
The Australian Journal of Mathematical
Analysis and Applications

http://ajmaa.org

Volume 2, Issue 1, Article 10, pp. 1-5, 2005

ORTHOGONALITY AND ε-ORTHOGONALITY IN BANACH SPACES

H. MAZAHERI AND S. M. VAEZPOUR

Received 22 October, 2004; accepted 2 February, 2005; published 13 May, 2005.
Communicated by: J. M. Rassias

FACULTY OF MATHEMATICS, YAZD UNIVERSITY, YAZD , IRAN

vaezpour@yazduni.ac.ir
hmazaheri@yazduni.ac.ir

ABSTRACT. A concept of orthogonality on normed linear space was introduced by Brickhoff,
also the concept ofε-orthogonality was introduced by Vaezpour. In this note, we will consider the
relation between these concepts and the dual ofX. Also some results on best coapproximation
will be obtained.
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1. I NTRODUCTION

We recall that ifX is a normed linear space andx, y ∈ X, x is said to beorthogonalto y and
is denoted byx ⊥ y if and only if ‖x‖ ≤ ‖x + αy‖ for all scalarα. If G1 andG2 are subsets
of X, it is definedG1 ⊥ G2 if and only if for all g1 ∈ G1, g2 ∈ G2, g1 ⊥ g2 (see [3], [5], [8]).
Also if X is a normed linear space,ε > 0 andx, y ∈ X, we sayx is ε-orthogonalto y and is
denoted byx ⊥ε y if and only if ‖x‖ ≤ ‖x + αy‖+ ε for all scalarα. If G1 andG2 are subsets
of X, defineG1 ⊥ε G2 if and only if for all g1 ∈ G1, g2 ∈ G2 we have,g1 ⊥ε g2 (see [8]).

Let X be a normed linear space andG be a subspace ofX, it is defined,

Ĝ = {x ∈ X : x⊥G},
and

Ğ = {x ∈ X : G⊥x}.
Similarly for ε > 0

Ĝε = {x ∈ X : x ⊥ε G},
and

Ğε = {x ∈ X : G ⊥ε x}.
Let X be a normed linear space andG be a subset ofX. A point g0 ∈ G is said to be a best

approximation (best coapproximation) forx ∈ X if and only if ‖x−g0‖ ≤ ‖x−g‖ for all g ∈
G (‖g0 − g‖ ≤ ‖x − g‖ ∀ g ∈ G). It can be easily proved thatg0 is a best approximation
(best coapproximation) forx ∈ X if and only if x − g0 ∈ Ĝ (x − g0 ∈ Ğ). The set of all best
approximations ( best coapproximations) ofx ∈ X in G is shown byPG(x) (RG(x)). In other
words,

PG(x) = {g0 ∈ G : x− g0 ∈ Ĝ}
and

RG(x) = {g0 ∈ G : x− g0 ∈ Ğ}.
(For more details see [1], [3], [4], [5]).

For ε > 0, a pointg0 ∈ G is said to be anε-approximation (ε-coapproximation) forx ∈ X if
x− g0 ∈ Ĝε (x− g0 ∈ Ğε). The set of allε-approximation (ε-coapproximation) forx ∈ X will
be denoted byPG,ε(x) (RG,ε(x)). It can be easily proved that,

PG,ε(x) = {g0 ∈ G : ‖x− g0‖ ≤ ‖x− g‖+ ε for all g ∈ G}.
It is clear that the setPG,ε(x) is a nonempty set. (see [9])

Definition 1.1. If RG,ε(x) is non-empty for everyx ∈ X, thenG is called anε-coproximinal
set. The setG is ε-cochebyshev ifRG,ε(x) is a singleton set for everyx ∈ X.

