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2 M. SAIDANI, F.M. BENGUETTAT AND B. BELAÏDI

1. I NTRODUCTION AND MAIN RESULTS

Throughout this article, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna’s value distribution theory of meromorphic functions (
see [4], [8]). To define the iterated order and the[p, q]− order of meromorphic functions in the
complex plane, we use the same notations as in ( see [1], [12],[13],[14],[16],[19]).
As far as we know, in [17] Shen, Tu and Xu firstly introduced the concept of[p, q] − ϕ order
of meromorphic functions in the complex plane to investigate the growth and zeros of second
order linear differential equations.

Definition 1.1. ([17]) Let ϕ : [0,+∞) → (0,+∞) be a non-decreasing unbounded function,
andp, q be positive integers that satisfyp > q > 1. Then the[p, q] − ϕ order and the lower
[p, q]− ϕ order of a meromorphic functionf are respectively defined by

ρ[p,q] (f, ϕ) = lim sup
r→+∞

logp T (r, f)

logq ϕ (r)
,

µ[p,q] (f, ϕ) = lim inf
r→+∞

logp T (r, f)

logq ϕ (r)
.

Definition 1.2. ([17]) Let f be a meromorphic function. Then, the[p, q] − ϕ exponent of
convergence of zero-sequence (distinct zero-sequence) off are respectively defined by

λ[p,q] (f, ϕ) = lim sup
r→+∞

logp n
(
r, 1

f

)
logq ϕ (r)

and

λ[p,q] (f, ϕ) = lim sup
r→+∞

logp n
(
r, 1

f

)
logq ϕ (r)

.

Remark 1.1. If ϕ(r) = r in the Definitions 1.1-1.2 , then we will get the standard definitions
of the[p, q]-order and the[p, q]-exponent of convergence.

Remark 1.2. ([17]) Throughout this paper, we assume thatϕ : [0,+∞) → (0,+∞) is a non-
decreasing unbounded function and always satisfies the following two conditions:
(i) lim

r→+∞

logp+1 r

logq ϕ(r)
= 0;

(ii) lim
r→+∞

logq ϕ(α1r)

logq ϕ(r)
= 1 for someα1 > 1.

Proposition 1.1. ([3]) Suppose thatϕ(r) satisfies the condition(i)− (ii) in Remark 1.2 :
a) If f is a meromorphic function, then

λ[p,q] (f, ϕ) = lim sup
r→+∞

logp n
(
r, 1

f

)
logq ϕ (r)

= lim sup
r→+∞

logpN
(
r, 1

f

)
logq ϕ (r)

,

λ[p,q] (f, ϕ) = lim sup
r→+∞

logp n
(
r, 1

f

)
logq ϕ (r)

= lim sup
r→+∞

logpN
(
r, 1

f

)
logq ϕ (r)

.

b) If f is an entire function, then

ρ[p,q] (f, ϕ) = lim sup
r→+∞

logp T (r, f)

logq ϕ (r)
= lim sup

r→+∞

logp+1M (r, f)

logq ϕ (r)
,
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µ[p,q] (f, ϕ) = lim inf
r→+∞

logp T (r, f)

logq ϕ (r)
= lim inf

r→+∞

logp+1M (r, f)

logq ϕ (r)
.

In [15], Liu, Tu and Zhang studied the growth and zeros of solutions of equations

(1.1) f (k) +
k−1∑
j=1

Ajf
(j) + A0f = 0

and

(1.2) f (k) +
k−1∑
j=1

Ajf
(j) + A0f = F,

whereA0 (z) 6≡ 0, A1 (z) , ..., Ak−1 (z) andF (z) 6≡ 0 are entire functions of[p, q] − ϕ order
and they obtained the following results.

Theorem 1.2. ([15]) LetAj (z) (j = 0, 1, ..., k − 1) be entire functions satisfying

max
{
ρ[p,q] (Aj, ϕ) , j = 1, 2, ..., k − 1

}
< ρ[p,q] (A0, ϕ) <∞.

Then every solutionf 6≡ 0 of equation(1.1) satisfiesρ[p+1,q] (f, ϕ) = ρ[p,q] (A0, ϕ) .

In the same paper they obtained the following results in the case of the non-homogeneous
equation(1.2).

Theorem 1.3. ([15]) LetAj (z) (j = 0, 1, ..., k − 1) andF (z) 6≡ 0 be entire functions, and let
f(z) be a solution of(1.2) satisfying

max
{
ρ[p,q] (Aj, ϕ) , ρ[p,q] (F, ϕ) , j = 0, 1, ..., k − 1

}
< ρ[p,q] (f, ϕ) .

Thenλ[p,q] (f, ϕ) = λ[p,q] (f, ϕ) = ρ[p,q] (f, ϕ) .

Theorem 1.4. ([15]) LetAj (z) (j = 0, 1, ..., k − 1) andF (z) 6≡ 0 be entire functions satisfy-
ing

max
{
ρ[p,q] (Aj, ϕ) , ρ[p+1,q] (F, ϕ) , j = 1, 2, ..., k − 1

}
< ρ[p,q] (A0, ϕ) .

Then every solutionf of equation(1.2) satisfiesλ[p+1,q] (f, ϕ) = λ[p+1,q] (f, ϕ) = ρ[p+1,q] (f, ϕ) =
ρ[p,q] (A0, ϕ) , with at most one exceptional solutionf0 satisfyingρ[p+1,q] (f0, ϕ) < ρ[p,q] (A0, ϕ).

After this, Saidani and Belaïdi studied some properties of solutions of the higher order linear
differential equations

(1.3) Ak (z) f (k) + Ak−1 (z) f (k−1) + · · ·+ A1 (z) f ′ + A0 (z) f = 0,

(1.4) Ak (z) f (k) + Ak−1 (z) f (k−1) + · · ·+ A1 (z) f ′ + A0 (z) f = F (z) ,

and they obtained the following results.

Theorem 1.5. ([16]) LetH ⊂ (1,+∞) be a set with a positive upper logarithmic density (or
ml (H) = +∞) and letAj (z) (j = 0, 1, ..., k) with Ak (z) ( 6≡ 0) be meromorphic functions
with finite[p, q]-order. If there exist a positive constantσ > 0 and an integers, 0 6 s 6 k, such
that for sufficiently smallε > 0, we have|As (z) | > expp+1

{
(σ − ε) logq r

}
as |z| = r ∈ H,

r → +∞ and ρ = max
{
ρ[p,q] (Aj) (j 6= s)

}
< σ, then every non-transcendental meromor-

phic solutionf 6≡ 0 of (1.3) is a polynomial withdeg f 6 s − 1 and every transcendental

meromorphic solutionf of (1.3) with λ[p,q]

(
1
f

)
< µ[p,q] (f) satisfies

ρ[p,q](f) = µ[p,q] (f) = +∞, σ 6 ρ[p+1,q] (f) 6 ρ[p,q] (As) .
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Theorem 1.6. ([16]) LetH ⊂ (1,+∞) be a set with a positive upper logarithmic density (or
ml (H) = +∞), and letAj (z) (j = 0, 1, ..., k) andF (z) 6≡ 0 be meromorphic functions with
finite [p, q]-order. If there exist a positive constantσ > 0 and an integers, 0 6 s 6 k, such
that for sufficiently smallε > 0, we have|As (z) | > expp+1

{
(σ − ε) logq r

}
as |z| = r ∈

H, r → +∞ and max
{
ρ[p,q] (Aj) (j 6= s), ρ[p,q] (F )

}
< σ, then every non-transcendental

meromorphic solutionf of (1.4) is a polynomial withdeg f ≤ s− 1 and every transcendental

meromorphic solutionf of (1.4) with λ[p,q]

(
1
f

)
< min

{
σ, µ[p,q](f)

}
satisfies

λ[p,q] (f) = λ[p,q](f) = ρ[p,q](f) = µ[p,q] (f) = +∞
and

σ 6 λ[p+1,q] (f) = λ[p+1,q](f) = ρ[p+1,q] (f) 6 ρ[p,q] (As) .

