
The Australian Journal of Mathematical
Analysis and Applications

http://ajmaa.org

Volume 3, Issue 1, Article 4, pp. 1-12, 2006

ON ZEROS OF DIAGONALLY QUASICONVEX MULTIFUNCTIONS

ZORAN D. MITROVIĆ
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2 ZORAN D. M ITROVIĆ

1. I NTRODUCTION

Using the methods of the KKM theory, see for example [12, 17], in this paper we prove
certain results on the existence of zeros of multifunctions. As corollaries some results of Q. H.
Ansari [1], Q. H. Ansari and J. -C. Yao [3], E. Tarafdar [15], F. E. Browder [5], W. Takahashi
[16] and Ky Fan [8, 9] are obtained.

We shall use the following notation and results. LetA be a nonempty subset of a topological
vector spaceX. We denote by2A the family of all subsets ofA. If A is a non-empty subset
of a topological vector spaceX, we shall denote byintX(A) andco(A) the interior ofA in
X and the convex hull ofA, respectively. LetX andY be two topological vector spaces. Let
F : X → 2Y be a multifunction. The inverse ofF defined by

x ∈ F−1(y) if and only if y ∈ F (x).

Let C be a convex nonempty subset ofX. A multifunction H(x, y) : C × C → 2Y is
said to be diagonally quasiconvex iny if, for any finite subset{y1, . . . , yn} ⊂ C and any
y0 ∈ co{y1, . . . , yn}, we have

(1.1)
n⋂

i=1

H(y0, yi) ⊆ H(y0, y0).

A multifunctionH(x, y) : C ×C → 2Y is said to be diagonally quasiconcave iny if, for any
finite subset{y1, . . . , yn} ⊂ C and anyy0 ∈ co{y1, . . . , yn}, we have

(1.2) H(y0, y0) ⊆
n⋃

i=1

H(y0, yi).

Remark 1.1. 1. LetH : C × C → 2R be a multifunction, such that

H(x, y) = (φ(x, y), +∞), for all x, y ∈ C,

whereφ : C × C → R is a single-valued function. Then the condition(1.1) reduces to

φ(y0, y0) ≤ max
1≤i≤n

φ(y0, yi),

and condition(1.2) to

min
1≤i≤n

φ(y0, yi) ≤ φ(y0, y0),

and we have generalization of diagonally quasiconvex and diagonally quasiconcave
functions, see for example [2, 18].

2. LetH : C × C → 2R be a multifunction, such that

H(x, y) = (||f(y)− x||, +∞), for all x, y ∈ C,

wheref : C → X is a single-valued function. Then the condition(1.1) reduces to

||f(y0)− y0|| ≤ max
1≤i≤n

||f(yi)− y0||,

and we obtain generalization of
(i) almost affine mapping,

||f(λy1 + (1− λ)y2)− u|| ≤ λ||f(y1)− u||+ (1− λ)||f(y2)− u||,
(ii) and almost quasiconvex mapping,

||f(λy1 + (1− λ)y2)− u|| ≤ max{||f(y1)− u||, ||f(y2)− u||},
see for example [7, 11, 12, 13, 14].
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ON ZEROS OFDIAGONALLY QUASICONVEX MULTIFUNCTIONS 3

3. LetH : C × C → 2Y be a multifunction, such that

H(x, y) = {z : z − g(x, y) ∈ K}, for all x, y ∈ C,

whereY is a topological vector space with a closed and convex coneK andg(x, y) :
C × C → Y is a single-valued function. Then the condition(1.1) reduces to, for
all z ∈ Y the set{y : g(x, y) ≤K z} is convex and we have generalization of K-
quasiconvex function, see for example [6].

A multifunction G : X → 2Y is called a KKM-map if, for every finite subset{x1, . . . , xn}
of X, co{x1, . . . , xn} ⊂

n⋃
i=1

G(xi).

The following version of Fan-KKM type theorem, see for example [12], will be used to prove
the main result of this paper.

Theorem 1.1.LetC be a nonempty convex set in a topological vector spaceX. For eachy ∈ C
let G(y) be a nonempty closed subset ofC and letG : C → 2C be a KKM-map. If there is a
nonempty subsetB0 of C such that the intersection

⋂
y∈B0

G(y) is compact andB0 is contained

in a compact convex subset ofC then
⋂

y∈C

G(y) 6= ∅.

