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ABSTRACT. Compactly supported interpolatory orthogonal multiwavelet packets are introduced.
Precisely, if both the multiscaling function and the corresponding multiwavelet have the same
interpolatory property, then the multiwavelet packets are also interpolatory orthogonal. Thus,
the coefficients of decomposition or synthesis of multiwavelet packets can be realized by sam-
pling instead of inner products. This multiwavelet packets provide a finer decomposition of
multiwavelet packets space and give a better localization.
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2 YANG SHOUZHI

1. I NTRODUCTION

Wavelet analysis is a powerful tool for time-frequency localization. In order to have bet-
ter localization for high frequency components in the wavelet decomposition, Coifman et al.
(see [2]) introduced another kinds of bases called wavelet packets. In order to have symmetry,
Cohen et al. (see [3]) constructed biorthogonal wavelets. The biorthogonal wavelet packets
were considered by Chui and Li (see [4]). However, it was shown by Cohen and Daubechies
(see [5]) that the biorthogonal wavelet packets are globally unstable. Orthogonal multiwavelet
can have some features that scalar orthogonal wavelets cannot (see [6]). Another new fea-
ture of multiwavelet is that they can be made both orthogonal and interpolatory (see [9]-[1]),
which provides nice sampling theorems for signal processing. The purpose of this paper is to
study the construction of compactly supported interpolatory orthogonal multiwavelet packets.
If multiwavelet is interpolatory orthogonal, then the corresponding multiwavelet packets is also
interpolatory orthogonal.

Let Φ(x) = (φ1, φ2)
T , φ1, φ2 ∈ L2(R), satisfy the following equation:

(1.1) Φ(x) =
∑
k∈Z

PkΦ(2x− k),

where{Pk} is a finitely supported sequence of2 × 2 matrices called the two-scale matrix
sequence.Φ(x) is called a multiscaling function with multiplicity two.

Define the two-scale matrix symbol ofΦ as follows

(1.2) P (z) =
1

2

∑
k∈Z

Pkz
k.

Define a subspaceVj ⊂ L2(R) by Vj = closL2(R)〈φ`:j,k : ` = 1, 2; k ∈ Z〉, j ∈ Z, here and

afterwards, forf` ∈ L2, we will use the notationf`:j,k = 2
j
2f`(2

jx − k). The subspaces{Vj}
form a multiresolution analysis with multiplicity two. LetWj, j ∈ Z, denote the complemen-
tary subspace ofVj in Vj+1. Suppose that the functionΨ(x) = (ψ1, ψ2)

T , ψ` ∈ L2, ` = 1, 2 is
multiwavelet associated with multiscaling functionΦ, and satisfy the following equation:

(1.3) Ψ(x) =
∑
k∈Z

QkΦ(2x− k).

Define the two-scale matrix symbol ofΨ as follows

(1.4) Q(z) =
1

2

∑
k∈Z

Qkz
k.

We callΦ(x) = (φ1, φ2)
T orthogonal multiscaling function, if

(1.5) 〈Φ(·),Φ(· − n)〉 = δ0,nI2, n ∈ Z.

Ψ(x) = (ψ1, ψ2)
T will be said to be the orthogonal multiwavelet associated with multiscaling

functionΦ, if Φ, andΨ satisfy the following equations

(1.6) 〈Φ(·),Ψ(· − n)〉 = O, 〈Ψ(·),Ψ(· − n)〉 = δ0,nI2, n ∈ Z,

whereO andI2 denote the zero matrix and unity matrix, respectively.
A multiscaling functionΦ satisfying (1.1) is called interpolatory ifφ1, φ2 are continuous,

compactly supported and satisfy fork ∈ Z, ` = 0, 1,

(1.7) φj(k +
`

2
) = δk,0δj,`+1, j = 1, 2.