A natural question which arises: How about the growth of meromorphic solutions of equa-
tions(1.3) and(1.4) with meromorphic coefficients of finite[p, q]−ϕ order when the dominant
coefficient is an arbitrary coefficientAs?
The main purpose of this paper is to give an answer to the above question. We now present our
main results, so for the homogeneous linear differential equation(1.3), we obtain the following
results.

Theorem 1.7. Let G be a set of complex numbers satisfyinglog dens{|z| : z ∈ G} > 0,
p, q be integers such thatp > q > 1 and letAj (z) (j = 0, 1, ..., k) such thatAk 6≡ 0 be
meromorphic functions with finite[p, q] − ϕ order. Suppose there exist a positive constant
σ > 0 and an integers, 0 6 s 6 k such that for sufficiently smallε > 0, we have|As (z) | >
expp+1

{
(σ − ε) logq ϕ (r)

}
asz ∈ G, |z| = r → +∞ andρ = max

{
ρ[p,q] (Aj, ϕ) (j 6= s)

}
<

σ. Then every non-transcendental meromorphic solutionf 6≡ 0 of (1.3) is a polynomial with

deg f 6 s− 1 and every transcendental meromorphic solutionf of (1.3) with λ[p,q]

(
1
f
, ϕ
)
<

µ[p,q] (f, ϕ) satisfies

ρ[p,q](f, ϕ) = µ[p,q] (f, ϕ) = +∞, σ 6 ρ[p+1,q] (f, ϕ) 6 ρ[p,q] (As, ϕ) .

Corollary 1.8. Under the hypotheses of Theorem 1.7, suppose further thatψ is a transcendental
meromorphic function satisfyingρ[p+1,q] (ψ, ϕ) < σ. Then, every transcendental meromorphic

solutionf of equation(1.3) with λ[p,q]

(
1
f
, ϕ
)
< µ[p,q] (f, ϕ) satisfies

σ 6 λ[p+1,q] (f − ψ, ϕ) = λ[p+1,q] (f − ψ, ϕ)

= ρ[p+1,q] (f − ψ, ϕ) = ρ[p+1,q] (f, ϕ) 6 ρ[p,q] (As, ϕ) .

Considering nonhomogeneous linear differential equation(1.4), we obtain the following re-
sults.

Theorem 1.9. Let G be a set of complex numbers satisfyinglog dens{|z| : z ∈ G} > 0,
and letAj (z) (j = 0, 1, ..., k) andF (z) 6≡ 0 be meromorphic functions with finite[p, q]-ϕ
order. If there exist a positive constantσ > 0 and an integers, 0 6 s 6 k, such that for
sufficiently smallε > 0, we have|As (z) | > expp+1

{
(σ − ε) logq ϕ (r)

}
asz ∈ G, |z| = r →

+∞ and ρ1 = max
{
ρ[p,q] (Aj, ϕ) (j 6= s), ρ[p,q] (F, ϕ)

}
< σ, then every non-transcendental

meromorphic solutionf of (1.4) is a polynomial withdeg f 6 s− 1 and every transcendental

meromorphic solutionf of (1.4) with λ[p,q]

(
1
f
, ϕ
)
< min

{
σ, µ[p,q](f, ϕ)

}
satisfies

λ[p,q] (f, ϕ) = λ[p,q](f, ϕ) = ρ[p,q](f, ϕ) = µ[p,q] (f, ϕ) = +∞
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and

σ 6 λ[p+1,q] (f, ϕ) = λ[p+1,q](f, ϕ) = ρ[p+1,q] (f, ϕ) 6 ρ[p,q] (As, ϕ) .

Corollary 1.10. Let Aj (z) (j = 0, 1, ..., k) , F (z) , G satisfy all the hypotheses of Theo-
rem 1.9, and letψ be a transcendental meromorphic function satisfyingρ[p+1,q] (ψ, ϕ) < σ.

Then, every transcendental meromorphic solutionf with λ[p,q]

(
1
f
, ϕ
)
< min{σ, µ[p,q] (f, ϕ)}

of equation(1.4) satisfiesσ 6 λ[p+1,q] (f − ψ, ϕ) = λ[p+1,q] (f − ψ, ϕ) = ρ[p+1,q] (f − ψ, ϕ) =
ρ[p+1,q] (f, ϕ) 6 ρ[p,q] (As, ϕ) .

2. AUXILIARY LEMMAS

In order to prove our theorems, we need the following proposition and lemmas. The Lebesgue
linear measure of a setE ⊂ [0,+∞) is m (E) =

∫
E

dt, and the logarithmic measure of a set

F ⊂ [1,+∞) isml (F ) =
∫
F

dt
t
. The upper density ofE ⊂ [0,+∞) is given by

dens (E) = lim sup
r→+∞

m (E ∩ [0, r])

r

and the upper logarithmic density of the setF ⊂ [1,+∞) is defined by

log dens (F ) = lim sup
r−→+∞

ml (F ∩ [1, r])

log r
.

Proposition 2.1. ([1]) For all H ⊂ (1,+∞) the following statements hold:
(i) If ml (H) = +∞, thenm (H) = +∞;
(ii) If dens (H) > 0, thenm (H) = +∞;
(iii ) If log dens (H) > 0, thenml (H) = +∞.

Lemma 2.2. ([5]) Letf be a transcendental meromorphic function in the plane, and letα > 1
be a given constant. Then, there exist a setE1 ⊂ (1,+∞) that has a finite logarithmic measure,
and a constantB > 0 depending only onα and(i, j) ((i, j) positive integers withi > j)) such
that for all z with |z| = r 6∈ [0, 1] ∪ E1, we have∣∣∣∣f (i)(z)

f (j)(z)

∣∣∣∣ 6 B

(
T (αr, f)

r
(logα r) log T (αr, f)

)i−j

.

Lemma 2.3. (Wiman-Valiron,[7], [18]) Letf be a transcendental entire function, and letz be
a point with|z| = r at which|f (z)| = M (r, f). Then the estimation

f (j) (z)

f (z)
=

(
νf (r)

z

)j

(1 + o (1)) (j > 1 is an integer)

holds for all |z| outside a setE2 of r of finite logarithmic measure, whereνf (r) is the central
index off.