2. EXISTENCE RESULTS

Theorem 2.1. Let X andY be topological vector spaces,C a nonempty convex subset ofX,
andH : C × C → 2Y a multifunction such that

(a) H(x, y) is a diagonally quasiconvex multifunction iny andH(x, y) is nonempty for all
x, y ∈ C,

(b) C =
⋃

y∈C

intC{x ∈ C : 0 ∈ H(x, y)},

(c) there exists a non-empty subsetB0 of C such that intersection⋂
y∈B0

C \ intC{x ∈ C : 0 ∈ H(x, y)}

is compact andB0 is contained in a compact convex subset ofC.

Then there existsy0 ∈ C such that0 ∈ H(y0, y0).

Proof. Assume that
0 /∈ H(y, y) for all y ∈ C.

DefineG : C → 2C by

G(y) = C \ intC{x ∈ C : 0 ∈ H(x, y)}.

Suppose that
G(y) = ∅ for somey ∈ C.

Then
y ∈ {x ∈ C : 0 ∈ H(x, y)}

and thus
0 ∈ H(y, y),

a contradiction of our assumption. ThenG(y) is nonempty and closed inC. From assumption
(c) we have,

⋂
y∈B0

G(y) compact andB0 is contained in a compact convex subset ofC. From
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4 ZORAN D. M ITROVIĆ

assumption(b) we have,⋂
y∈C

G(y) =

(⋃
y∈C

intC{x ∈ C : 0 ∈ H(x, y)}

)C

= ∅,

andG cannot be a KKM-map. Therefore, exists{y1, . . . , yn} ⊂ C and some

y0 ∈ co{y1, . . . , yn} such thaty0 /∈
n⋃

i=1

G(yi).

So,
0 ∈ H(y0, yi) for all i = 1, . . . , n.

From assumption(a) we have,
0 ∈ H(y0, y0).

Corollary 2.2. LetX andY be topological vector spaces,C a nonempty compact convex subset
of X, andH : C × C → 2Y a multifunction such that

(a) H(x, y) is a diagonally quasiconvex multifunction iny andH(x, y) is a nonempty for
all x, y ∈ C,

(b) C =
⋃

y∈C

intC{x ∈ C : 0 ∈ H(x, y)}.

Then there existsy0 ∈ C such that0 ∈ H(y0, y0).

Corollary 2.3. Let X andY be topological vector spaces,C a nonempty convex subset ofX,
and letH, L : C × C → 2Y be two multifunctions such that

(a) for all x, y ∈ C, H(x, y) ⊆ L(x, y), L(x, y) is a diagonally quasiconvex multifunction
in y and andH(x, y) is a nonempty for allx, y ∈ C,

(b) C =
⋃

y∈C

intC{x ∈ C : 0 ∈ H(x, y)},

(c) there exists a non-empty subsetB0 of C such that intersection⋂
y∈B0

C \ intC{x ∈ C : 0 ∈ H(x, y)}

is compact andB0 is contained in a compact convex subset ofC.

Then there existsy0 ∈ C such that0 ∈ L(y0, y0).

Corollary 2.4. Let C be a nonempty convex subset of a topological vector spaceX, and let
g : C × C → R be a function such that

(a) g(x, y) is a diagonally quasiconvex function iny,
(b) C =

⋃
y∈C

intC{x ∈ C : g(x, y) < 0},

(c) there exists a non-empty subsetB0 of C such that intersection⋂
y∈B0

C \ intC{x ∈ C : g(x, y) < 0}

is compact andB0 is contained in a compact convex subset ofC.

Then there existsy0 ∈ C such thatg(y0, y0) < 0.

Corollary 2.5. Let C be a nonempty convex subset of a topological vector spaceX, and let
f, g : C × C → C be two multifunctions such that

AJMAA, Vol. 3, No. 1, Art. 4, pp. 1-12, 2006 AJMAA

http://ajmaa.org


ON ZEROS OFDIAGONALLY QUASICONVEX MULTIFUNCTIONS 5

(a) for all x, y ∈ C, f(x, y) ≤ g(x, y) andf(x, y) is a diagonally quasiconvex function in
y,

(b) C =
⋃

y∈C

intC{x ∈ C : g(x, y) < 0},

(c) there exists a non-empty subsetB0 of C such that intersection⋂
y∈B0

C \ intC{x ∈ C : g(x, y) < 0}

is compact andB0 is contained in a compact convex subset ofC.
Then there existsy0 ∈ C such thatf(y0, y0) < 0.

