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of the form f = h + g using Salagean operator whereand g are analytic in the unit disc
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1. INTRODUCTION

A continuous functiongf = u + iv is a complex-valued harmonic function in a complex
domain(2 if both v andwv are real harmonic if). In any simply connected domaiti C (2,
we can writef = h + g, whereh andg are analytic inC. We call h the analytic part and
the co-analytic part of. A necessary and sufficient condition féito be locally univalent and
orientation preserving if' is that|¢'(z)| < |h/(z)| (see Clunie and Sheil-Small [3]).

Denote byH the family of functionsf = h + g that are harmonic, univalent and orientation
preserving in the open didé¢ = {z : |z| < 1} so thatf = h + g is normalized byf(0) =
h(0) = f.(0) — 1 = 0. Therefore, forf = h + g € H we can express the analytic functioins
andg by the following power series expansion

(1.1) f(2) :z+Zam2m+mezm, |b| < 1.
m=2 m=1

Note that the familyHd consisting of orientation preserving, normalized, harmonic univalent
functions reduces to the classof normalized analytic univalent functions if the co-analytic
part of f = h + g is identically zero, ie.g(z) = 0. Further denote by{ the subfamily ofHf
consisting of harmonic functiong, = h + g, of the form

[e.9]

(1.2) fal2) =2 — Z Q2™+ (—1)"2 b 2™, G, by >0 and |by] < 1.
m=1

m=2

For f = h + g, given by [1.1), recently Jahangiri et al. [5], defined the Salagean derivative of
harmonic functiong = h +gin H by

(1.3) D"f(z) = D"h(z) + (—1)"D"g(z), n € N U{0}

where the Salagean derivative [7] of power seties = i é,,2™is givenbyD%(z) = ¢(2),
m=1

o0

D'¢(z) = z¢/(z) andD"¢(z) = D(D"'¢(z)) = ZI m" g, 2"

For fixed values of., we let Fy (n, A, ) to consist of harmonic functions= h +gin H so

that
aDg g(z)
o5 >,
00

where) < a < 1,0 < A < landz = re? € U. We also letFz(n, A\, a) = Fi(n, A\, o) N H.
As ) changes from 0 to 1, the familfy (n, A\, «) provides a passage from the class of har-

monic functionsPy (n,«) = Fy(n,0, ) consisting of functiong” where Re {%(z)} >«

to the class of harmonic functiori@y (n,«) = Fg(n,1,a) consisting of functions’ where
{Z2D"f(2)/Z=} > a. Note thatifn = 0 and the co-analytic pagt= 0, the class;(n, A, o) =
F\(a) [2]. Furtherifn =0, Qu(n,a) = Ny(a)[l] and ifn = 0, Qz(n, a) = Ng(a).

Recently there has been triggering interest to study harmonic complex functions (details see
[0, 3], [4], [B], [6], [8]), motivated by Jahangiri et al/, [5] and using the techniques of Silverman
[8], in this paper, we have obtained the coefficient conditions for the cldsges, A, «) and
Fg(n, A\, ). Further a representation theorem, inclusion properties and distortion bound for the
classFyg(n, A\, ) are established.

(1.4) Re{(l—)\)[D”f(z)/z] + A
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2. MAIN RESULTS

First we give the sufficient coefficient bound for functions in the cldgén, A, ).

Theorem 2.1.Let f = h + g be given by[(1]1). If
(2.1) Zmn{\ — DA+ lag] + | (m+ DA = 1[b]} < 2(1 - a)

wherea; = 1 and0 < o < 1 thenf is orientation preserving, harmonic univalentihand
f S FH(”a)\va)'

Proof. If the inequality [2.1) holds for the coefficients pf= . + g, then by [1.B)f is orienta-
tion preserving and harmonic univalentlin It remains to show that

Re{(l—)\)anJr)\( D”f)}za.
z Zz

According to [1.2) and (1]3) we have

o2 (29))
00

Re {(1—A>[D”h<z> (~1)"Dg(=)] + ALz <D"h<z>>'—<—1>nz<Dng<z>>']}2@

z

Using the fact that Re > « it suffices to show thdtl —a+w| > |1+a—w|. This is equivalent
to showing that if the conditior (2.1) holds then

