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ABSTRACT. The well-known Jensen inequality and Hermite–Hadamard inequality were ex-
tended using iterated integrals by Z. Retkes in 2008 and then by P. Kórus in 2019. In this
paper, we consider analytical convex (concave) functions in order to obtain new refinements of
Jensen’s inequality. We apply the main result to the classical HM–GM–AM, AM–RMS, triangle
inequalities and present an application to the geometric series. We also give Mercer type variants
of Jensen’s inequality.
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2 P. KÓRUS AND Z. RETKES

1. I NTRODUCTION

For anf : [a, b) ⊆ R → R convex function, Jensen’s celebrated inequality can be stated as

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi)

for anyxi ∈ (a, b), i = 1, . . . , n, see e.g. [6]; while the Hermite–Hadamard inequality

f

(
x1 + x2

2

)
≤ 1

x2 − x1

x2∫
x1

f(x) dx ≤ f(x1) + f(x2)

2

holds for anya < x1 < x2 < b, see e.g. [5]. These inequalities were extended by several
authors, see e.g. [1, 2, 9] and the references therein. In [7] and later in [3], the authors gave the
following generalization using the notion of iterated integrals of the functionf , introduced in
[7].

Theorem 1.1. [3, 7] Let f : [a, b) ⊆ R → R be a convex function,xi ∈ (a, b), i = 1, . . . , n,
such thatxi 6= xj if 1 ≤ i < j ≤ n. Then the following refinement of Jensen’s inequality holds:

f

(
1

n

n∑
i=1

xi

)
≤ (n− 1)!

n∑
i=1

F [n−1](xi)

Πi(x1, . . . , xn)
≤ 1

n

n∑
i=1

f(xi),

whereF [j] is thej-th iterated integral off and

Πi(x1, . . . , xn) =
n∏

j=1
j 6=i

(xi − xj).

In the concave case “≤” is changed to “≥”.

An interesting corollary of the above theorem (casef(x) = x) is given in [7].

Formula 1.1. Letxi ∈ R, i = 1, . . . , n such thatxi 6= xj if 1 ≤ i < j ≤ n. Then
n∑

i=1

xn
i

Πi(x1, . . . , xn)
=

n∑
i=1

xi.

2. M AIN RESULT

Let assume for the sake of simplicity thatf : [0, a} → R is convex analytical function and
} can be) or ], in other words the domain of definition can be open or closed on its right hand
side,xi ∈ [0, a} for i = 1, . . . n, xi 6= xj for i 6= j . Thenf has a power series expansion
around0 of the form

f(x) =
∞∑

k=0

ckx
k.

Under these conditions, considering Theorem 1.1, we have the following refinement of Jensen’s
inequality.

Formula 2.1.

f

(
1

n

n∑
i=1

xi

)
≤ (n− 1)!

∞∑
k=0

ckHk(x1, . . . , xn)

(k + 1)(k + 2) · · · (k + n− 1)
≤ 1

n

n∑
i=1

f(xi),

AJMAA, Vol. 22 (2025), No. 1, Art. 6, 7 pp. AJMAA

https://ajmaa.org


REFINEMENT OFJENSEN’ S INEQUALITY FOR ANALYTICAL CONVEX (CONCAVE) FUNCTIONS 3

whereHk(x1, . . . , xn) is the complete homogeneous symmetric polynomial of orderk, that is

Hk(x1, . . . , xn) =
∑

1≤i1≤...≤ik≤n

xi1 · · ·xik .

In the concave case “≤” is changed to “≥”.

In order to prove Formula 2.1, we need the extension of the following application of Theorem
1.1. Under the conditions of Theorem 1.1,

n∑
i=1

xj
i

Πi(x1, . . . , xn)
=


0 if j = 0, . . . , n− 2,

1 = H0(x1, . . . , xn) if j = n− 1,∑n
i=1 xi = H1(x1, . . . , xn) if j = n,

(2.1)

see [7, Proposition 1]. The following lemma generalizes (2.1) to arbitrary natural exponents
aboven.

Lemma 2.1. Under the conditions of Theorem 1.1 we have the following identities:

n∑
i=1

xn−1+k
i

Πi(x1, . . . , xn)
= Hk(x1, . . . , xn)

for k = 0, 1, 2, . . ..