3. APPLICATIONS

As the first application of our results we have the following results of F. E. Browder, Q. H.
Ansari and E. Tarafdar.

Theorem 3.1. [5] Let C be a nonempty compact convex subset of a topological vector space
X, and letS : C → 2C be a multifunction such that

(i) for eachx ∈ C, S(x) is convex andS(x) is nonempty,
(ii) for eachy ∈ C, S−1(y) is open inC.

Then there existsx0 ∈ C such thatx0 ∈ S(x0).

Proof. TakingH(x, y) = y − S(x) in Corollary 2.2.

Theorem 3.2. [1] LetC be a nonempty convex subset of a topological vector spaceX, and let
S, T : C → 2C be two multifunctions. Assume that

(i) for eachx ∈ C, co(S(x)) ⊆ T (x) andS(x) is nonempty,
(ii) C =

⋃
y∈C

intCS−1(y),

(iii) there exists a nonempty subsetB0 of C such that intersection
⋂

y∈B0

C \ intCS−1(y) is

compact andB0 is contained in a compact convex subset ofC.
Then there existsx0 ∈ C such thatx0 ∈ T (x0).

Proof. TakingH(x, y) = y − S(x) andL(x, y) = y − co(S(x)) in Corollary 2.3.

Theorem 3.3. [16] LetC be a nonempty convex subset of a topological vector spaceX, and let
T : C → 2C be a multifunction such that

(i) for eachx ∈ C, T (x) is convex and nonempty,
(ii) for eachy ∈ C, T−1(y) contains an open setOy which may be empty,

(iii) ∪y∈COy = C,
(iv) there exists a nonempty setX0 contained in a compact convex subsetX1 of C such that

D = ∩x∈X0O
C
x is either empty or compact.

Then there existsx0 ∈ C such thatx0 ∈ T (x0).

Proof. TakingH(x, y) = y − T (x) in Theorem 2.1.

As an application of our theorem on zeros of multifunctions we have the best approximations
theorems.

Theorem 3.4. (Best approximations theorem) LetC be a nonempty compact convex subset of a
normed spaceX, and letf, g : C → X be two continuous functions. Assume that for any finite
subset{y1, . . . , yn} ⊂ C and anyy ∈ co{y1, . . . , yn},

||g(y)− f(y)|| ≤ max
1≤i≤n

||g(yi)− f(y)||,
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6 ZORAN D. M ITROVIĆ

that there existsx0 ∈ C such that||g(x0)− f(x0)|| = inf
x∈C

||g(x)− f(x0)||.

Proof. Assume that for eachx ∈ C, ||g(x)− f(x)|| > inf
u∈C

||u− f(x)||. Taking

H(x, y) = (||g(y)− f(x)|| − ||g(x)− f(x)||, +∞), x, y ∈ C,

in Corollary 2.2. From assumption

||g(y)− f(y)|| ≤ max
1≤i≤n

||g(yi)− f(y)||,

it is easily shown thatH is a diagonally convex. IfH satisfies condition

C =
⋃
y∈C

intC{x ∈ C : 0 ∈ H(x, y)},

then there existsy0 ∈ C such that0 ∈ H(y0, y0) that is,

||g(y0)− f(y0)|| < ||g(y0)− f(y0)||,
and we have a contradiction. Hence,

C 6=
⋃
y∈C

intC{x ∈ C : 0 ∈ H(x, y)},

and existsx0 ∈ C such that0 /∈ H(x0, y) for eachy ∈ C, that is,

||g(x0)− f(x0)|| ≤ ||g(y)− f(x0)||.

In view of Remark 1.1, we have as corollary the following result of J. B. Prolla .

Theorem 3.5. [11] Let C be a nonempty compact convex subset of a normed spaceX, and
g : C → C a continuous, almost affine, onto mapping. Then, for each continuous mapping
f : C → X there exists anx0 ∈ C such that||g(x0)− f(x0)|| = inf

u∈C
||u− f(x0)||.

Remark 3.1. If g(x) = x, x ∈ C, Theorem 3.4 reduces to well-known best approximations
theorem of Ky Fan [9].

Theorem 3.6. (Simultaneous approximations theorem,[10]) Let X be a normed space,C a
nonempty convex compact subset ofX, Gi : C × C → 2C , i = 1, . . . , n, continuous mappings
with compact and convex values andαi ≥ 1. If x 7→ Gi(x, ·), i = 1, . . . , n are convex, that is,
for all x1, x2, y ∈ C andλ ∈ [0, 1],

λGi(x1, y) + (1− λ)Gi(x2, y) ⊆ Gi(λx1 + (1− λ)x2, y), i = 1, . . . , n ,

then there existsx0 ∈ C such that
n∑

i=1

||Gi(x0, x0)||αi = inf
u∈C

n∑
i=1

||Gi(u, x0)||αi .