(1= )z + (1= ) [D"(z) + (-1)"Dg() | + A [2(D"h(2)) = (~1)"2(D7g(=)) |

— @ =X [Ph(z) + (1" D) + A (DR = (<1 D) - (1 a)z
> 0

substituting forD™h(z), D"g(z), (D"h(z)) and(D™g(z))" , simple computation leads yield

> z—az— Zm”]l — A+ mA| |an||z|™ — Zm"| — 1+ X+ mA| |by]2|™

m=2 m=1

ozt z— S m L= At mA|fal|el" = 3w = 14 Ak mA| bl

— o1 —a)s )
B = m™(m — 1)\ + 1] T = m"|(m+ 1)\ — 1] -1
| (m — A + 1] ) (m 4 A — 1]

The last expression is nonnegative py|2.1) and so the proof is complete.
|
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The starlike harmonic function

(1—a) (1-a)
2.2 = m Ym 2"
(2.2) Z+Zm”| —1/\+1|x2 +Zm"|m—|—1 )Y ®

where > |z,,] + > |ym| = 1 shows that the coefficient bound given 2.1) is sharp.
m=2 m=1
The function of the form[(2]2) are ifiy (n, A, «) because

= /m|(m — 1A + 1 m*|(m+ 1)\ — 1]
Z( T R ey “’m')

m=1

e} oo
= 1+Z|xm\+2|ym]:2.
m=2 m=1

In the following theorem, it is shown that the conditipn {2.1) is also necessary for functions
fn = hn + g, Wheref, are of the form[(1}]4).

Theorem 2.2.Let f, = h + g, be given by[(1]2). Thefi, € Fiz(n, A, «) if and only if

(2.3) Zm”{| — DA+ Lapy, + |(m + DA = 1]by,} < 2(1 — a).

Proof. Since Fi(n, A\, ) C Fy(n, A, «), we need to prove the "only if " part of the theorem.
To this end, for functiong;, of the form [1.2), we notice that the condition

e {1 [ 216 |51 s

is equivalent to

(2.4)
(1—a)z— > m*|(m— DA+ 1anz™ — (=1)* 3 m"|(m + 1)\ — 1|b,,z™
Re m=2 m=1 > 0.

The above required condition (2.4) must hold for all values @f U and from choosing the
values ofz on the positive real axis whefe< z = r < 1, we have

(2.5) 1—a—Zm m — DA+ 1a,r™ —Zm"|(m+1)/\—1|bmrm_1 > 0.

m=1

If the condition [[2.8) does not hold then the numerator in|(2.5) is negative $oifficiently
closeto 1. Hence there exists@= ry in (0, 1) for which the quotient i (2]5) is negative. This
contradicts the required results ffiy € F7(n, A, «) and so the proof is complete.

Next we determine the extreme points of the closed convex hulls;6f, \, o) denoted by
clegFg(n, A, ).

Theorem 2.3. Let f,, be given by[(1]2). Thefi, € F(n, A, «) if and only if

(2.6) fn(2) = (Xonhm(2) + Yingn,, (2))

m=1
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whereh, (2) = 2, hy(2) = 2 — =% —2™ (m = 2,3,...),

m"|(m—1)\+1]

(1-a)
mr(m + DA — 1]

Gn,, (2) = z4+(=1)" zZ" (m=1,2,...),

> (Xm+Yn) = 1, X, 20, ¥, 2 0.
m=1

In Particular, the extreme points @ (n, A, «) are {h,,} and{g,,, }

Proof. For functionsf,, of the form [2.6) we have

fn(z) = Z(thm(z)+ymgnyyl<z))

o0

1 -«
X+ YY)z — X2
(Xon 4 Ym)2 sz”\(m—l))\—i—ﬂ :

m=

3
I

K

3
I

o0

1l—a
1" Y, 7",
) ;mn|(m+1))\—l| :

_|_

Then

= m™(m — 1)\ + 1] Zm™(m + 1A — 1]
> m + Y bm
m=1

l—« l—«
m=2

iXeriYm:l—Xlgl
m=2 m=1

and sof,, € clegFg(n, A, a).
Conversely, suppose that € clcoFz(n, A, ). Setting

m"|(m — 1)\ + 1|

X, = (M = 2,3, 4, .
T s (m )
n DA—1
Y, = mKﬁf) |%qm:Lz&”J
—

where i (X +Y,) = 1 we obtainf,,(z) = i (Xmhm(z) + Yign,, (2)) as requireds

m=1 m=1

The following theorem gives the distortion bounds for functiong’ifin, A, a) which yields
a covering result for this class.