The condition (1.7) means thatφ1 is cardinal at integers and vanishes at half integers;φ2 is
cardinal at half integers and vanishes at integers.
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Let e1 = (1, 0)T , ande2 = (0, 1)T . Then the interpolatory condition (1.7) is equivalent to the
following equations:

(1.8) Φ(k) = δk,0e1, and Φ(k +
1

2
) = δk,0e2.

In [8], Zhou forces the two-scale matrix symbolP (z), Q(z) to take the forms,respectively

(1.9) P (z) =
1

2

[
1 H(z)
z G(z)

]
, Q(z) =

1

2

[
1 −H(z)

z −eiθz2p+1H(−z)

]
,

whereH(z), G(z) are both Laurent polynomials, satisfy|H(z)|2 + |H(−z)|2 = 2, G(z) =

eiθz2p+1H(−z), θ ∈ R, p ∈ Z,∀|z| = 1. ThenΦ(x) generated byP (z) is interpolatory orthog-
onal multiscaling function, i.e.,Φ(x) satisfies the interpolatory condition (1.7) or (1.8).Ψ(x)
generated byQ(z) is orthogonal multiwavelet associated with multiscaling functionΦ. Both the
multiscaling function and the corresponding multiwavelet have the same interpolatory property.

2. I NTERPOLATORY ORTHOGONAL M ULTIWAVELET PACKETS

Suppose thatw0(x) = Φ(x), w1(x) = Ψ(x) andP (0)
k = Pk, P

(1)
k = Qk. Then (1.1) and (1.3)

can be rewritten respectively as follows

(2.1) wi(x) =
∑
k∈Z

P
(i)
k w0(2x− k), i = 0, 1.

The multiwavelet packets{wn(x)} is defined by the following recursion:

(2.2) w2n+i(x) =
∑
k∈Z

P
(i)
k wn(2x− k), i = 0, 1;n = 0, 1, · · · .

For anyn ∈ Z+, its 2-adic fractional expression is

(2.3) n =
∞∑

j=1

εj2
j−1, εj ∈ {0, 1}.

Theorem 2.1. Letn be in∈ Z+, and its 2-adic fractional expression given by (2.3). Then the

Fourier transform
∧
wn (ω) of orthogonal multiwavelet packetswn(x) is given by

(2.4)
∧
wn (ω) =

∞∏
j=0

P (εj)(e−iω/2j

)
∧
w0 (0), ω ∈ R.

Proof. The proof is by induction onn. By taking the Fourier transform for the both sides of
(2.2), we have

(2.5)
∧
w2n+i (ω) = P (i)(e−iω/2)

∧
wn (

ω

2
).

The casen = 0 andn = 1 are trivial by (1.1) and (1.3), respectively. Let us assume that (2.4)
holds for0 ≤ n < 2s0. Consider the setting of2s0 ≤ n < 2s0+1. Sincen = 2[n

2
]+ε1 = 2n1+ε1,

by (2.5), we have

(2.6)
∧
wn (ω) = P (ε1)(e−iω/2)

∧
wn1 (

ω

2
).

Sincen1 = [n
2
] =

s0∑
j=1

εj+12
j−1 < 2s0 , hence,

∧
wn1 (ω) =

∞∏
j=1

P (εj+1)(e−iω/2j
)
∧
w0 (0). By (2.6),

we prove Theorem 2.1 by induction onn.

AJMAA, Vol. 2, No. 1, Art. 14, pp. 1-6, 2005 AJMAA

http://ajmaa.org


4 YANG SHOUZHI

Lemma 2.2. Let Φ(x) be an orthogonal multiscaling function defined in (1.1), andP (z) be
the two-scale matrix symbol defined in (1.2). Suppose thatΨ is an orthogonal multiwavelet
associated withΦ, andQ(z) is two-scale matrix symbol. Then

(2.7) P (ω)P (ω)∗ + P (ω + π)P (ω + π)∗ = I2,

(2.8) P (ω)Q(ω)∗ + P (ω + π)Q(ω + π)∗ = O,

(2.9) Q(ω)Q(ω)∗ +Q(ω + π)Q(ω + π)∗ = I2.