Lemma 2.4. ([17]) Let p, q be positive integers that satisfyp > q > 1. Let f be an entire
function of[p, q]-ϕ order and letνf (r) be the central index off. Then

lim sup
r→+∞

logp νf (r)

logq ϕ (r)
= ρ[p,q] (f, ϕ) , lim inf

r→+∞

logp νf (r)

logq ϕ (r)
= µ[p,q] (f, ϕ) .
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Lemma 2.5. ([3]) Letf andg be non-constant meromorphic functions of[p, q]−ϕ order. Then
we have

ρ[p,q] (f + g, ϕ) 6 max
{
ρ[p,q] (f, ϕ) , ρ[p,q] (g, ϕ)

}
and

ρ[p,q] (fg, ϕ) 6 max
{
ρ[p,q] (f, ϕ) , ρ[p,q] (g, ϕ)

}
.

Furthermore, ifρ[p,q] (f, ϕ) > ρ[p,q] (g, ϕ) , then we obtain

ρ[p,q] (f + g, ϕ) = ρ[p,q] (fg, ϕ) = ρ[p,q] (f, ϕ) .

Lemma 2.6. ([3]) Let p > q > 1 be integers, and letf and g be non-constant meromorphic
functions withρ[p,q] (f, ϕ) as [p, q] −ϕ order andµ(p,q) (g, ϕ) as lower[p, q] −ϕ order. Then
we have

µ[p,q] (f + g, ϕ) 6 max
{
ρ[p,q] (f, ϕ) , µ[p,q] (g, ϕ)

}
and

µ[p,q] (fg, ϕ) 6 max
{
ρ[p,q] (f, ϕ) , µ[p,q] (g, ϕ)

}
.

Furthermore, ifµ[p,q] (g, ϕ) > ρ[p,q] (f, ϕ) , then we obtain

µ[p,q] (f + g, ϕ) = µ[p,q] (fg, ϕ) = µ[p,q] (g, ϕ) .

By using Lemma 3.6 in ([2]) and mathematical induction, we easily obtain the following
lemma.

Lemma 2.7. Let f(z) be a meromorphic function of[p, q] − ϕ order. Thenρ[p,q](f, ϕ) =

ρ[p,q](f
(k), ϕ), (k ∈ N) .

Lemma 2.8. ([6]) Letϕ : [0,+∞) → R andψ : [0,+∞) → R be monotone nondecreasing
functions such thatϕ(r) 6 ψ(r) for all r /∈ (E3 ∪ [0, 1]) , whereE3 is a set of finite logarithmic
measure. Letν > 1 be a given constant. Then, there exists anr1 = r1(ν) > 0 such that
ϕ(r) 6 ψ(νr) for all r > r1.

Lemma 2.9. ([8]) Letf be a transcendental meromorphic function and letk ∈ N. Then

m

(
r,
f (k)

f

)
= O (log(rT (r, f))) ,

possibly outside a setE4 ⊂ (0,+∞) with a finite linear measure, and iff is of finite order of
growth, then

m

(
r,
f (k)

f

)
= O (log r) .

Lemma 2.10.([3]) Letf1, f2 be meromorphic functions of[p, q]−ϕ order satisfyingρ[p,q] (f1, ϕ) >

ρ[p,q] (f2, ϕ), whereϕ only satisfies lim
r→+∞

logq ϕ(α1r)

logq ϕ(r)
= 1 for someα1 > 1. Then there exists a set

E5 ⊂ [1,+∞) having infinite logarithmic measure such that for allr ∈ E5, we have

lim
r→+∞

T (r, f2)

T (r, f1)
= 0.

Lemma 2.11. Let f (z) = g(z)
d(z)

be a meromorphic function, whereg (z), d (z) are entire func-
tions satisfyingµ[p,q] (g, ϕ) = µ[p,q] (f, ϕ) = µ 6 ρ[p,q] (f, ϕ) = ρ[p,q] (g, ϕ) 6 +∞ and
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λ[p,q] (d, ϕ) = ρ[p,q] (d, ϕ) = λ[p,q]

(
1
f
, ϕ
)
< µ. Then there exists a setE6 ⊂ (1,+∞) of fi-

nite logarithmic measure such that for all|z| = r /∈ ([0, 1] ∪ E6) and |g (z) | = M (r, g) , we
have

f (n) (z)

f (z)
=

(
νg (r)

z

)n

(1 + o (1)) , n ∈ N,

whereνg (r) denotes be the central index ofg.

Proof. We use the mathematical induction to obtain the following expression

(2.1) f (n) =
g(n)

d
+

n−1∑
j=0

g(j)

d

∑
(j1...jn)

Cjj1...jn

(
d′

d

)j1

× · · · ×
(
d(n)

d

)jn

,

whereCjj1...jn are constants andj + j1 + 2j2 + · · ·+ njn = n. Then

(2.2)
f (n)

f
=
g(n)

g
+

n−1∑
j=0

g(j)

g

∑
(j1...jn)

Cjj1...jn

(
d′

d

)j1

× · · · ×
(
d(n)

d

)jn

.

By Lemma 2.3, there exists a setE2 ⊂ [1,+∞) with finite logarithmic measure such that for a
point z satisfying|z| = r /∈ E2 and|g (z)| = M (r, g), we get

(2.3)
g(j)(z)

g(z)
=

(
νg (r)

z

)j

(1 + o (1)) (j = 1, 2, ..., n) ,

whereνg (r) is the central index ofg. By replacing(2.3) into (2.2), we obtain

f (n) (z)

f (z)
=

(
νg (r)

z

)n

[(1 + o (1))

(2.4) +
n−1∑
j=0

(
νg (r)

z

)j−n

(1 + o (1))
∑

(j1...jn)

Cjj1...jn

(
d′

d

)j1

× · · · ×
(
d(n)

d

)jn

 .
From the fact thatρ[p,q] (d, ϕ) = β < µ, for any givenε (0 < 2ε < µ− β) and for sufficiently
larger, we have

T (r, d) 6 expp

{(
β +

ε

2

)
logq ϕ (r)

}
.

By Lemma 2.2 for someα1 (1 < α1 < α) with α is a given constant, there exist a setE1 ⊂
(1,+∞) with ml(E1) < ∞ and a constantB > 0, such that for allz satisfying|z| = r /∈
[0, 1] ∪ E1, we have ∣∣∣∣d(m) (z)

d (z)

∣∣∣∣ 6 B [T (α1r, d)]
m+1

(2.5) 6 B
[
expp

{(
β +

ε

2

)
logq ϕ (α1r)

}]m+1

.