Theorem 2.4.Let f,, € Fz(n, A\, «). Then for|z| = r < 1 we have

1 (1—a [2x=1], \ ,
1= b)r— — <
(1=bor %(1+A 1+Ab>r-Jh@”
1 (1—a |22 =1] \ ,
< q —
s (4b)r+o <1+A 1+Abor

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar
and will be omitted.
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Let f,, € Fiz(n, A, ). Taking the absolute value ¢f, we obtain

fa(2)] < (A+b)r+ ) (@ + by )r™

m=2
< (14b)r+ Y (am + by)r?
m=2
1 27(1 + \) 27 (12X — 1) )
s (I+br 27 ( +)\)Z( 1—a ™" 1 a b | 7
]2)\—1] }

1
1
< (1+40by)r 2—{1

1—a |2A—1|b i
T+XA 14N ¢
I

Corollary 2.5. Let f,, be of the form[(1]2) so that, € Fiz(n, A, ). Then
"1+ —1+a 271+ — 22 —1|
: — b .
{w lw| < STESY (14 N) 1¢ C fuU)
For our next theorem, we need to define the convolution of two harmonic functions. For
harmonic functions of the fornfi,,(2) = z — > a,2™ + (=1)" > b,z™ andF,(z) = z —
m=2 m=1

> An2™+ (—=1)" > B,,z™ we define the convolution of, andF,, as
m=2

m=1

(fnx Fn)(z) = f()*F()
(2.7) = Z—Zam mz" 4 ( Zb B,,z".

Theorem 2.6.For0 < 6 < a < 1, Iet fn € Fr(n,\ ) and F, € Fg(n, A\, (3). Then the
convolutionf,, x F,, € Fg(n, A\, a) C Fg(n, A, ).

Proof. For f,, andF,, as in Theore3, writ¢, (2) = z — > apz™ + (=)™ > b,z™ and

m=2 m=1

F.(z) = z— Z Ay 2™+ (=) i B,,Z™. Then the convolutiory,, « F,, is given by (2 )

We wish to show that the coefﬁmentsp;f* F,, satisfy the required condition given in Theorem
2.9. ForE, € F(n, A\, ) we note thatA,,| < 1 and|B,,| < 1.
Now for the convolution functiorf,, x F,, we obtain

im”|(m—1))\+1|a A +im”|(m+1))\—1|b B

m=2 1_5 m=1 1_5
—1)A+1| > m"(m 4+ 1A — 1
< am + bm
<>y 2
m"|(m — 1A+ 1 = m"(m+ 1A — 1|
< m bm
_mZZQ l—« “ +mZ:1 l—«
<1.

Sinced < f < a < landf, € Fg(n, A, «). Thereforef, « F,, € Fz(n,\,a) C Fg(n, A, (). 1
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Finally we show that the class;(n, A, «) is closed under convex combination of its mem-
bers.

Theorem 2.7. The familyF(n, A, «) is closed under convex combination.

Proof. Fori = 1,2... supposef,,, € Fi(n, A, «) where

fni (2 —Z—Zalmz + ( ”Zblmz
m=1
Then by Theorerh 2] 2,

= m"|(m—1DA+1 . m™(m+ 1\ —1
(2.8) > ! 1_02 |aim+z ( 1_02 b, < 1.
m=2 m=1

For> t, =1, 0 <t; <1,the convex combination of,, may be written as

i=1
OACEEEDS (Z t) SEACIDY (Z mbm) z
=1 m=2 =1 m=1 i=1
Then, by [2.8),

im (m 1—_1@A+1y (th ) +Z m1+_1a —1 (th“”)

m=2

o = m™|(m — 1)\ + 1| > m"|(m+ 1)\ — 1]
Zh(Z 1—« azm—i_z 1—« bim

< Zti =1 and therefore Ztifm € Fg(n, A\ ).

=1 i=1
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