Let X∗ be the dual of the normed spaceX. Forx ∈ X andε > 0, put

Mx = {f ∈ X∗ : ‖f‖ = 1, f(x) = ‖x‖}
and

Mx,ε = {f ∈ X∗ : ‖f‖ = 1, f(x) ≥ ‖x‖+ ε}.
Buck in 1965 introduced the elementsε-approximation and Singer in [8] gave another char-

acterization of these elements which is more concrete for application in convenient spaces.
Franchetti and Furi in [2] introduced the concept of coapproximation. Vaezpour in [9] intro-
duced the concept ofε-best coapproximation andε-orthogonality. We shall obtain a necessary
and sufficient condition for orthogonality andε-orthogonality. Also see [6] and [7].

At first we state lemma which is needed in the proof of the main results.
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Lemma 1.1. ([H. Hahn]) Suppose thatX is a normed space. LetA be a nonempty subset of
X and let{cx : x ∈ A} be a corresponding collection of scalars. Then the following are
equivalent:

a. There is a bounded linear functionalf onX such thatf(x) = cx for eachx in A.
b. There is a nonnegative real numberM such that:

|α1cx1 + · · ·+ αncxn| ≤ M ‖α1x1 + · · ·+ αnxn‖
for each linear combinationα1x1 + · · ·+ αnxn of elements ofA.

2. M AIN RESULTS

In this section we state and prove our main results.

Theorem 2.1. Let X be a normed linear space, andx, y ∈ X. Then the following statements
are equivalent:

1. x⊥y.
2. There existsf ∈ Mx such thatf(y) = 0.

Proof. 1. −→ 2. Supposex⊥y, consider the setA = {x, y}, put cy = 0 andcx = ‖x‖. Since
x⊥y we have,

|α1cx + α2cy| = |α1|‖x‖ = ‖α1x‖ ≤ ‖α1x + α2y‖.
So from Lemma 1.1, there is a bounded linear functionalf onX such thatf(x) = cx = ‖x‖,

andf(y) = cy = 0. Also we have‖f‖ = 1.

2. −→ 1. Suppose there existsf ∈ Mx such thatf(y) = 0. Then,

‖x‖ = f(x) = f(x + αy) ≤ ‖f‖‖x + αy‖ = ‖x + αy‖,
for all scalarα.

Corollary 2.2. Let X be a normed linear space. LetG be a linear subspace ofX, andu ∈
X\G. Then the following statements are equivalent:

1. u ∈ Ĝ.
2. There existsf ∈ Mu such thatf |G = 0.

Proof. 1. −→ 2. It is enough we putA = G ∪ {u}, cu = ‖u‖, cg = 0 for all g ∈ G in the
Lemma 1.1
2. −→ 1. Suppose there existsf ∈ Mu such thatf |G = 0 that isf(g) = 0 for all g ∈ G. From
Theorem 2.1, it follows thatu⊥g for all g ∈ G and sou⊥G.

Corollary 2.3. Let X be a normed linear space. LetG be a linear subspace ofX, andu ∈
X\G. Then the following statements are equivalent:

1. u ∈ Ğ
2. For all g ∈ G, there existsf ∈ Mg such thatf(u) = 0.

Let E be a nonempty subset of a linear spaceX, the subspace spanned byE is denoted by
< E >.

Theorem 2.4. Let X be a normed linear space. LetG be a linear subspace ofX, andE be a
nonempty subset ofX\G. Then the following statements are equivalent:

1. < E > ⊆ Ğ
2. For all g ∈ G there existsf ∈ Mg such thatf |E = 0.
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Proof. 1. −→ 2. Supposeg ∈ G, consider the setA = E ∪ {g}. Putcg = ‖g‖ andcu = 0 for
all u ∈ E. If u ∈< A >, thenu = α1u1 + · · · + αnun + αg for some scalarsα1, . . . αn, α and
u1, . . . , un ∈ E. If we chooseM = 1, then we have,

|α1cu1 + · · ·+ αncun + αcg| = |α|‖g‖ = ‖αg‖
≤ M‖α1u1 + · · ·+ αnun + αg‖.