By (2.5) and Remark 1.2 (lim
r→+∞

logq ϕ(α1r)

logq ϕ(r)
= 1 (1 < α1 < α)), we obtain∣∣∣∣d(m) (z)

d (z)

∣∣∣∣ 6 B

[
expp

{(
β +

ε

2

) logq ϕ (α1r)

logq ϕ (r)
. logq ϕ (r)

}]m+1

(2.6) 6 expp

{
(β + ε) logq ϕ (r)

}m
, m = 1, 2, ..., n.
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By using Lemma 2.4 andµ[p,q] (g, ϕ) = µ[p,q] (f, ϕ) = µ, we have

νg (r) > expp

{
(µ− ε) logq ϕ (r)

}
for sufficiently larger. Then, sincej1 + 2j2 + · · ·+ njn = n− j, we get∣∣∣∣∣

(
νg (r)

z

)j−n(
d′

d

)j1

× · · · ×
(
d(n)

d

)jn
∣∣∣∣∣ 6

[
expp

{
(µ− ε) logq ϕ (r)

}
r

]j−n

×
[
expp

{
(β + ε) logq ϕ (r)

}]n−j

(2.7) =

[
r expp

{
(β + ε) logq ϕ (r)

}
expp

{
(µ− ε) logq ϕ (r)

} ]n−j

→ 0

asr → +∞, where|z| = r /∈ [0, 1] ∪ E6, E6 = E1 ∪ E2 and|g (z)| = M (r, g) . From (2.4)
and(2.7), we obtain our assertion.

Lemma 2.12. Let f (z) = g(z)
d(z)

be a meromorphic function, whereg (z), d (z) are entire func-
tions satisfyingµ[p,q] (g, ϕ) = µ[p,q] (f, ϕ) = µ 6 ρ[p,q] (f, ϕ) = ρ[p,q] (g, ϕ) 6 +∞ and

λ[p,q] (d, ϕ) = ρ[p,q] (d, ϕ) = λ[p,q]

(
1
f
, ϕ
)
< µ. Then, there exists a setE7 ⊂ (1,+∞) of fi-

nite logarithmic measure such that for all|z| = r /∈ ([0, 1] ∪ E7) and |g (z) | = M (r, g), we
have ∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ 6 r2s, (s ∈ N) .

Proof. By Lemma 2.11, there exists a setE6 of finite logarithmic measure such that the estima-
tion

(2.8)
f (s)(z)

f(z)
=

(
νg (r)

z

)s

(1 + o (1)) (s > 1 is an integer)

is verified for all|z| = r /∈ [0, 1] ∪ E6 and|g (z)| = M (r, g), whereνg (r) is the central index
of g. Then again, from Lemma 2.4, for any givenε (0 < ε < 1), there existsR > 1 such that
for all r > R, we have

(2.9) νg (r) > expp

{
(µ− ε) logq (ϕ (r))

}
.

If µ = +∞, then we can replaceµ−ε by a large enough real numberM . LetE7 = [1, R]∪E6.
Thenml (E7) < +∞. Finally, by(2.8) and(2.9), we get∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ =

∣∣∣∣ z

νg (r)

∣∣∣∣s 1

|1 + o (1)|
6

rs(
expp

{
(µ− ε) logq (ϕ (r))

})s 6 r2s,

where|z| = r /∈ [0, 1] ∪ E7, r → +∞ and|g (z)| = M (r, g) .

Lemma 2.13.Letf be an entire function such thatρ[p,q] (f, ϕ) < +∞. Then, there exist entire
functionsh(z) andL(z) such that

f (z) = h(z)eL(z),

ρ[p,q] (f, ϕ) = max
{
ρ[p,q] (h, ϕ) , ρ[p,q]

(
eL(z), ϕ

)}
and

ρ[p,q] (h, ϕ) = lim sup
r→+∞

logpN
(
r, 1

f

)
logq ϕ (r)

.
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Moreover, for any givenε > 0, we have

|h(z)| > exp
{
− expp

{(
ρ[p,q] (h, ϕ) + ε

)
logq ϕ (r)

}}
(r /∈ E8) ,

whereE8 ⊂ (1,+∞) is a set ofr of finite linear measure.

Proof. By using Theorem 12.4 in ([10]) and Theorem 2.2 in ([11]),f can be represented by

f (z) = h(z)eL(z),

with
ρ[p,q] (f, ϕ) = max

{
ρ[p,q] (h, ϕ) , ρ[p,q]

(
eL(z), ϕ

)}
.

On the other hand, by a similar proof of Proposition 6.1 in ([9]), for any givenε > 0, we obtain

|h(z)| > exp
{
− expp

{(
ρ[p,q] (h, ϕ) + ε

)
logq ϕ (r)

}}
(r /∈ E8) ,

whereE8 ⊂ (1,+∞) is a set ofr of finite linear measure with

ρ[p,q] (h, ϕ) = lim sup
r→+∞

logpN
(
r, 1

f

)
logq ϕ (r)

.

Lemma 2.14. Suppose thatf is a meromorphic function such thatρ[p,q] (f, ϕ) < +∞. Then,
there exist entire functionsh1(z), h2(z) andL(z) such that

(2.10) f (z) =
h1(z)e

L(z)

h2(z)

and

(2.11) ρ[p,q] (f, ϕ) = max
{
ρ[p,q] (h1, ϕ) , ρ[p,q] (h2, ϕ) , ρ[p,q]

(
eL(z), ϕ

)}
.

Moreover, for any givenε > 0, we have

exp
{
− expp

{
(ρ[p,q] (f, ϕ) + ε) logq ϕ (r)

}}
6 |f (z)|

(2.12) 6 expp+1

{
(ρ[p,q] (f, ϕ) + ε) logq ϕ (r)

}
(r /∈ E9) ,

whereE9 ⊂ (1,+∞) is a set ofr of finite linear measure.

Proof. By Hadamard factorization theorem,f can be written asf(z) = g(z)
d(z)

, whereg(z) and
d(z) are entire functions satisfying

µ[p,q](g, ϕ) = µ[p,q](f, ϕ) = µ 6 ρ[p,q](f, ϕ) = ρ[p,q](g, ϕ) < +∞
and

λ[p,q](d, ϕ) = ρ[p,q](d, ϕ) = λ[p,q]

(
1

f
, ϕ

)
< µ.

By using Lemma 2.13, we can find entire functionsh(z) andL(z) such that

g (z) = h(z)eL(z),

ρ[p,q] (g, ϕ) = max
{
ρ[p,q] (h, ϕ) , ρ[p,q]

(
eL(z), ϕ

)}
.

Then, there exist entire functionsh(z), L(z) andd(z) such that

f(z) =
h(z)eL(z)

d(z)

and
ρ[p,q] (f, ϕ) = max

{
ρ[p,q] (h, ϕ) , ρ[p,q] (d, ϕ) , ρ[p,q]

(
eL(z), ϕ

)}
.
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Therefore(2.10) and(2.11) hold. Setf (z) = h1(z)eL(z)

h2(z)
, whereh1(z), h2(z) are the canonical

products formed with the zeros and poles off respectively. By using the definition of[p, q]−ϕ
order, for any givenε > 0 and sufficiently larger, we have

(2.13) |h1 (z)| 6 expp+1

{(
ρ[p,q] (h1, ϕ) +

ε

3

)
logq ϕ (r)

}
,

(2.14) |h2 (z)| 6 expp+1

{(
ρ[p,q] (h2, ϕ) +

ε

3

)
logq ϕ (r)

}
.

Frommax
{
ρ[p,q] (h1, ϕ) , ρ[p,q] (h2, ϕ) , ρ[p,q]

(
eL(z), ϕ

)}
= ρ[p,q] (f, ϕ) , we get

(2.15) |h1 (z)| 6 expp+1

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}
,

(2.16) |h2 (z)| 6 expp+1

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}
,

(2.17) |eL(z)| 6 expp+1

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}
.

