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ABSTRACT. The well-known Jensen inequality and Hermite—Hadamard inequality were ex-
tended using iterated integrals by Z. Retkes in 2008 and then by P. Kérus in 2019. In this
paper, we consider analytical convex (concave) functions in order to obtain new refinements of
Jensen’s inequality. We apply the main result to the classical HM-GM—-AM, AM—RMS, triangle
inequalities and present an application to the geometric series. We also give Mercer type variants
of Jensen’s inequality.
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2 P. KORUS ANDZ. RETKES

1. INTRODUCTION

Foranf : [a,b) C R — R convex function, Jensen’s celebrated inequality can be stated as
1 1 <
flodom) <52 f@)
n =1 n i=1
foranyz; € (a,b),i=1,...,n, see e.g.[6]; while the Hermite—Hadamard inequality

17
f(M;%) gm_gjl/f(x)dxgw

holds for anya < x; < z3 < b, see e.g.[[5]. These inequalities were extended by several
authors, see e.d.l[1} 2, 9] and the references therein! In [7] and latér in [3], the authors gave the
following generalization using the notion of iterated integrals of the funcfioimtroduced in

(7.

Theorem 1.1.[3,[7] Let f : [a,b) C R — R be a convex function;; € (a,b),i =1,...,n
such thate; # z; if 1 < i < j < n. Then the following refinement of Jensen’s inequality holds:

( lez) n—lli: F;nl Zfl’z

where V! is the j-th iterated integral off and

H.I'l,..., ﬁ

i

[N
S

In the concave case<” is changed to “>".
An interesting corollary of the above theorem (cgée) = x) is given in [7].

Formula 1.1. Letz; € R,i=1,...,nsuchthaty, # =, if 1 <¢ < j <n. Then

n

S =Y
i, .

i=1 ) " i=1

2. MAIN RESULT

Let assume for the sake of simplicity thaAt [0,a} — R is convex analytical function and
} can be) or |, in other words the domain of definition can be open or closed on its right hand
side,z; € [0,a} fori = 1,...n, z; # z; fori # j . Thenf has a power series expansion
around0 of the form
= Z Ckili'k.
k=0

Under these conditions, considering Theofem 1.1, we have the following refinement of Jensen’s
inequality.

Formula 2.1.

RN - ceHi(xy, ..., xp) 1 &
f(ﬁ;l'z> =~ n—l'z k‘—l—l k‘—i—2) (k’—l—n—l)gng(xl)’

=0
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whereH (x4, ..., x,) is the complete homogeneous symmetric polynomial of érdéat is

Hy(zq,...,2,) = g Tiy o Ty
1< << <n

In the concave case<” is changed to “>".

In order to prove Formula 2.1, we need the extension of the following application of Theorem
[1.7. Under the conditions of Theorém]1.1,

n .C(,’j 0 if j:O,...,n—Z,
i=1 bt orxi=Hy(xy,...,z,) if j=mn,

see [[7, Proposition 1]. The following lemma generaliZes|(2.1) to arbitrary natural exponents
aboven.

Lemma 2.1. Under the conditions of Theordm [L.1 we have the following identities:
n xn—l—i—k
= Hp(x1,...,2,
;Hi(xl,...,xn) k( ! )
fork=0,1,2,....
Proof. The generating function(t) of the sequencéH, }° , is given by

(2.2) > Hi(w,. )t =] - _1“ = g(t).
k=0 '

=1

Then, by the results of [8], faj(¢) we have

n

1 n—1 - 1
(2.3) 1:[1 a7V 2 1— 2Ll — 21, ..., 1 — 2,0)

i=1

7=0 =1 !

-7 J—n+l > n Jyi—n+1
= ZZ - DD
=0 i=1 .1'1,..., ) o1 el Hi(xl,...,xn)

N Z_: xlv' )

— ..7

by keeping[(2.]1) in mind foy = 0,...,n — 2. Therefore, the coefficients of corresponding
powers oft in (2.2) and[(2.B) are equal.

Proof of Formulg 2.]L.By virtue of Theoren 1]1, we need to evaluate the sum

i)

(2:4) (2, ..y wp)

i=1
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For the iterated integrals we have

T

FlO(z) = f(z), F¥(z) :/f(s)ds:/ickskds:f:kiklxkﬂ,...,
o k=0 k=0

0

Flr=1(p) = Ck ktn—1
(z) ;(k+1)(k+2)---(k+n—1)“"
Substituting this formula intq (2.4) and applying Lemimd 2.1 yields
n F[nfl] (xz) n 1 > Ck k+n—1
S B — €.
;Hi(xl,...,xn) ;H(atl,..., gqul Jk+2)---(E+n—1)"
B i Cr n $;€+n_1
— (k+1D)(k+2)--(k+n—1) = I(z1,...,3,)
> cxHi(x, ... xy)

—(k+1)(k+2)- (k4+n-1)

which proves Formula 2. 1
In aesthetic point of view it is useful to note the following compact form of Forinula 2.1:

( Z%) <3 et CEE RN

=0

3. APPLICATIONS

We demonstrate the usefulness of Fornjuléa 2.1 through the following examples.

