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ABSTRACT. The aim of the paper is to prove the stability of the Pexiderized equation

f(x) = g(y + x)− h(y − x),

for any amenable abelian group.
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1. I NTRODUCTION

The problem of stability of a given functional equation was first raised by S. M. Ulam [19] in
1940. In 1941, Hyers proved the following theorem that we state it in the language of abelian
semigroups: Let(G, +) be an abelian semigroup andf : G → R be a function satisfying
|f(x+ y)− f(x)− f(y)| ≤ ε for someε > 0 and for allx, y ∈ G. Then there exists an additive
functionT : G → R such that|T (x)− f(x)| ≤ ε for all x ∈ G.

In 1978, Th. M. Rassias [17] extended the theorem of Hyers by considering an unbounded
Cauchy difference. Another generalization of Hyers’ result was given by J. M. Rassias in a
series of interesting papers [10, 11, 12, 14, 15]. These results have provided a lot of influence in
the development of what we now callCauchy–Ulam stabilityof functional equations. Since then
the topic of stability of functional equations was extensively studied and extended in several
ways by many mathematicians. The reader is referred to [1, 2, 3, 6, 8, 9, 13] and references
therein for a comprehensive account on stability of functional equations.

One of most useful equations is the Pexiderized equationf(x) = g(y + x)− h(y− x) where
f, g, h are complex functions on an abelian (additive) groupG. In the case thatG is uniquely
2-divisible (i.e. an abelian group in which the mapϕ : G → G, ϕ(x) = 2x is bijective) andg =
h = k andf = 2k we obtain the additive type equation2k(x) = k(y + x)− k(y− x); x, y ∈ G
whose solutions are clearly those of the Jensen type equationk(y−x

2
) = 1

2
(k(y)− k(x)), x, y ∈

G. The stability of this equation was studied in [16].
Our aim in the present paper is to prove the stability of the Pexiderized equation on an

amenable abelian group. Recall that a groupG is called amenable if there exists an invari-
ant meanµ onG, i.e. a positive linear functionalµ on the spacel∞(G) of all bounded complex
functions onG such thatµ(1) = 1 andµ is right invariant in the sense thatµ(fx) = µ(f); f ∈
l∞(G), x ∈ G in whichfx(t) := f(tx) (t ∈ G). The reader is referred to [4] for more details on
invariant means.

The analogue problem for the equationf(x + y) + g(x− y) = h(x) + k(y) has been studied
in [7] but in a different approach.

2. M AIN RESULTS

In this section, using ideas from [3, 18], we establish the HyersŰ-Ulam stability problem for
the functional equationf(x) = g(y + x)− h(y− x), wheref, g, h are complex functions on an
amenable abelian groupG.

Theorem 2.1.Suppose(G, +) is an amenable abelian group andf, g, h : G → C are mappings
for which there existsε > 0 such that

|f(x)− g(y + x) + h(y − x)| ≤ ε,(2.1)

for all x, y ∈ G. Then there exists a unique additive mappingT : G → C such that

|f(x)− f(0)− T (x)| ≤ 4ε,

for all x ∈ G.

Proof. Let us defineF (x) := f(x) − f(0), G(x) := g(x) − g(0), H(x) := h(x) − h(0). It
follows from (2.1) that

|F (x)−G(y + x) + H(y − x)| ≤ |f(x)− g(y + x) + h(y − x)|
+|f(0)− g(0) + h(0)|

≤ 2ε.(2.2)
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Setx = 0 in (2.2) to obtain

|H(y)−G(y)| ≤ 2ε.

Hence

|F (x)− (H(y + x)−H(y − x))| ≤ ||F (x)−G(y + x) + H(y − x)|
+|G(y + x)−H(y + x)|

≤ 4ε.(2.3)

For each fixed elementx ∈ G, the function(Hx−H−x)(y) = H(y +x)−H(y−x) is bounded
since, by (2.3),|H(y+x)−H(y−x)| ≤ |F (x)−(H(y+x)−H(y−x))|+|F (x)| ≤ 4ε+|F (x)|.
Let µy be a right invariant mean on the spacel∞(G) (the suffix y indicate thatµy acts on
functions of the variabley). DefineT (x) := µy(Hx −H−x). Using the commutativity ofG we
have

T (x + z) = µy(Hx+z −H−z−x)

= µy(Hx+z −Hz−x) + µy(Hz−x −H−z−x)

= µy((Hx −H−x)z) + µy((Hz −H−z)−x)

= µy(Hx −H−x) + µy(Hz −H−z)

= T (x) + T (z).

HenceT is additive. Moreover,

|T (x) + f(0)− f(x)| = |T (x)− F (x)| = |µy(Hx −H−x − F (x))|
≤ sup

y∈G
|H(y + x)−H(y − x)− F (x)|

≤ 4ε.

If T ′ is another additive mapping fulfilling|F (x)− T ′(x)| ≤ 4ε for all x ∈ G, then

|T (x)− T ′(x)| =
1

n
|T (nx)− T ′(nx)|

≤ 1

n
(|T (nx)− F (nx)|+ |F (nx)− T ′(nx)|)

≤ 8ε

n
,

by the additivity ofT andT ′. Lettingn tend to∞, we getT (x) = T ′(x); x ∈ G. This proves
the uniqueness assertion.

Remark 2.1. There is a very useful tool in the study of stability of functional equations that is
Hyers’ type sequence [5].

Settingy = x in (2.3), we get

|F (x)−H(2x)| ≤ 4ε

and therefore

|T (x)−H(2x)| ≤ |T (x)− F (x)|+ |F (x)−H(2x)| ≤ 8ε(2.4)

Using induction onn we infer from (2.4) that

|T (x)− 2−n+1H(2nx)| ≤ 2−n+4ε

for all x ∈ G. Hence we obtain the Hyers sequence{2−n+1H(2nx)} with the limit T (x) =
lim

n→∞
2−n+1H(2nx). Thus we can define the required additive mappings by usingH.
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Corollary 2.2. The equation2k(x) = k(y + x)− k(y− x); x, y ∈ G for a mappingk : G → C
is stable for any finite abelian groupG.

Corollary 2.3. The equation2k(x) = k(y + x)− k(y− x); x, y ∈ G is stable on any amenable
abelian group.

Proof. Apply Theorem 2.1 withg = h = k andf = 2k. Then the mappingT obviously satisfies
2T (x) = T (y + x)− T (y− x); x, y ∈ G and|k(x)− T (x)| ≤ |k(x)− k(0)− T (x)|+ |k(0)| ≤
4ε + 1

2
ε = 9

2
ε for all x ∈ G.
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