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ABSTRACT. The aim of this short research note is to provide a new proof of classical Watson’s
summation theorem for the series3F2(1). The theorem is obtained by evaluating an infinite
integral and making use of classical Gauss’s first and second summation theorems for the series
2F1.

Key words and phrases:Generalized hypergeometric function; Gauss first and second summation theorems; Watson theorem.

2010Mathematics Subject Classification.Primary 33C20, Secondary 33C05.

ISSN (electronic): 1449-5910

c© 2025 Austral Internet Publishing. All rights reserved.

This work of Insuk Kim was supported by Wonkwang University in 2023.

https://ajmaa.org/
mailto: Author <iki@wku.ac.kr>
mailto:<arjunkumarrathie@gmail.com>
https://www.ams.org/msc/


2 INSUK KIM AND ARJUN K. RATHIE

1. I NTRODUCTION

In the theory of hypergeometric and generalized hypergeometric series, classical summation
theorems such as those of Gauss, Gauss second, Kummer and Bailey for the series2F1; Watson,
Dixon, Whipple and Saalschütz for the series3F2 and others play an important role. Applica-
tions of the above mentioned theorems are well known now. For interesting applications, we
refer a paper by Bailey [1].

Here we shall mention the following summation theorems that will be required in our present
investigation.

Gauss’s summation theorem[1, 2, 6, 9] :

(1.1) 2F1

[
a, b
c

; 1

]
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

provided Re(c− a− b) > 0.

Gauss’s second summation theorem[1, 2, 6, 9] :

(1.2) 2F1

[
a , b

1
2
(a + b + 1)

;
1

2

]
=

Γ
(

1
2

)
Γ

(
1
2
a + 1

2
b + 1

2

)
Γ

(
1
2
a + 1

2

)
Γ

(
1
2
b + 1

2

) .

A special case of (1.1)[6, p.49] :

(1.3) 2F1

[
−n

2
, −n

2
+ 1

2
c + 1

2

; 1

]
=

2n (c)n

(2c)n

.

The aim of this short research note is to provide a new proof of the following classical Wat-
son’s summation theorem for the series3F2 [9] viz.

3F2

[
a , b , c
1
2
(a + b + 1), 2c

; 1

]
=

Γ(1
2
) Γ(c + 1

2
) Γ(1

2
a + 1

2
b + 1

2
) Γ(c− 1

2
a− 1

2
b + 1

2
)

Γ(1
2
a + 1

2
) Γ(1

2
b + 1

2
) Γ(c− 1

2
a + 1

2
) Γ(c− 1

2
b + 1

2
)
,(1.4)

provided Re(2c− a− b) > −1.
The theorem is obtained by evaluating an infinite integral in two ways and making use of the

known summation theorems (1.1) to (1.3).

2. DERIVATION OF (1.4)

In order to establish (1.4), we proceed as follows. Consider the infinite integral

I =

∫ ∞

0

e−t td−1
3F3

[
a, b, c

1
2
(a + b + 1), d, 2c

; t

]
dt,

provided Re(d) > 0.
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Now, expressing3F3 as a series, changing the order of integration and summation (which is
easily seen to be justified due to uniform convergence of the series involved in the process), we
have

I =
∞∑

n=0

(a)n (b)n (c)n

(1
2
(a + b + 1))n (d)n (2c)n n!

∫ ∞

0

e−t td+n−1dt.

Evaluating the gamma integral and using the relation

(a)n =
Γ(a + n)

Γ(a)

we have, after some algebra

(2.1) I = Γ(d)
∞∑

n=0

(a)n (b)n (c)n

(1
2
(a + b + 1))n (2c)n n!

.

Summing up the series, we have

(2.2) I = Γ(d) 3F2

[
a , b , c
1
2
(a + b + 1), 2c

; 1

]
.

On the other hand, writing (2.1) in the form

I = Γ(d)
∞∑

n=0

(a)n (b)n

(1
2
(a + b + 1))n 2n n!

{
2n (c)n

(2c)n

}
.

Using the result (1.3), we have

I = Γ(d)
∞∑

n=0

(a)n (b)n

(1
2
(a + b + 1))n 2n n!

2F1

[
−1

2
n, −1

2
n + 1

2
c + 1

2

; 1

]
.

Now expressing2F1 as a series, we have after some simplification

I = Γ(d)
∞∑

n=0

[n
2
]∑

m=0

(a)n (b)n (−1
2
n)m (−1

2
n + 1

2
)m

(1
2
(a + b + 1))n 2n (c + 1

2
)m m! n!

.

Using the identity

(−n)2m = 22m

(
−1

2
n

)
m

(
−1

2
n +

1

2

)
m

=
n!

(n− 2m)!
,

we have

I = Γ(d)
∞∑

n=0

[n
2
]∑

m=0

(a)n (b)n

(1
2
(a + b + 1))n (c + 1

2
)m 22m+n m! (n− 2m)!

.

Now replacingn by n + 2m and using a known result [6, Equ.8, p.57]

∞∑
n=0

[n
2
]∑

m=0

A(m, n) =
∞∑

n=0

∞∑
m=0

A(m,n + 2m),

we have
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I = Γ(d)
∞∑

n=0

∞∑
m=0

(a)n+2m (b)n+2m

(1
2
(a + b + 1))n+2m 2n+4m (c + 1

2
)m m! n!

.

Using the identity

(a)n+2m = (a)2m(a + 2m)n

and after some simplification, we have

I = Γ(d)
∞∑

m=0

(a)2m (b)2m

(1
2
(a + b + 1))2m 24m (c + 1

2
)m m!

∞∑
n=0

(a + 2m)n (b + 2m)n

(1
2
(a + b + 1) + 2m)n 2n n!

.

Summing up the inner series, we have

(2.3) I = Γ(b)
∞∑

m=0

(a)2m (b)2m

(1
2
(a + b + 1))2m 24m (c + 1

2
)m m!

2F1

[
a + 2m, b + 2m

1
2
(a + b + 1) + 2m

;
1

2

]
.

We observe here that the2F1 on the right-hand side of (2.3) can be evaluated with the help of
Gauss’s second summation theorem (1.2) and making use of the identity

(a)2m = 22m

(
1

2
a

)
m

(
1

2
a +

1

2

)
m

,

we have after some simplification,

I = Γ(d)
Γ(1

2
) Γ(1

2
a + 1

2
b + 1

2
)

Γ(1
2
a + 1

2
) Γ(1

2
b + 1

2
)

∞∑
m=0

(1
2
a)m (1

2
b)m

(c + 1
2
)m m!

.

Summing up the series, we have

I = Γ(d)
Γ(1

2
) Γ(1

2
a + 1

2
b + 1

2
)

(1
2
a + 1

2
) Γ(1

2
b + 1

2
)

2F1

[
1
2
a , 1

2
b

c + 1
2

; 1

]
.

Finally, evaluating2F1 with the help of classical Gauss’s summation theorem (1.1), we have

(2.4) I = Γ(d)
Γ(1

2
)Γ(c + 1

2
) Γ(1

2
a + 1

2
b + 1

2
) Γ(c− 1

2
a− 1

2
b + 1

2
)

Γ(1
2
a + 1

2
) Γ(1

2
b + 1

2
) Γ(c− 1

2
a + 1

2
) Γ(c− 1

2
b + 1

2
)
.

Hence from equation (2.2) and (2.4), we at once get Watson’s summation theorem (1.4). This
completes the proof of Watson’s summation theorem.

Remark: For other proofs of Watson’s summation theorem, we refer [3, 4, 5, 7, 8, 10, 11]
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