(y,z)) > 0, forall z,y € C,
or equivalently
(T(y),n(y,x)) < 0implies(T(x),n(y,z)) <0, forall z,y € C;
(1) n—pseudodissipative if,
(T(y),n(y,x)) > 0implies(T(z),n(y,z)) >0, forallz,y € C,
or equivalently
(T'(x),n(y,z)) < 0implies(T(y),n(y,z)) <0, forall z,y € C.

Theorem 3.9.[3] LetC be a nonempty and convex subset of a locally convex topological vector
spaceX and letn : C' x C' — X be a bifunction such thaf(z, ) = 0, for all z € C. Assume

that
(1) T : C — X*isn—pseudomonotone ang-pseudodissipative;
i1) for each fixedy € C, the mapr — (T'(y), n(y, z)) iS upper semicontinuous ari;
)
)

(

(#71) for each fixedr € C, the mapy — (T'(z),n(y, x)) IS quasi-convex;

(1v) there exists a nonempty, compact and convex subsét_' and a nonempty and com-
pact subsetD of C such that for eachv € C\D, there existsy € B such that
(T'(x),n(y,z)) < 0. Then the VLIP has a solution, that is, exists C such that

(T'(m),n(y, 7)) >0, forally € C.

Proof. Assume that the VLIP has no solution. Then for each C, existsy € C such that
(T'(x),n(y,z)) < 0and we have

C=|J{zr e C: (T(x),nly, x)) < 0}.
yel
Taking
H(I,y) - {y 2 <T(ZL’),77(Z,$)> < 0}7 T,y € C,
in Theorenj 2.J1. From assumpti¢iii) we obtain that is diagonally quasiconvex in. From
assumptions:) we have
{z e C:(T(x),n(y,2)) <0} ={z € C:(T(y),n(y,z)) <0}
and by(ii) we have that
inte{z € C = (T'(x),n(y,z)) <0} ={z € C: (I'(z),n(y,z)) <0}

Since there is
C = U{x e C:(T(x),n(y,z)) <0}

yel
we have
C= U intc{r € C: (T(x),n(y,z)) <0}
yel
and

C= U intc{x € C':0€ H(zx,y)}.
yel
From assumptiofiiv) there exists a nonempty, compact and convex suBs#tC' and a non-
empty and compact subsbtof C' such that

C\DC |J{z e C:(T(x),n(y,x)) < 0},

yeB
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and
C\DC |Jintc{z € C: (T(x),n(y,z)) < 0}.
yeB
So,
D2 () C\inte{z € C: (T(x),n(y,x)) < 0},
yeB
and exists a nonempty subdgf = B of C' such that intersection

() C\intc{z € C:0€ H(z,y)}

yEBo
is compact and3, is contained in a compact convex subsetofSo, existg), € C such that
0 € H(yo, o), that is,

<T(y0)7 n(y07 y0)> < 0
Since,n(yo, y0) = 0, we have a contradiction.

The following result of W. Takahashi has the applications of minimax inequalities. The proof
of this result is given as an application of the Corollary 2.3 .

Theorem 3.10.[15] Let C' be a nonempty convex subset of a topological vector spacket
reRandf:C x C — (—o00,00],g9: C x C — (—00, 00| such that

(1) g(z,y) < f(x,y) forall z,y € C,

(7i) f is quasiconcave in its first variable,

(737) g is lower semicontinuous in its second variable,

(iv) C has anonempty subsBt such that{y € C : g(z,y) < rforall x € By} is compact
and B, is contained in a compact convex subset’of

Then either exists a point € C such thatg(x, z) < r for all x € C or there exists a point

yo € C such thatf (yo, yo) > .
Proof. Let
H(ZE, y) = (T’ - g(yu (L’), +OO) andL(‘Ta y) - (T - f(yv 37), +OO) for all T,y € C.