Proof. Taking

H(x, y) = (
n∑

i=1

||Gi(y, x)||αi −
n∑

i=1

||Gi(x, x)||αi , +∞)

in Corollary 2.2 and it is similar to the proof of Theorem 3.4.

Theorem 3.7. (Theorem 3.60,[12]) LetC be a nonempty, convex subset of a topological vector
space. LetA ⊂ C × C andB ⊂ C × C satisfy

(i) A ⊂ B,
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(ii) For eachy ∈ C the section{x ∈ C|(x, y) ∈ A} is open inC,
(iii) For eachx ∈ C the section{y ∈ C|(x, y) ∈ A} is nonempty, and the section{y ∈

C|(x, y) ∈ B} is convex,
(iv) C has a nonempty compact convex subsetB0 such that the set{x ∈ C|(x, y) /∈ A for

all y ∈ B0} is compact.

Then there existsx0 ∈ C such that(x0, x0) ∈ B.

Proof. TakingH(x, y) = (x, y)− A andL(x, y) = (x, y)−B in Corollary 2.3.

Remark 3.2. If A = B, Theorem 3.7 reduces to result of Ky Fan [8].

Theorem 3.8. (Theorem 3.46,[12]) Let C be a nonempty, convex subset of topological vector
space,Y a normed space. Letf : C × C → Y be a continuous function, affine iny, that is, for
all x, y1, y2 ∈ C andλ ∈ [0, 1],

f(x, λy1 + (1− λ)y2) = λf(x, y1) + (1− λ)f(x, y2).

Assume the following conditions hold:

(i) C has a nonempty compact convex subsetB0 such that the set

D = {x ∈ C : ||f(x, y)|| ≥ ||f(x, x)|| for all y ∈ B0}
is compact,

(ii) for anyx ∈ C, f(x, y) = 0 has at least one solutiony in C.

Then there exists a pointy0 ∈ C such thatf(y0, y0) = 0.

Proof. We using corollary 2.4. Letg(x, y) = ||f(x, y)|| − ||f(x, x)|| for all x, y ∈ C. Since
functionf affine iny we have that functiong is diagonally quasiconvex iny. From assumption
(i) we have that there exists a nonempty subsetB0 of C such that intersection⋂

y∈B0

C \ intC{x ∈ C : g(x, y) < 0}

is compact andB0 is contained in a compact convex subset ofC. If there existsx ∈ C such that
g(x, x) < 0 then

||f(x, x)|| < ||f(x, x)||
and we have a contradiction. Hence, becausef is continuous, we have

C 6=
⋃
y∈C

{x ∈ C : ||f(x, y)|| < ||f(x, x)||},

and so there existsx ∈ C such that

||f(x, y)|| ≥ ||f(x, x)|| for all y ∈ C.

From assumption(ii) we havef(x, y) = 0 for somey ∈ C, hencef(x, x) = 0.

We prove the existence of solutions to the variational-like inequality problem (VLIP) of Q.
H. Ansari and J. -C. Yao, findx ∈ C such that

〈T (x), η(y, x)〉 ≥ 0, for all y ∈ C,

using our result of zeros of multifunctions. We will use the following definition.

Definition 3.1. [3] Let X be a locally convex topological space with topological dualX? and
C a nonempty subset ofX. For a given bifunctionη : C × C → X, an operatorT : C → X?

is called
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8 ZORAN D. M ITROVIĆ

(i) η−pseudomonotone if,

〈T (x), η(y, x)〉 ≥ 0 implies〈T (y), η(y, x)〉 ≥ 0, for all x, y ∈ C,

or equivalently

〈T (y), η(y, x)〉 < 0 implies〈T (x), η(y, x)〉 < 0, for all x, y ∈ C;

(ii) η−pseudodissipative if,

〈T (y), η(y, x)〉 ≥ 0 implies〈T (x), η(y, x)〉 ≥ 0, for all x, y ∈ C,

or equivalently

〈T (x), η(y, x)〉 < 0 implies〈T (y), η(y, x)〉 < 0, for all x, y ∈ C.