Proof. The generating functiong(t) of the sequence{Hk}∞k=0 is given by

∞∑
k=0

Hk(x1, . . . , xn)tk =
n∏

i=1

1

1− xit
= g(t).(2.2)

Then, by the results of [8], forg(t) we have

n∏
i=1

1

1− xit
= (−1)n−1

n∑
i=1

1

(1− xit)Πi(1− x1t, . . . , 1− xnt)
(2.3)

=
n∑

i=1

1

(1− xit)Πi(x1t, . . . , xnt)
=

∞∑
j=0

n∑
i=1

xj
i t

j

Πi(x1t, . . . , xnt)

=
∞∑

j=0

n∑
i=1

xj
i t

j−n+1

Πi(x1, . . . , xn)
=

∞∑
j=n−1

n∑
i=1

xj
i t

j−n+1

Πi(x1, . . . , xn)

=
∞∑

k=0

n∑
i=1

xn−1+k
i tk

Πi(x1, . . . , xn)

by keeping (2.1) in mind forj = 0, . . . , n − 2. Therefore, the coefficients of corresponding
powers oft in (2.2) and (2.3) are equal.

Proof of Formula 2.1.By virtue of Theorem 1.1, we need to evaluate the sum

n∑
i=1

F [n−1](xi)

Πi(x1, . . . , xn)
.(2.4)
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For the iterated integrals we have

F [0](x) = f(x), F [1](x) =

x∫
0

f(s) ds =

x∫
0

∞∑
k=0

cks
k ds =

∞∑
k=0

ck

k + 1
xk+1, . . . ,

F [n−1](x) =
∞∑

k=0

ck

(k + 1)(k + 2) · · · (k + n− 1)
xk+n−1.

Substituting this formula into (2.4) and applying Lemma 2.1 yields

n∑
i=1

F [n−1](xi)

Πi(x1, . . . , xn)
=

n∑
i=1

1

Πi(x1, . . . , xn)

∞∑
k=0

ck

(k + 1)(k + 2) · · · (k + n− 1)
xk+n−1

i

=
∞∑

k=0

ck

(k + 1)(k + 2) · · · (k + n− 1)

n∑
i=1

xk+n−1
i

Πi(x1, . . . , xn)

=
∞∑

k=0

ckHk(x1, . . . , xn)

(k + 1)(k + 2) · · · (k + n− 1)
,

which proves Formula 2.1.

In aesthetic point of view it is useful to note the following compact form of Formula 2.1:

f

(
1

n

n∑
i=1

xi

)
≤

∞∑
k=0

ckHk(x1, . . . , xn)(
n−1+k

k

) ≤ 1

n

n∑
i=1

f(xi).

3. APPLICATIONS

We demonstrate the usefulness of Formula 2.1 through the following examples.

Example 3.1. Harmonic mean–geometric mean–arithmetic mean (HM–GM–AM) inequality.
Letf(x) = ex =

∑∞
k=0

xk

k!
. Then we have

e
1
n

Pn
i=0 xi ≤ (n− 1)!

∞∑
k=0

Hk(x1, . . . , xn)

k!(k + 1)(k + 2) · · · (k + n− 1)

= 1 +
∞∑

k=1

Hk(x1, . . . , xn)

n(n + 1) · · · (n + k − 1)
≤ 1

n

n∑
i=1

exi .

Sinceexi > 0 then there existsyi > 0 such thatexi = yi that is xi = ln yi for i = 1, . . . n.
Substituting these values leads us to the refinement of the GM–AM inequality:

n
√

y1 · · · yn ≤ 1 +
∞∑

k=1

Hk(ln y1, . . . , ln yn)

n(n + 1) · · · (n + k − 1)
≤ y1 + . . . + yn

n
.

If we plugyi = 1
xi

, we have the refinement of the HM–GM inequality:

n∑n
i=1

1
xi

≤

[
1 +

∞∑
k=1

(−1)kHk(ln x1, . . . , ln xn)

n(n + 1) · · · (n + k − 1)

]−1

≤ n
√

x1 · · ·xn.
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Example 3.2.Arithmetic mean–root mean square (AM–RMS) inequality. Letf(x) = x2 that is
analytical on the whole real line withck = 0, k = 0, 1, 3, 4, . . . andc2 = 1. Applying Formula
2.1 produces (

1

n

n∑
i=1

xi

)2

≤ H2(x1, . . . , xn)(
n+1

2

) ≤ 1

n

n∑
i=1

x2
i

and taking the square root yields the refinement of the AM–RMS inequality:

1

n

n∑
i=1

xi ≤

√
2H2(x1, . . . , xn)

n(n + 1)
≤

√√√√ 1

n

n∑
i=1

x2
i .