Through the use of Lemma 2.13, there exists a setE9 ⊂ (1,+∞) of r of finite linear measure
such that for any givenε > 0, we have

|h1 (z)| > exp
{
− expp

{(
ρ[p,q] (h1, ϕ) +

ε

3

)
logq ϕ (r)

}}
(2.18) > exp

{
− expp

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}}
, (r /∈ E9) ,

|h2 (z)| > exp
{
− expp

{(
ρ[p,q] (h2, ϕ) +

ε

3

)
logq ϕ (r)

}}
(2.19) > exp

{
− expp

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}}
, (r /∈ E9) .

By using(2.15), (2.17) and(2.19), for any givenε > 0 and sufficiently larger /∈ E9, we have

|f (z) | = |h1(z)||eL(z)|
|h2(z)|

6
expp+1

{(
ρ[p,q] (f, ϕ) + ε

3

)
logq ϕ (r)

}
expp+1

{(
ρ[p,q] (f, ϕ) + ε

3

)
logq ϕ (r)

}
exp

{
− expp

{(
ρ[p,q] (f, ϕ) + ε

3

)
logq ϕ (r)

}}
(2.20) 6 expp+1

{(
ρ[p,q] (f, ϕ) + ε

)
logq ϕ (r)

}
.

On the other hand, we knowρ[p−1,q] (L, ϕ) = ρ[p,q]

(
eL, ϕ

)
6 ρ[p,q] (f, ϕ) and|eL(z)| > e−|L(z)|.

From the definition of[p, q]− ϕ order, we get

|L(z)| 6 M(r, L) 6 expp

{(
ρ[p−1,q] (L, ϕ) +

ε

3

)
logq ϕ (r)

}
6 expp

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}
.

Then, for any givenε > 0 and sufficiently larger, we have

(2.21)
∣∣eL(z)

∣∣ > e−|L(z)| > exp
{
− expp

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}}
.

By making use of(2.16), (2.18) and(2.21) , for any givenε > 0 and sufficiently larger /∈ E9,
we can easily obtain

|f (z) | = |h1(z)||eL(z)|
|h2(z)|
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>
exp

{
− expp

{(
ρ[p,q] (f, ϕ) + ε

3

)
logq ϕ (r)

}}
expp+1

{(
ρ[p,q] (f, ϕ) + ε

3

)
logq ϕ (r)

}
× exp

{
− expp

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}}
= exp

{
−3 expp

{(
ρ[p,q] (f, ϕ) +

ε

3

)
logq ϕ (r)

}}
> exp

{
− expp

{(
ρ[p,q] (f, ϕ) + ε

)
logq ϕ (r)

}}
.

Finally Lemma 2.14 is proved.

Lemma 2.15.Under the assumptions of Theorem 1.7 or Theorem 1.9, we haveρ[p,q] (As, ϕ) =
δ > σ.

Proof. By using the proof by contradiction, we assume thatρ[p,q] (As, ϕ) = δ < σ. From the
hypotheses of Theorems 1.7 or 1.9, there exist a setG with log dens{|z| : z ∈ G} > 0 and a
positive constantσ > 0 such that for sufficiently smallε > 0, we have

(2.22) |As (z) | > expp+1

{
(σ − ε) logq (ϕ (r))

}
,

asz ∈ G, |z| = r → +∞. By the definition of[p, q]−ϕ order, for any givenε (0 < 2ε < σ − δ)
and sufficiently larger, we have

(2.23) |As (z) | 6 expp+1

{
δ + ε) logq ϕ (r)

}
.

SetG1 = {|z| : z ∈ G}, so by Proposition 2.1, we know thatml (G1) = ∞. Using(2.22) and
(2.23) , we obtain for|z| = r ∈ G1, r → +∞

expp+1

{
(σ − ε) logq (ϕ (r))

}
6 |As (z) | 6 expp+1

{
(δ + ε) logq ϕ (r)

}
which is a contradiction with the fact that0 < 2ε < σ − δ. Thenρ[p,q] (As, ϕ) = δ > σ.

Lemma 2.16. Let f (z) = g(z)
d(z)

be a meromorphic function, whereg (z), d (z) are entire func-
tions. If 0 6 ρ[p,q] (d, ϕ) < µ[p,q] (f, ϕ) , thenµ[p,q] (g, ϕ) = µ[p,q] (f, ϕ) and ρ[p,q] (g, ϕ) =
ρ[p,q] (f, ϕ) . Moreover, ifρ[p,q] (f, ϕ) = +∞, thenρ[p+1,q] (g, ϕ) = ρ[p+1,q] (f, ϕ) .

Proof. Case 1. ρ[p,q] (f, ϕ) < +∞. Using the definition of the[p, q]-ϕ order, there exist an
increasing sequence{rn}, (rn → +∞) and a positive integern0 such that for alln > n0 and

for any givenε ∈
(
0,

ρ[p,q](f,ϕ)−ρ[p,q](d,ϕ)

2

) (
as0 6 ρ[p,q] (d, ϕ) < µ[p,q] (f, ϕ) 6 ρ[p,q] (f, ϕ)

)
,we

have

(2.24) T (rn, d) 6 expp

{(
ρ[p,q] (d, ϕ) + ε

)
logq ϕ (rn)

}
,

and

(2.25) T (rn, f) > expp

{(
ρ[p,q] (f, ϕ)− ε

)
logq ϕ (rn)

}
.

Using the properties of the characteristic function, we get

(2.26) T (r, f) 6 T (r, g) + T (r, d) +O(1).

By substituting(2.24) and(2.25) into (2.26) , for all sufficiently largen, we obtain

expp

{(
ρ[p,q] (f, ϕ)− ε

)
logq ϕ (rn)

}
6 T (rn, g)

(2.27) + expp

{(
ρ[p,q] (d, ϕ) + ε

)
logq ϕ (rn)

}
+O(1).

Sinceε ∈
(
0,

ρ[p,q](f,ϕ)−ρ[p,q](d,ϕ)

2

)
, then from(2.27) , we obtain

(1− o (1)) expp

{(
ρ[p,q] (f, ϕ)− ε

)
logq ϕ (rn)

}
6 T (rn, g) +O(1),
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for all sufficiently largen. Then ρ[p,q] (f, ϕ) 6 ρ[p,q] (g, ϕ) . On the other hand, we have
T (r, g) 6 T (r, f)+T (r, d) and fromρ[p,q] (d, ϕ) < ρ[p,q] (f, ϕ), we getρ[p,q] (g, ϕ) 6 ρ[p,q] (f, ϕ) .
Hence,ρ[p,q] (g, ϕ) = ρ[p,q] (f, ϕ). Similarly, using the definition of lower[p, q]-ϕ orderµ[p,q] (f, ϕ)
andµ[p,q] (g, ϕ) , we can proveµ[p,q] (g, ϕ) = µ[p,q] (f, ϕ) .
Case 2.µ[p,q] (f, ϕ) = +∞. By T (r, g) 6 T (r, f) + T (r, d) and Lemma 2.6, we have

µ[p,q] (g, ϕ) 6 max
{
µ[p,q] (f, ϕ) , ρ[p,q] (d, ϕ)

}
= µ[p,q] (f, ϕ) .