Theorem 3.9.[3] LetC be a nonempty and convex subset of a locally convex topological vector
spaceX and letη : C × C → X be a bifunction such thatη(x, x) = 0, for all x ∈ C. Assume
that

(i) T : C → X? is η−pseudomonotone andη−pseudodissipative;
(ii) for each fixedy ∈ C, the mapx 7→ 〈T (y), η(y, x)〉 is upper semicontinuous onC;

(iii) for each fixedx ∈ C, the mapy 7→ 〈T (x), η(y, x)〉 is quasi-convex;
(iv) there exists a nonempty, compact and convex subsetB of C and a nonempty and com-

pact subsetD of C such that for eachx ∈ C\D, there exists̃y ∈ B such that
〈T (x), η(ỹ, x)〉 < 0. Then the VLIP has a solution, that is, existsx ∈ C such that

〈T (x), η(y, x)〉 ≥ 0, for all y ∈ C.

Proof. Assume that the VLIP has no solution. Then for eachx ∈ C, existsy ∈ C such that
〈T (x), η(y, x)〉 < 0 and we have

C =
⋃
y∈C

{x ∈ C : 〈T (x), η(y, x)〉 < 0}.

Taking
H(x, y) = {y − z : 〈T (x), η(z, x)〉 < 0}, x, y ∈ C,

in Theorem 2.1. From assumption(iii) we obtain thatH is diagonally quasiconvex iny. From
assumptions(i) we have

{x ∈ C : 〈T (x), η(y, x)〉 < 0} = {x ∈ C : 〈T (y), η(y, x)〉 < 0}
and by(ii) we have that

intC{x ∈ C : 〈T (x), η(y, x)〉 < 0} = {x ∈ C : 〈T (x), η(y, x)〉 < 0}.
Since there is

C =
⋃
y∈C

{x ∈ C : 〈T (x), η(y, x)〉 < 0}

we have
C =

⋃
y∈C

intC{x ∈ C : 〈T (x), η(y, x)〉 < 0}

and
C =

⋃
y∈C

intC{x ∈ C : 0 ∈ H(x, y)}.

From assumption(iv) there exists a nonempty, compact and convex subsetB of C and a non-
empty and compact subsetD of C such that

C \D ⊆
⋃
y∈B

{x ∈ C : 〈T (x), η(y, x)〉 < 0},
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and
C \D ⊆

⋃
y∈B

intC{x ∈ C : 〈T (x), η(y, x)〉 < 0}.

So,
D ⊇

⋂
y∈B

C \ intC{x ∈ C : 〈T (x), η(y, x)〉 < 0},

and exists a nonempty subsetB0 = B of C such that intersection⋂
y∈B0

C \ intC{x ∈ C : 0 ∈ H(x, y)}

is compact andB0 is contained in a compact convex subset ofC. So, existsy0 ∈ C such that
0 ∈ H(y0, y0), that is,

〈T (y0), η(y0, y0)〉 < 0.

Since,η(y0, y0) = 0, we have a contradiction.

The following result of W. Takahashi has the applications of minimax inequalities. The proof
of this result is given as an application of the Corollary 2.3 .

Theorem 3.10. [15] Let C be a nonempty convex subset of a topological vector spaceX. Let
r ∈ R andf : C × C → (−∞,∞], g : C × C → (−∞,∞] such that

(i) g(x, y) ≤ f(x, y) for all x, y ∈ C,
(ii) f is quasiconcave in its first variable,

(iii) g is lower semicontinuous in its second variable,
(iv) C has a nonempty subsetB0 such that{y ∈ C : g(x, y) ≤ r for all x ∈ B0} is compact

andB0 is contained in a compact convex subset ofC.

Then either exists a pointz ∈ C such thatg(x, z) ≤ r for all x ∈ C or there exists a point
y0 ∈ C such thatf(y0, y0) > r.

Proof. Let

H(x, y) = (r − g(y, x), +∞) andL(x, y) = (r − f(y, x), +∞) for all x, y ∈ C.

From assumptions(i) and(ii) we haveH(x, y) ⊆ L(x, y) for all x, y ∈ C andL(x, y) is a
diagonally quasiconvex multifunction iny.
From assumption(iv) we have that there exists a non-empty subsetB0 of C such that intersec-
tion ⋂

y∈B0

C \ intC{x ∈ C : 0 ∈ H(x, y)}

is compact andB0 is contained in a compact convex subset ofC. If f(x, x) ≤ r for all x ∈ C
we have0 /∈ L(x, x) for all x ∈ C and obtain

C 6=
⋃
y∈C

intC{x ∈ C : 0 ∈ H(x, y)},

i.e.
C 6=

⋃
y∈C

intC{x ∈ C : g(y, x) > r}.