Example 3.1. Harmonic mean—geometric mean-arithmetic mean (HM-GM-AM) inequality.
) k
Let f(x) =e” = > ,~, - Then we have

1 s Hi(zy, ..., zp)
;Eizoxl k; 1, n
c Zk:'k:Jrl k+2) (k+n—1)

o > Hk 3171,.. @i
B E: n(n—+1)- n+k—1 _22

Sincee™ > 0 then there existg; > 0 such thate® = y; thatisx; = Iny; fori = 1,...n
Substituting these values leads us to the refinement of the GM—AM inequality:

[e.9]

Hiy(Iny,...,Iny,) Y+ ...+ Yn

n/ <1 <
+Z nn+1)---(n+k—-1) — n

If we plugy; = xi we have the refinement of the HM—GM inequality:

-1

’ﬂxl...m'n.

n = (-DFH,(Inzy,...,Inx,)
— < |1+ <
e ;n(n+l)~~(n+k—1) -
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Example 3.2. Arithmetic mean—root mean square (AM—RMS) inequality.flLe} = 2 that is
analytical on the whole real line with, = 0, k = 0,1,3,4,... andc, = 1. Applying Formula

[2.7 produces

o(z1,. .., Ty 1 & 9
(Z%) S

2

and taking the square root yields the refinement of the AM—RMS inequality:

Example 3.3. Triangle inequality. Letf(z) = |z| and assume the conditions of Theofenj 1.1.
Sincef is not analytical — in fact non differentiable at= 0 — we apply Theorefn 1.1 by working
out the sequence of iterated integrals:

22 Ifx>0 x?
FO@) = fal, FU(z /|rds—{2 - sqie) - 2

x <0

Using induction simply gives the general form of

2]

Fir=tl(z) = sgrt =Y (z) - '
n!

and applying Theorein 1.1 produces the following refinement

Yol <L RS <L
i=

=1
+z+2%+. ... Thenf is analytical in[O 1)
,2,. and0<x,<1forz_1

Example 3.4.Geometric series. Lef(x)
so we might apply Formula 2.1 with =
This setting directly yields

n = Hy(zy, ... 2,) 1 1
S AP PR I DS

=1

4, MERCER TYPE RESULTS

In [4], the following variant of Jensen’s inequality was proved.

Theorem 4.1.Let f be a convex function on an interval containing the numbetsz; < z, <
. <z, andw; (1 < i < n) be positive weights associated with thesevith " | w; = 1.
Then we have

f <CL’1+ZE” szxz> <f(ZL’1 +f xn sz Iz

i=1

In the concave case<” is changed to “>".

We will prove the following variant of Theoren 1.1 by extending the above theorem.
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Theorem 4.2. Let f be a convex function on an interval containing the numlers xr; <
Ty < ...<ux,. Then

1 1] —

— ey Tp)

< fln) + fon) =+ 3 (@),

In the concave case<” is changed to “>".

Proof. If in Theorem 1.1 we substitute, + x,, — x; in place ofz;, then we immediately have
(4.7) by noting

Hi(flfl, . ,.Cl]n)

n

(2 — x;) = (=" [[((@1 + 2 — 23) = (21 + 20 — 27))

I
=

N,

j=1
i

I

J
J
(— )"’1Hi(x1 + Ty — T, T1 + Ty — Ty, T+ Ty — Tp)

and

1< 1
EZf(% +an —x;) < f(21) + f(2n) — ng(xi)
i=1 i=1
that is a consequence of the inequality

flxy+2n —2) < f(21) + fn) — )
proved in [4].n
Assuming the conditions of Formula 2.1, we have the following variant of Jensen’s inequality.
Formula 4.1.

f (ml—kxn—%i:xi)

(n—1 |i0ka T+ Ty — 1,81 + Ty — Lo, ..., T1 + Ty — Ty,)
o (k+1)(k+2)---(k+n—1)

< fz1) + f(@n) — ng(%)

In the concave case<” is changed to “>".
Proof. The proof is analogous to that of Form{ila]2a1.

Remark 4.1. Applications of Formul@ 4]1 analogous to Examples [3.1-3.4 can be given simi-
larly.

Finally, we give an equation analogous to Fornjulg 1.1 as a corollary of Th¢orem 4.2 (case

f(x) = 2.

Formula4.2. Letz; e R,i=1,...,nsuchthat) < z; < 2y, < ... < x,. Then
n—1
B " ik (1 + @z — )"
_1 n—1 1 4 n +
( ) Hi(l’l, .,ZEn) Hi(xl,...,xn) 122: Hi(xl,...,xn)
n—1
(n = 1)(21 + 2n) — Z%
=2
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