Now, we proveµ[p,q] (g, ϕ) = µ[p,q] (f, ϕ). We suppose thatµ[p,q] (g, ϕ) < µ[p,q] (f, ϕ) . Using
the definition of the[p, q]-ϕ order and the lower[p, q]-ϕ order, there exist an increasing sequence
{rn}, (rn → +∞) and a positive integern1 such that for alln > n1 and for any givenε > 0

T (rn, d) 6 expp

{(
ρ[p,q] (d, ϕ) + ε

)
logq ϕ (rn)

}
,

T (rn, g) 6 expp

{(
µ[p,q] (g, ϕ) + ε

)
logq ϕ (rn)

}
.

From the fact thatT (rn, f) 6 T (rn, g)+T (rn, d)+O(1), for all sufficiently largen, we obtain

T (rn, f) 6 expp

{(
µ[p,q] (g, ϕ) + ε

)
logq ϕ (rn)

}
+ expp

{(
ρ[p,q] (d, ϕ) + ε

)
logq ϕ (rn)

}
+O(1),

thenµ[p,q] (f, ϕ) 6 max
{
µ[p,q] (g, ϕ) , ρ[p,q] (d, ϕ)

}
and this is a contradiction. Henceµ[p,q] (g, ϕ) =

µ[p,q] (f, ϕ) . Similarly, we can proveρ[p,q] (g, ϕ) = ρ[p,q] (f, ϕ) .
Case 3.µ[p,q](f, ϕ) < +∞ andρ[p,q](f, ϕ) = +∞. We can prove Case 3 by using the similar
method we used to prove Cases 1 and 2.
As last, we will proveρ[p+1,q] (g, ϕ) = ρ[p+1,q] (f, ϕ). We assume thatρ[p,q] (f, ϕ) = +∞. Then,
there exists an increasing sequence{rn}, (rn → +∞), such that

ρ[p+1,q] (f, ϕ) = lim
n→∞

logp+1 T (rn, f)

logq ϕ (rn)
.

Usingρ[p,q] (d, ϕ) < µ[p,q] (f, ϕ) and the definitions of[p, q]-ϕ order and the lower[p, q]-ϕ order,
we obtain

lim
n→+∞

T (rn, d)

T (rn, f)
= 0,

then
T (rn, d) = o(T (rn, f))

asn→ +∞. Therefore, by usingT (rn, f) 6 T (rn, g)+T (rn, d)+O(1), there exists a positive
integern2, such that forn > n2

(1− o (1))T (rn, f) 6 T (rn, g) +O(1)

which impliesρ[p+1,q] (f, ϕ) ≤ ρ[p+1,q] (g, ϕ) . By using the same arguments as in the proof of
Case 1, fromT (r, g) 6 T (r, f) + T (r, d), we can find a positive integern > n3, such that for
n > n3, we have

T (rn, g) 6 (1 + o (1))T (rn, f) 6 2T (rn, f).

Then,ρ[p+1,q] (g, ϕ) 6 ρ[p+1,q] (f, ϕ) . Thusρ[p+1,q] (f, ϕ) = ρ[p+1,q] (g, ϕ) .

Lemma 2.17.LetAj (z) (j = 0, 1, ..., k) , Ak (z) ( 6≡ 0) , F (z) ( 6≡ 0) be meromorphic functions
and letf (z) be a meromorphic solution of(1.4) of infinite[p, q]-ϕ order satisfying the following
condition

b = max
{
ρ[p+1,q] (F, ϕ) , ρ[p+1,q] (Aj, ϕ) (j = 0, 1, ..., k)

}
< ρ[p+1,q] (f, ϕ) .

Then
λ[p+1,q](f, ϕ) = λ[p+1,q](f, ϕ) = ρ[p+1,q] (f, ϕ) .
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Proof. Assume thatf(z) is a meromorphic solution of(1.4) that has infinite[p, q]-ϕ order. We
can rewrite(1.4) as

(2.28)
1

f
=

1

F

(
Ak (z)

f (k)

f
+ Ak−1 (z)

f (k−1)

f
+ · · ·+ +A1 (z)

f ′

f
+ A0 (z)

)
.

By Lemma 2.9 and(2.28) , for |z| = r outside a setE4 ⊂ (0,+∞) of finite linear measure, we
get

m

(
r,

1

f

)
6 m

(
r,

1

F

)
+

k∑
j=1

m

(
r,
f (j)

f

)
+

k∑
j=0

m (r, Aj) +O (1)

(2.29) 6 m

(
r,

1

F

)
+

k∑
j=0

m (r, Aj) +O (log rT (r, f)) .

From(1.4) , it is easy to see that iff has a zero atz0 of orderm (m > k), andA0, A1, ..., Ak

(6≡ 0) are all analytic atz0, thenF must have a zero atz0 of order at leastm− k. Hence

n

(
r,

1

f

)
6 kn

(
r,

1

f

)
+ n

(
r,

1

F

)
+

k∑
j=0

n (r, Aj) ,

and

(2.30) N

(
r,

1

f

)
6 kN

(
r,

1

f

)
+N

(
r,

1

F

)
+

k∑
j=0

N (r, Aj) .

Combining(2.29) with (2.30) , for all sufficiently larger /∈ E4, we get

T (r, f) = T

(
r,

1

f

)
+O (1)

(2.31) 6 T (r, F ) +
k∑

j=0

T (r, Aj) + kN

(
r,

1

f

)
+O (log rT (r, f)) .

For sufficiently larger, we have

(2.32) O (log rT (r, f)) 6
1

2
T (r, f).

From the definition of the[p, q]−ϕ order, for any givenε
(
0 < 2ε < ρ[p+1,q] (f, ϕ)− b

)
and for

sufficiently larger, we have

(2.33) T (r, F ) 6 expp+1

{
(b+ ε) logq ϕ (r)

}
,

(2.34) T (r, Aj) 6 expp+1

{
(b+ ε) logq ϕ (r)

}
, j = 0, 1, ..., k.

By substituting(2.32) , (2.33), (2.34) into (2.31) , for r /∈ E4 sufficiently large, we obtain

(2.35) T (r, f) 6 2kN

(
r,

1

f

)
+ 2 (k + 2) expp+1

{
(b+ ε) logq ϕ (r)

}
.

By using Lemma 2.8 and(2.35) , for any givenν > 1 there exists ar1 = r1(ν) and sufficiently
larger > r1, such that

(2.36) T (r, f) 6 2kN

(
νr,

1

f

)
+ 2 (k + 2) expp+1

{
(b+ ε) logq ϕ (νr)

}
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which gives

ρ[p+1,q] (f, ϕ) 6 λ[p+1,q] (f, ϕ)

and therefore

ρ[p+1,q] (f, ϕ) 6 λ[p+1,q] (f, ϕ) 6 λ[p+1,q] (f, ϕ) .

Since by definition we haveλ[p+1,q] (f, ϕ) 6 λ[p+1,q] (f, ϕ) 6 ρ[p+1,q] (f, ϕ), then we obtain

λ[p+1,q](f, ϕ) = λ[p+1,q](f, ϕ) = ρ[p+1,q] (f, ϕ) .

