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ABSTRACT. A concept of orthogonality on normed linear space was introduced by Brickhoff,
also the concept aforthogonality was introduced by Vaezpour. In this note, we will consider the

relation between these concepts and the du&f oAlso some results on best coapproximation
will be obtained.
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1. INTRODUCTION

We recall that ifX is a normed linear space andy € X, x is said to beorthogonalto y and
is denoted by: L y if and only if ||z|| < ||z + ay|| for all scalara. If G; andG, are subsets
of X, itis definedG, L G, ifandonlyifforall g, € G1,9, € Ga, g1 L go (seel[3], [5], [8]).
Also if X is a normed linear space,> 0 andz,y € X, we sayz is e-orthogonalto y and is
denoted by: L. yif and only if ||z|| < ||z + ay|| + € for all scalara. If G, andG,, are subsets
of X, defineGG; L. Gy ifand only if for all g, € G1, g2 € G, we haveg, L. g, (seel[8]).

Let X be a normed linear space a@doe a subspace of, it is defined,

G={reX: zlG},

and

G={reX: GLlz}.
Similarly fore > 0

G.={reX:zl. G},
and

G.={reX:GL. z}

Let X be a normed linear space a6de a subset oK. A point gy € G is said to be a best
approximation (best coapproximation) fore X if and only if ||z — go|| < ||z —g|| for all g €
G (llgo —9ll < |lz—g|¥g € G). It can be easily proved that is a best approximation
(best coapproximation) for € X if and only if z — gy € G (z — go € G). The set of all best
approximations ( best coapproximationsyo€ X in G is shown byP;(z) (Rg(z)). In other
words,

Pa(z) ={go€ G : x—go € G}
and
Ro(x) ={g € G : x—go € G},
(For more details seel[1],[3].[4].]5]).
Fore > 0, a pointg, € G is said to be am-approximation {-coapproximation) for € X if

z—go € G, (r—go € ée). The set of alk-approximation {-coapproximation) for: € X will
be denoted by*; . (z) (Re.(x)). It can be easily proved that,

Foe(x) ={90 € G |lz = goll < [l — gll +- € forall g € G}.
It is clear that the sef; (x) is a nonempty set. (see [9])

Definition 1.1. If R (x) is non-empty for every: € X, thenG is called ane-coproximinal
set. The set7 is e-cochebyshev iR () is a singleton set for every € X.

Let X* be the dual of the normed spa&e Forz € X ande > 0, put
My ={feX" - |Ifll=1, f(x) = ll=|}

and
Mee={f € X* : [[fll =1, f(z) = [lz]| + €}

Buck in 1965 introduced the elementsmpproximation and Singer in![8] gave another char-
acterization of these elements which is more concrete for application in convenient spaces.
Franchetti and Furi in_]2] introduced the concept of coapproximation. Vaezpour in [9] intro-
duced the concept afbest coapproximation andorthogonality. We shall obtain a necessary

and sufficient condition for orthogonality amebrthogonality. Also see [6] and|[7].
At first we state lemma which is needed in the proof of the main results.
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Lemma 1.1. ([H. Hahn]) Suppose thak is a normed space. Let be a nonempty subset of
X and let{c, : = € A} be a corresponding collection of scalars. Then the following are
equivalent:

a. There is a bounded linear functionflon X such thatf(z) = ¢, for eachz in A.
b. There is a nonnegative real numhéf such that:
lagCey + -+ apcy, | < M oz + -+ + apxy||

for each linear combinationx; + - - - + o, x,, of elements ofi.

2. MAIN RESULTS
In this section we state and prove our main results.

Theorem 2.1.Let X be a normed linear space, andy € X. Then the following statements
are equivalent:

1. zly.
2. There existy € M, such thatf(y) = 0.

Proof. 1. — 2. Supposer_Ly, consider the set = {z,y}, putc, = 0 andc, = ||z|/. Since
x Ly we have,
e + azey| = |aallz] = llaaz]] < flonz + agyl]
So from Lemma 1]1, there is a bounded linear functighah X such thatf (z) = ¢, = ||z|,
andf(y) = ¢, = 0. Also we have|f|| = 1.

2. — 1. Suppose there exisfse M, such thatf(y) = 0. Then,

|z]| = f(x) = f(z +ay) < ||fllllz + oyl = [z + oy,
for all scalara. 1

Corollary 2.2. Let X be a normed linear space. Lét be a linear subspace of, andu €
X\G. Then the following statements are equivalent:

1. u € G.
2. There existy € M, such thatf|; = 0.