Example 3.3. Triangle inequality. Letf(x) = |x| and assume the conditions of Theorem 1.1.
Sincef is not analytical – in fact non differentiable atx = 0 – we apply Theorem 1.1 by working
out the sequence of iterated integrals:

F [0](x) = |x|, F [1](x) =

x∫
0

|s| ds =

{
x2

2
if x ≥ 0

−x2

2
if x < 0

= sgn(x) · x2

2
.

Using induction simply gives the general form of

F [n−1](x) = sgnn−1(x) · |x|
n

n!

and applying Theorem 1.1 produces the following refinement∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

sgnn−1(xi)|xi|n

Πi(x1, . . . , xn)
≤

n∑
i=1

|xi|.

Example 3.4.Geometric series. Letf(x) = 1
1−x

= 1+x+x2+. . .. Thenf is analytical in[0, 1)
so we might apply Formula 2.1 withck = 1, k = 0, 1, 2, . . . , and0 ≤ xi < 1 for i = 1, . . . , n.
This setting directly yields

n

n−
∑n

i=1 xi

≤
∞∑

k=0

Hk(x1, . . . , xn)(
n−1+k

k

) ≤ 1

n

n∑
i=1

1

1− xi

.

4. M ERCER TYPE RESULTS

In [4], the following variant of Jensen’s inequality was proved.

Theorem 4.1.Letf be a convex function on an interval containing the numbers0 < x1 ≤ x2 ≤
. . . ≤ xn andwi (1 ≤ i ≤ n) be positive weights associated with thesexi with

∑n
i=1 wi = 1.

Then we have

f

(
x1 + xn −

n∑
i=1

wixi

)
≤ f(x1) + f(xn)−

n∑
i=1

wif(xi).

In the concave case “≤” is changed to “≥”.

We will prove the following variant of Theorem 1.1 by extending the above theorem.
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Theorem 4.2. Let f be a convex function on an interval containing the numbers0 < x1 ≤
x2 ≤ . . . ≤ xn. Then

f

(
x1 + xn −

1

n

n∑
i=1

xi

)
≤ (−1)n−1(n− 1)!

n∑
i=1

F [n−1](x1 + xn − xi)

Πi(x1, . . . , xn)
(4.1)

≤ f(x1) + f(xn)− 1

n

n∑
i=1

f(xi).

In the concave case “≤” is changed to “≥”.

Proof. If in Theorem 1.1 we substitutex1 + xn − xi in place ofxi, then we immediately have
(4.1) by noting

Πi(x1, . . . , xn) =
n∏

j=1
j 6=i

(xi − xj) = (−1)n−1

n∏
j=1
j 6=i

((x1 + xn − xi)− (x1 + xn − xj))

= (−1)n−1Πi(x1 + xn − x1, x1 + xn − x2, . . . , x1 + xn − xn)

and
1

n

n∑
i=1

f(x1 + xn − xi) ≤ f(x1) + f(xn)− 1

n

n∑
i=1

f(xi)

that is a consequence of the inequality

f(x1 + xn − xi) ≤ f(x1) + f(xn)− f(xi)

proved in [4].

Assuming the conditions of Formula 2.1, we have the following variant of Jensen’s inequality.

Formula 4.1.

f

(
x1 + xn −

1

n

n∑
i=1

xi

)

≤ (n− 1)!
∞∑

k=0

ckHk(x1 + xn − x1, x1 + xn − x2, . . . , x1 + xn − xn)

(k + 1)(k + 2) · · · (k + n− 1)

≤ f(x1) + f(xn)− 1

n

n∑
i=1

f(xi).

In the concave case “≤” is changed to “≥”.

Proof. The proof is analogous to that of Formula 2.1.

Remark 4.1. Applications of Formula 4.1 analogous to Examples 3.1–3.4 can be given simi-
larly.

Finally, we give an equation analogous to Formula 1.1 as a corollary of Theorem 4.2 (case
f(x) = x).

Formula 4.2. Letxi ∈ R, i = 1, . . . , n such that0 < x1 < x2 < . . . < xn. Then

(−1)n−1

[
xn

1

Πi(x1, . . . , xn)
+

xn
n

Πi(x1, . . . , xn)
+

n−1∑
i=2

(x1 + xn − xi)
n

Πi(x1, . . . , xn)

]

= (n− 1)(x1 + xn)−
n−1∑
i=2

xi.
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