Lemma 2.18. LetG be a set of complex numbers satisfyinglog dens{|z| : z ∈ G} > 0, and
letAj (z) (j = 0, 1, ..., k) withAk (z) 6≡ 0 andF (z) 6≡ 0 be meromorphic functions with finite
[p, q]-ϕ order. If there exist a positive constantσ > 0 and an integers, 0 6 s 6 k, such
that for sufficiently smallε > 0, we have|As (z) | > expp+1

{
(σ − ε) logq ϕ (r)

}
as z ∈ G,

|z| = r → +∞ and

max
{
ρ[p,q] (Aj, ϕ) (j 6= s), ρ[p,q] (F, ϕ)

}
< σ,

then every transcendental meromorphic solutionf of equation(1.4) satisfiesρ[p,q](f, ϕ) > σ.

Proof. Suppose the contrary. Letf be a transcendental meromorphic solution of the equation
(1.4) such thatρ[p,q](f, ϕ) < σ. From(1.4) , we get

(2.37) As =
F

f (s)
−

k∑
j=0
j 6=s

Aj
f (j)

f (s)
.

From the hypotheses of Lemma 2.18, we have

max
{
ρ[p,q] (Aj, ϕ) (j 6= s), ρ[p,q] (F, ϕ)

}
< σ.

Then by using the assumptionρ[p,q](f, ϕ) < σ and Lemma 2.7, from(2.37) we get

ρ2 = ρ[p,q] (As, ϕ)

6 max
{
ρ[p,q] (Aj, ϕ) (j 6= s), ρ[p,q] (F, ϕ) , ρ[p,q] (f, ϕ)

}
< σ.

Then, for any givenε(0 < 2ε < σ − ρ2) and sufficiently larger, we have

(2.38) |As (z)| ≤ expp+1

{
(ρ(p,q) (As, ϕ) + ε) logq ϕ (r)

}
= expp+1

{
(ρ2 + ε) logq ϕ (r)

}
.

By the hypotheses of Lemma 2.18, we have

(2.39) |As (z)| > expp+1

{
(σ − ε) logq ϕ (r)

}
holds for allz satisfying z ∈ G, |z| = r → +∞. SetG2 = {|z| : z ∈ G}, soml (G2) = ∞.
By combining(2.38) with (2.39), for all z satisfying |z| = r ∈ G2, r → +∞, we obtain

expp+1

{
(σ − ε) logq ϕ (r)

}
6 expp+1

{
(ρ2 + ε) logq ϕ (r)

}
,

hence

σ − ε < ρ2 + ε

and this contradicts the fact that0 < 2ε < σ − ρ2. Consequently, any transcendental meromor-
phic solutionf of the equation(1.4) satisfiesρ[p,q] (f, ϕ) > σ.
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Lemma 2.19. LetA0, A1, ..., Ak 6≡ 0, F 6≡ 0 be finite[p, q]-ϕ order meromorphic functions. If
f is a meromorphic solution of the equation(1.4) with ρ[p,q] (f, ϕ) = +∞ andρ[p+1,q] (f, ϕ) =
ρ < +∞, then

λ[p,q] (f, ϕ) = λ[p,q](f, ϕ) = ρ[p,q](f, ϕ) = +∞
and

λ[p+1,q] (f, ϕ) = λ[p+1,q](f, ϕ) = ρ[p+1,q](f, ϕ) = ρ.

Proof. Assume thatf is a meromorphic solution of(1.4) that has infinite[p, q]-ϕ order and
ρ[p+1,q] (f, ϕ) = ρ < +∞. The equation(1.4) can be rewritten as

(2.40)
1

f
=

1

F

(
Ak (z)

f (k)

f
+ Ak−1 (z)

f (k−1)

f
+ · · ·+ A1 (z)

f ′

f
+ A0 (z)

)
.

By Lemma 2.9 and(2.40), for |z| = r outside a setE4 of a finite linear measure, we get

m

(
r,

1

f

)
6 m

(
r,

1

F

)
+

k∑
j=1

m

(
r,
f (j)

f

)
+

k∑
j=0

m (r, Aj) +O (1)

(2.41) 6 m

(
r,

1

F

)
+

k∑
j=0

m (r, Aj) +O (log rT (r, f)) .

On the other, from(1.4), if f has a zero atz0 of orderα (α > k), andA0, A1, ..., Ak are all
analytic atz0, thenF must have a zero atz0 of order at leastα− k. Then

n

(
r,

1

f

)
6 kn

(
r,

1

f

)
+ n

(
r,

1

F

)
+

k∑
j=0

n (r, Aj)

and

(2.42) N

(
r,

1

f

)
6 kN

(
r,

1

f

)
+N

(
r,

1

F

)
+

k∑
j=0

N (r, Aj) .

By (2.41) and(2.42), for all sufficiently larger /∈ E4, we get

T (r, f) = T

(
r,

1

f

)
+O (1) 6 T (r, F ) +

k∑
j=0

T (r, Aj)

(2.43) + kN

(
r,

1

f

)
+O (log rT (r, f)) .

From the hypotheses of Lemma 2.19, we have

ρ[p,q] (f, ϕ) > ρ[p,q] (F, ϕ) , ρ[p,q] (f, ϕ) > ρ[p,q] (Aj, ϕ) , j = 0, 1, ..., k.

Then by using Lemma 2.10, there exists a setE5 ⊂ [1,+∞) having infinite logarithmic
measure such that for allr ∈ E5, we have

max

{
T (r, F )

T (r, f)
,
T (r, Aj)

T (r, f)
, j = 0, 1, ..., k

}
→ 0 for r → +∞,

hence asr ∈ E5, r → +∞
(2.44) T (r, F ) = o (T (r, f)) , T (r, Aj) = o (T (r, f)) , j = 0, 1, ..., k.

Sincef is transcendental, then for sufficiently larger, we have

(2.45) O (log rT (r, f)) = o (T (r, f)) .
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Substituting(2.44) and(2.45) into (2.43) , for r ∈ E5 \ E4, we get

T (r, f) 6 kN

(
r,

1

f

)
+ o (T (r, f)) .

Hence

(2.46) (1− o (1)) (T (r, f)) 6 kN

(
r,

1

f

)
.

Then, by making use of Proposition 1.1, Lemma 2.8, Definition 1.1, Remark 1.2 and(2.46) ,
for anyf with ρ[p,q] (f, ϕ) = +∞ andρ[p+1,q](f, ϕ) = ρ, we obtain

+∞ = ρ[p,q] (f, ϕ) 6 λ[p,q] (f, ϕ) , ρ[p+1,q] (f, ϕ) 6 λ[p+1,q] (f, ϕ) ,

hence
ρ[p+1,q] (f, ϕ) 6 λ[p+1,q] (f, ϕ) 6 λ[p+1,q] (f, ϕ) .

On the other hand, we know that by definition, we have

λ[p+1,q] (f, ϕ) 6 λ[p+1,q] (f, ϕ) 6 ρ[p+1,q] (f, ϕ) ,

and therefore
ρ[p+1,q] (f, ϕ) = λ[p+1,q] (f, ϕ) = λ[p+1,q] (f, ϕ) = ρ.