Proof. 1. — 2. Itis enough we pud = G U {u}, ¢, = |ju
Lemma 1.1l

2. — 1. Suppose there exisfsc M, such thatf|c = 0 thatisf(g) = 0 for all ¢ € G. From
Theorenj 2.1, it follows that L g for all g € G and sou LG. &

, ¢g = 0forall g € Ginthe

Corollary 2.3. Let X be a normed linear space. Lét be a linear subspace of, andu €
X\G. Then the following statements are equivalent:

l.ued
2. Forall g € G, there existy’ € M, such thatf (u) = 0.

Let £ be a nonempty subset of a linear spacethe subspace spanned Byis denoted by
< B >.

Theorem 2.4.Let X be a normed linear space. Létbe a linear subspace of, and F be a
nonempty subset of \G. Then the following statements are equivalent:

1. <E>CG
2. For all g € G there existsf € M, such thatf|z = 0.
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Proof. 1. — 2. Supposeg € G, consider the sett = E U {g}. Putc, = ||g|| andc, = 0 for
allu e FE. If u e< A >, thenu = ayuy + - - - + au,, + ag for some scalara;, . . . a,,, o and
uy,...,u, € K. If we chooselM = 1, then we have,

arcy, + -+ aney, +ag| = |alllg] = [lag]
< Mllaquy + -+ - + apuy, + agl|.

Thus from Lemma 1]1, there exifse X* such thatf(u) = 0 forall w € E, andf(g) = |g]|.
Therefore|| f|| = 1, andf € M,,.

2. — 1. Suppose; €< E >, thenu = aju; + - - - + a,u, for some scalara;, ... «, and
uy,...,u, € E.If g € G, then there exitg? € M, such thatf?|z = 0. Now we have,

lgll = f9) = f/(—u+g)
< [[fllg = ull = |lg — ull
and it follows that, € G. &

Theorem 2.5.Let X be a normed linear space, andy € X. Then the following statements
are equivalent:

1 xl.y.
2. There existy € M, . such thatf(y) = 0.

Proof. 1. — 2. Supposer_ L.y and consided =< y >. SinceH is a finite subspace of,
therefore there is a scalay such that,

d=d(z,H) = ||z — apy||.

Now by virtue of a well known corollary of the Hahn-Banach Theorem, there ifan X*
such that,

1
[ foll = 7 folu =0, fo(r) =1.
Putf = dfo, then,
< lz— oyl +¢
= d+4e= f(z)+e.
2. — 1. Suppose there exisfse M, . such thatf(y) = 0, then,
lz]| < flz)+e=fz+ay)+e
< Nflllz +ayll + <
|z + ayl| +¢

]l

for all scalara. 1
Corollary 2.6. Let X be a normed linear space. Lét be a linear subspace of, andu €
X\G. Then the following statements are equivalent:

l.ue GE.

2. There existy € M, . such thatf|; = 0.
Corollary 2.7. Let X be a normed linear space. Lét be a linear subspace of, andu €
X\G. Then the following statements are equivalent:

l.ue éa

2. Forall g € G, there existy € M, . such thatf (u) = 0.
Theorem 2.8.Let X be a normed linear space arid be a linear subspace of. Then,

1. G is e- coproximinal if and only ifY = G + G..
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2. G is e- cochebyshev if and only ¥ = G @ G..

Whered means that the sum decomposition of each elemeni is unique.
Proof. 1. LetG bee- coproximinal andr € X. Supposey, € R (z) and sar — gy € G.. If
we putg. = = — go, thenz = gy + g..

Now supposeX = G + G. andz € X. Thenz = gy + g. for someg, € G andg. € G..
Sincer — gy = g. € G-, thereforeyy € Rg ().

2. If G is e-cochebyshev and € X. Then from (1) there exitg, € Rq.(z), andg. € G.
such thatr = gg + g..
Also if x = hy + h. for someh, € G andh. € G., thenh, € R -(z), and sogy = hg. It
follows thatg. = h..
Conversely, supposg, hy € Rg.(x), thenx — gy and x — hy are in G.. It follows that
z = ho + he = go + ¢. for someg., h. € G.. SinceX = G @ G., thengy = ho. 1

Example 2.1.Let X be a normed linear space, € X and,
G={reX:|zr—ux =1}
ThenRGﬁ(lﬁo) = RG(I'O) = @ andpg(l‘o) = PG@(J]O) =G
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