This result was obtained by Chui and Lian in [1]. The (2.7), (2.8) and (2.9) can be rewritten
the following equation equivalently

(2.10) P (i)(ω)P (j)(ω)∗ + P (i)(ω + π)P (j)(ω + π)∗ = δi,jI2, i, j = 0, 1.

Theorem 2.3. Let Φ(x) be orthogonal multiscaling function. SupposeE = (1, 1)T , and
{wn(x), n ∈ Z+} defined in (2.2) is multiwavelet packets associated with multiscaling func-
tion Φ. Then∀n ∈ Z+,

(2.11) 〈wn(x− j),wn(x− k)〉 = δj,kE, j, k ∈ Z.

(2.12) 〈w2n(x− j),w2n+1(x− k)〉 = O, j, k ∈ Z.

Proof. It is clear that (2.11) holds forn = 0 andn = 1. Let us assume that (2.11) holds for
0 ≤ n < 2s0. Now let us consider the setting of2s0 ≤ n < 2s0+1. By Theorem 2.1 and (2.10),
we have

(2.13)

〈wn(x− j),wn(x− k)〉 = 1
2π

∫∞
−∞ | ∧wn (ω)|2e−i(k−j)ωdω

= 1
2π

∫∞
−∞ |P (ε1)(e−iω/2)|2| ∧w[n

2
] (ω

2
)|2e−i(k−j)ωdω

= 1
2π

∞∑
`=−∞

∫ 4π(`+1)

4π`
|P (ε1)(e−

iω
2 )|2| ∧w[n

2
] (ω

2
)|2e−i(k−j)ωdω

= 1
2π

∫ 4π

0
|P (ε1)(e−iω/2)|2

∞∑
`=−∞

| ∧w[n
2
] (ω

2
+ 2π`)|2e−i(k−j)ωdω

= 1
2π

∫ 2π

0
e−i(k−j)ω[|P (ε1)(ω)|2 + |P (ε1)(ω + π)|2]Edω = δj,kE,

whereε1 = 0, 1. This completes the induction procedure. Hence (2.11) holds. Similarly, we
can proved (2.12).

Theorem 2.4. The family{wn(x − k) : 0 ≤ n < 2N ; k ∈ Z} is an orthogonal basis ofVN .
Moreover, the collection{wn(x− k) : n ∈ Z+; k ∈ Z} is an orthogonal basis ofL2(R).

Theorem 2.5.LetΦ be an orthogonal interpolatory multiscaling function, and satisfy the inter-
polatory condition (1.7) or (1.8). The corresponding multiwaveletΨ(x) has the same interpo-
latory property. Let{wn(x), n ∈ Z+} defined in (2.1) be multiwavelet packets associated with
multiscaling functionΦ. Then{wn(x), n ∈ Z+} is an orthogonal interpolatory multiwavelet
packets.That is,wn(x) also satisfies condition (1.7) or (1.8).

Proof. The orthogonality of{wn(x), n ∈ Z+} has been given by Theorem 2.3-Theorem 2.4.
Next, we only need to prove that{wn(x), n ∈ Z+} has interpolatory property. By applying
the results in [8], we obtain thatΦ andΨ are both interpolatory, and satisfy the interpolatory
condition:Φ(k) = δk,0e1, and Φ(k + 1

2
) = δk,0e2, andΨ(k) = δk,0e1, and Ψ(k + 1

2
) =

δk,0e2. It is clear thatwn(x) is interpolatory and satisfies the condition (1.8) forn = 0, 1.
Suppose thatwn(x) is interpolatory and satisfies the condition (1.8) for0 ≤ n < 2s0 . i.e.,
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wn(k) = δk,0e1 andwn(k + 1
2
) = δk,0e2, for 0 ≤ n < 2s0. Now let us consider the setting of

2s0 ≤ n < 2s0+1. Sincen = 2[n
2
] + ε1 = 2n1 + ε1, by (2.2), we have

(2.14) wn(x) =
∑
k∈Z

P
(i)
k w[n

2
](2x− k), i = 0, 1;n = 2s0 , 2s0 + 1, · · · , 2s0+1 − 1.