Thus from Lemma 1.1, there exitsf ∈ X∗ such thatf(u) = 0 for all u ∈ E, andf(g) = ‖g‖.
Therefore‖f‖ = 1, andf ∈ Mg.
2. −→ 1. Supposeu ∈< E >, thenu = α1u1 + · · · + αnun for some scalarsα1, . . . αn and
u1, . . . , un ∈ E. If g ∈ G, then there exitsf g ∈ Mg such thatf g|E = 0. Now we have,

‖g‖ = f g(g) = f g(−u + g)

≤ ‖f g‖‖g − u‖ = ‖g − u‖
and it follows thatu ∈ Ğ.

Theorem 2.5. Let X be a normed linear space, andx, y ∈ X. Then the following statements
are equivalent:

1. x⊥εy.
2. There existsf ∈ Mx,ε such thatf(y) = 0.

Proof. 1. −→ 2. Supposex⊥εy and considerH =< y >. SinceH is a finite subspace ofX,
therefore there is a scalarα0 such that,

d = d(x, H) = ‖x− α0y‖.
Now by virtue of a well known corollary of the Hahn-Banach Theorem, there is anf0 ∈ X∗

such that,

‖f0‖ =
1

d
, f0|H = 0, f0(x) = 1.

Putf = df0, then,

‖x‖ ≤ ‖x− α0y‖+ ε

= d + ε = f(x) + ε.

2. −→ 1. Suppose there existsf ∈ Mx,ε such thatf(y) = 0, then,

‖x‖ ≤ f(x) + ε = f(x + αy) + ε

≤ ‖f‖‖x + αy‖+ ε

= ‖x + αy‖+ ε

for all scalarα.

Corollary 2.6. Let X be a normed linear space. LetG be a linear subspace ofX, andu ∈
X\G. Then the following statements are equivalent:

1. u ∈ Ĝε.
2. There existsf ∈ Mu,ε such thatf |G = 0.

Corollary 2.7. Let X be a normed linear space. LetG be a linear subspace ofX, andu ∈
X\G. Then the following statements are equivalent:

1. u ∈ Ğε

2. For all g ∈ G, there existsf ∈ Mg,ε such thatf(u) = 0.

Theorem 2.8.LetX be a normed linear space andG be a linear subspace ofX. Then,

1. G is ε- coproximinal if and only ifX = G + Ğε.
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2. G is ε- cochebyshev if and only ifX = G⊕ Ğε.
Where⊕ means that the sum decomposition of each elementx ∈ X is unique.

Proof. 1. LetG beε- coproximinal andx ∈ X. Supposeg0 ∈ RG,ε(x) and sox− g0 ∈ Ğε. If
we putgε = x− g0, thenx = g0 + gε.

Now supposeX = G + Ğε andx ∈ X. Thenx = g0 + gε for someg0 ∈ G andgε ∈ Ğε.
Sincex− g0 = gε ∈ Ğε, thereforeg0 ∈ RG,ε(x).

2. If G is ε-cochebyshev andx ∈ X. Then from (1) there exitsg0 ∈ RG,ε(x), andgε ∈ Ğε

such thatx = g0 + gε.
Also if x = h0 + hε for someh0 ∈ G andhε ∈ Ğε, thenh0 ∈ RG,ε(x), and sog0 = h0. It
follows thatgε = hε.
Conversely, supposeg0, h0 ∈ RG,ε(x), thenx − g0 and x − h0 are in Ğε. It follows that
x = h0 + hε = g0 + gε for somegε, hε ∈ Ğε. SinceX = G⊕ Ğε, theng0 = h0.

Example 2.1.LetX be a normed linear space,x0 ∈ X and,

G = {x ∈ X : ‖x− x0‖ = 1}.
ThenRG,ε(x0) = RG(x0) = ∅ andPG(x0) = PG,ε(x0) = G
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