From assumption(iii) we have

intC{x ∈ C : g(y, x) > r} = {x ∈ C : g(y, x) > r},
and then exists a pointz ∈ C such thatg(x, z) ≤ r for all x ∈ C.
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Finally, we establish an existence result for generalized vector equilibrium problem (GVEP)
which is to findx0 ∈ K such that

F (x0, y) * −intC(x0), for all y ∈ K,

whereC(x) is a closed convex cone andF : K ×K → 2Y a multifunction, by using result of
the existence zeros of multifunctions.

Theorem 3.11.LetX andY be topological vector spaces,K a nonempty convex subset ofX,
andC : K → 2Y is a multifunction such that for eachx ∈ K, C(x) is a closed convex cone in
Y with intC(x) 6= ∅. LetF, G : K ×K → 2Y be two multifunctions such that

(a) for all x, y ∈ K, F (x, y) ⊆ −intC(x), impliesG(x, y) ⊆ −intC(x),
(b) for eachx ∈ K, G(x, x) * −intC(x) andG(x, y) is a diagonally quasiconcave multi-

function iny,
(c) K =

⋃
y∈K

intK{x ∈ K : F (x, y) ⊆ −intC(x)},

(d) there exists a non-empty subsetD0 contained in a nonempty compact convex subset of
D1 such that for eachx ∈ K \D1, there existsy ∈ D0 with F (x, y) ⊆ −intC(x).

Then there existsx0 ∈ C such thatF (x0, y) * −intC(x0), for all y ∈ K.

Proof. Assume that the GVEP has no solution. Then for eachx ∈ K, existsy ∈ K such that

F (x, y) ⊆ −intC(x).

Let for all x, y ∈ K,
L(x, y) = {y − z : G(x, z) ⊆ −intC(x)}

and
H(x, y) = {y − z : F (x, z) ⊆ −intC(x)}.

Now, by Corollary2.3 we obtain there exists a pointx ∈ K, such that,

0 ∈ L(x, x),

and
G(x, x) ⊆ −intC(x),

which is a contradiction of assumption(b). Hence, the solution set of GVEP is nonempty.

Example 3.1. A multifunctionF : K ×K → 2Y is calledCx−quasiconvex-like multifunction
in y, see for example[4, 6], if for all x, y1, y2 ∈ K, andλ ∈ [0, 1], we have either

F (x, λy1 + (1− λ)y2) ⊆ F (x, y1)− C(x)

or
F (x, λy1 + (1− λ)y2) ⊆ F (x, y2)− C(x).

LetK = [−2, 2], C(x) = {0}, for all x ∈ K. We defineF : K ×K → 2R2
by

F (x, y) =

 R \ {−1}, (x, y) ∈ K × [−2,−1],
R \ {0}, (x, y) ∈ K × (−1, 1),
R \ {1}, (x, y) ∈ K × [1, 2].

We have,
F (y0, y0) * F (y0, y1)− C(y0)

and
F (y0, y0) * F (y0, y2)− C(y0),

where

y0 = λy1 + (1− λ)y2, λ =
1

2
, y1 = −1, y2 = 1.
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So,F is notCx−quasiconvex-like multifunction iny.
On the other hand, we have thatF is diagonally quasiconcave iny.

Remark 3.3. (i) The assumption(c) in Theorem 3.11 can be replaced by the following
condition

for eachy ∈ K, F (·, y) is upper semicontinuous multifunction onK.

Namely, if F (·, y) is upper semicontinuous multifunction for eachy ∈ K, then we
obtain

intK{x ∈ K : F (x, y) ⊆ −intC(x)} = {x ∈ K : F (x, y) ⊆ −intC(x)},
for eachy ∈ K, and since is,

K =
⋃
y∈K

{x ∈ K : F (x, y) ⊆ −intC(x)},

we have
K =

⋃
y∈K

intK{x ∈ K : F (x, y) ⊆ −intC(x)}.

(ii) The assumption(b) can be replaced by

for eachx ∈ K, G(x, x) * −intC(x)

andG(x, y) is aCx-quasiconvex-like multifunction iny.

In this case, Theorem 3.11 improves Theorem 2.1 in [4].
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