Since0 ≤ [n
2
] < 2s0, the induction hypothesis tells us thatw[n

2
](m) = δm,0e1,w[n

2
](m + 1

2
) =

δm,0e2. Therefore, by (1.1), (1.8) and (2.14), we havewn(m) =
∑
k∈Z

P
(i)
k w[n

2
](2m − k) =∑

k∈Z

P
(i)
2m−kw[n

2
](k) =

∑
k∈Z

P
(i)
2m−kδk,0e1 = P2me1 = δm,0e1. Similarly, applying (2.14), we obtain

wn(m+ 1
2
) = δm,0e2. This completes the induction procedure and the proof of Theorem 2.5.

3. DECOMPOSITION OR RECONSTRUCTION ALGORITHMS

Define the linear spaces

(3.1) Un
j = closeL2〈2j/2wn(2jx− k) : k ∈ Z〉, j ∈ Z, n ∈ Z+.

Hence for allj ∈ Z,U0
j = Vj, U

1
j = Wj. ApplyingVj+1 = Vj +Wj, we have

(3.2) U0
j+1 = U0

j

⊕
U1

j , j ∈ Z.

Since both the multiscaling function and the corresponding multiwavelet have the same inter-
polatory property. Therefore, we enable to compute the wavelets coefficients from the samples
of the signal rather than the Mallat algorithm. That is, if a continuous signalf(x) is inU0

j+1 and
has the orthogonal decomposition

(3.3) f(x) =
∑
`∈Z

[Dj+1,0
` ]Tw0:j+1,`(x),

wherewn:j,`(x) = 2j/2wn(2jx−k), [Dj+1,0
` ]T = 2−

j+1
2 [f( `

2j+1 , f( `
2j+1 + 1

2j+2 )]. Applying (3.2),
we have

(3.4) f(x) =
∑
`∈Z

[Dj,0
` ]Tw0:j,`(x) + [Dj,1

` ]Tw1:j,`(x).

By the Mallat algorithm, we can obtain

(3.5) Dj,0
` = 2−

1
2

∑
m∈Z

PkD
j+1,0
2`+m.

In terms of interpolatory property of the multiscaling function and the corresponding multi-
wavelet, and (3.4), we can obtain

(3.6) [Dj,1
` ]T = 2−j/2[f(

`

2j
), f(

`

2j
+

1

2j+1
)] − [Dj,0

` ]T .

Furthermore, we have

(3.7) Un
j+1 = U2n

j

⊕
U2n+1

j , j ∈ Z.

Similarly, letgn
j+1(x) be inUn

j+1. Thengn
j+1(x) can be expressed by

(3.8) gn
j+1(x) =

∑
`∈Z

[Dj+1,n
` ]Twn:j+1,`(x),
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By (3.7), proceed to the decomposition with an orthogonal interpolatory multiwavelet packets
wn:j,`(x)

(3.9) gn
j+1(x) =

∑
`∈Z

[Dj,2n
` ]Tw2n:j,`(x) + [Dj,2n+1

` ]Tw2n+1:j,`(x).

In light of interpolatory property of multiwavelet packets, we can establish the following rela-
tion:

(3.10) 2−j/2[gn
j+1(

`

2j
), gn

j+1(
`

2j
+

1

2j+1
)] = [Dj,2n

` ]T + [Dj,2n+1
` ]T .

The above formula can play an important role in signal decomposition and reconstruction pro-
cedure instead of the Mallat algorithm.
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