From assumption&i) and (ii) we haveH (z,y) C L(x,y) for all x,y € C andL(z,y) is a
diagonally quasiconvex multifunction in
From assumptioffiv) we have that there exists a non-empty suliedf C' such that intersec-
tion

() C\inte{z € C:0€ H(z,y)}

yEBy
is compact and3, is contained in a compact convex subsetoflf f(z,z) < rforallxz € C
we have) ¢ L(x,z) for all z € C' and obtain

C # Uintc{xEC’:OEH(ﬂf,y)}7

yel

C +# U inte{r € C: g(y,x) > r}.

yeC
From assumptiofiiii) we have

inte{xr € C:g(y,x) >r} ={x € C:g(y,x) >r},
and then exists a pointe C such thay(x,z) < rforallz € C. &
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Finally, we establish an existence result for generalized vector equilibrium problem (GVEP)
which is to findx, € K such that

F(z0,y) € —intC(xy), forally € K,

whereC(x) is a closed convex cone aftl: K x K — 2¥ a multifunction, by using result of
the existence zeros of multifunctions.

Theorem 3.11.Let X andY be topological vector space&; a nonempty convex subsetf
andC : K — 2" is a multifunction such that for eache K, C(z) is a closed convex cone in
Y with intC(x) # 0. LetF,G : K x K — 2 be two multifunctions such that

(@) forall z,y € K, F(x,y) C —intC(x), impliesG(z,y) C —intC(z),

(b) for eachz € K, G(z,z) € —intC(x) andG(z,y) is a diagonally quasiconcave multi-

function iny,
() K= intg{xr € K : F(z,y) C —intC(x)},
yeK

(d) there exists a non-empty subgef contained in a nonempty compact convex subset of
D, such that for eacly € K \ Dy, there existy € Dy with F'(z,y) C —intC(x).

Then there exists, € C such thatF'(z, y) € —intC(zo), forall y € K.

Proof. Assume that the GVEP has no solution. Then for eaehk’, existsy € K such that

F(z,y) € —intC(z).
Letforallz,y € K,
and

H(z,y) ={y—z: F(z,2) C —intC(z)}.
Now, by Corollary2.B we obtain there exists a paint &, such that,
0€ L(z,7T),

and

G(z,7) C —intC (),
which is a contradiction of assumptiobh). Hence, the solution set of GVEP is nonempty.

Example 3.1. A multifunctionF : K x K — 2Y is calledC, —quasiconvex-like multifunction
in y, see for examplfd, 6], if for all z,y;,y, € K, and € [0, 1], we have either

F(z, A1 + (1 = Nya) C F(z,11) — C(2)
or
F(z, Ay1 + (1 = Nyz) € F(z,y2) — C(z).
Let K = [-2,2], C(z) = {0}, forall = € K. We define” : K x K — 2% by
R\{_1}7 <x7y) € K x [_27_1]7
F(xay) = R\{O}7 (iL‘,y) € K x <_1> 1)7
R\ {1}, (z,y) € K x [1,2].

We have,

F(y0,90) € F(yo,y1) — C(yo)
and

F(yo,yo0) SI F(yo,y2) — C(yo),
where

1
yo:)\y1+(1—)\)y2,)\:§,y1 =1y =1.
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So,F'is notC,—quasiconvex-like multifunction in
On the other hand, we have thatis diagonally quasiconcave in

Remark 3.3. (i) The assumptiorfc) in Theoren{ 3.11 can be replaced by the following
condition

for eachy € K, F(-,y) is upper semicontinuous multifunction éa

Namely, if F'(-,y) is upper semicontinuous multifunction for eaghe K, then we
obtain

intg{r € K : F(x,y) C —intC(x)} ={x € K : F(z,y) C —intC(x)},
for eachy € K, and since is,
K = U {r e K: F(z,y) C —intC(x)},
yeK
we have
K = U intg{x € K : F(z,y) C —intC(z)}.
yeK
(77) The assumptiof) can be replaced by

for eachw € K, G(x,2) € —intC(z)
andG(z,y) is aC,-quasiconvex-like multifunction in.
In this case, Theorem 311 improves Theorem 2.1lin [4].
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