Lemma 2.20. Assume thatk > 2 andA0, A1, ..., Ak 6≡ 0, F are meromorphic functions.
Let ρ3 = max

{
ρ[p,q] (Aj, ϕ) , (j = 0, 1, ..., k), ρ[p,q] (F, ϕ)

}
< ∞ and let f be a meromor-

phic solution of infinite[p, q]-ϕ order of equation(1.4) with λ[p,q]

(
1
f
, ϕ
)
< µ[p,q] (f, ϕ) . Then,

ρ[p+1,q](f, ϕ) 6 ρ3.

Proof. Suppose thatf is a meromorphic solution of equation(1.4) of infinite [p, q]-ϕ order with

λ[p,q]

(
1
f
, ϕ
)
< µ[p,q] (f, ϕ) . By using the Hadamard factorization theorem,f can be written as

f(z) = g(z)
d(z)

, whereg(z) andd(z) are entire functions such that

µ[p,q] (g, ϕ) = µ[p,q] (f, ϕ) = µ ≤ ρ[p,q] (f, ϕ) = ρ[p,q] (g, ϕ) = +∞

and

λ[p,q] (d, ϕ) = ρ[p,q] (d, ϕ) = λ[p,q]

(
1

f
, ϕ

)
6 µ.

By Lemma 2.14, there exists a setE9 ⊂ (1,+∞) of r of finite linear measure such that for all
|z| = r /∈ E9 and any givenε > 0, by using the hypotheses of Lemma 2.20, we get

|Ak (z) | > exp
{
− expp

{
(ρ(p,q) (Ak, ϕ) + ε) logq ϕ (r)

}}
(2.47) > exp

{
− expp

{
(ρ3 + ε) logq ϕ (r)

}}
.

For any givenε > 0 and sufficiently larger, we have

|Aj (z) | 6 expp+1

{
(ρ(p,q) (Aj, ϕ) + ε) logq ϕ (r)

}
(2.48) 6 expp+1

{
(ρ3 + ε) logq ϕ (r)

}
, j = 0, 1, ..., k − 1,

and

(2.49) |F (z)| 6 expp+1

{
(ρ(p,q) (F, ϕ) + ε) logq ϕ (r)

}
6 expp+1

{
(ρ3 + ε) logq ϕ (r)

}
.
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From the definition of the[p, q] − ϕ order, the lower[p, q] − ϕ order and(2.49), for any given
ε
(
0 < 2ε < µ[p,q] (f, ϕ)− ρ[p,q] (d, ϕ)

)
, and for all z satisfying |z| = r sufficiently large at

which |g(z)| = M(r, g), we obtain∣∣∣∣F (z)

f (z)

∣∣∣∣ =
|F (z)|
|g(z)|

|d (z)|

6
expp+1

{
(ρ[p,q] (d, ϕ) + ε) logq ϕ (r)

}
expp+1

{
(ρ3 + ε) logq ϕ (r)

}
expp+1

{
(µ[p,q] (f, ϕ)− ε) logq ϕ (r)

}
(2.50) 6 expp+1

{
(ρ3 + ε) logq ϕ (r)

}
.

From Lemma 2.11, there exists a setE6 ⊂ (1,+∞) of finite logarithmic measure such that for
all |z| = r /∈ [0, 1] ∪ E6 and|g (z) | = M (r, g) , we have

(2.51)
f (j) (z)

f (z)
=

(
νg (r)

z

)j

(1 + o (1)) , j = 1, ..., k.

By equation(1.4), we have

(2.52)

∣∣∣∣f (k) (z)

f (z)

∣∣∣∣ 6 1

|Ak (z) |

(
|A0 (z) |+

∣∣∣∣F (z)

f (z)

∣∣∣∣+ k−1∑
j=1

|Aj (z) |
∣∣∣∣f (j) (z)

f (z)

∣∣∣∣
)
.

Replacing(2.47) , (2.48) , (2.50) and(2.51) into (2.52), we get∣∣∣∣νg (r)

z

∣∣∣∣k |1 + o (1)| 6 1

exp
{
− expp

{
(ρ3 + ε) logq ϕ (r)

}}×
({

2 +
k−1∑
j=1

∣∣∣∣νg (r)

z

∣∣∣∣j |1 + o (1)|

}
expp+1

{
(ρ3 + ε) logq ϕ (r)

})

=

{
2 +

k−1∑
j=1

∣∣∣∣νg (r)

z

∣∣∣∣j |1 + o (1)|

}
exp

{
2 expp

{
(ρ3 + ε) logq ϕ (r)

}}
.

Then

(2.53) |νg (r)| |1 + o (1)| 6 (k + 1) r |1 + o (1)| exp
{
2 expp

{
(ρ3 + ε) logq ϕ (r)

}}
holds for allz satisfying|z| = r /∈ ([0, 1] ∪ E6 ∪ E9) and|g (z) | = M (r, g) , r → +∞. From
(2.53), we obtain

(2.54) lim sup
r→+∞

logp+1 νg (r)

logq ϕ (r)
6 ρ3 + ε.

Using the fact thatε > 0 is arbitrary, by(2.54) and Lemma 2.4, we obtainρ[p+1,q] (g, ϕ) 6 ρ3.
Sinceρ[p,q] (d, ϕ) < µ[p,q] (f, ϕ) , so by Lemma 2.16, we getρ[p+1,q] (g, ϕ) = ρ[p+1,q] (f, ϕ) .
Finally, ρ[p+1,q] (f, ϕ) 6 ρ3. Therefore, Lemma 2.20 is proved.
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3. PROOF OF THEOREM 1.7

Proof. Letf 6≡ 0 be a rational solution of(1.3) . First, we will prove thatf must be a polynomial
with deg f 6 s − 1. If either f is a rational function, which has a pole atz0 of degreem > 1,
or f is a polynomial withdeg f > s, thenf (s)(z) 6≡ 0. From equation(1.3) we have

As (z) f (s)(z) = −
k∑

j=0
j 6=s

Aj (z) f (j) (z) .

By Lemma 2.5 and Lemma 2.15, we obtain

σ 6 ρ[p,q] (As, ϕ) = ρ[p,q]

(
Asf

(s), ϕ
)

= ρ[p,q]

− k∑
j=0
j 6=s

Ajf
(j), ϕ


6 max

j=0,1,...,k,j 6=s

{
ρ[p,q] (Aj, ϕ)

}
,

which is a contradiction. Therefore,f must be a polynomial withdeg f 6 s − 1. In the
second part, we assume thatf is a transcendental meromorphic solution of(1.3) such that

λ[p,q]

(
1
f
, ϕ
)
< µ[p,q] (f, ϕ) . For any givenε (0 < 2ε < σ − ρ) and sufficiently larger, we have

|Aj (z) | 6 expp+1

{
(ρ[p,q] (Aj, ϕ) + ε) logq ϕ (r)

}
(3.1) 6 expp+1

{
(ρ+ ε) logq ϕ (r)

}
, j = 0, 1, ..., k, j 6= s.

By making use of Lemma 2.12, there exists a setE7 ⊂ (1,+∞) of finite logarithmic measure
such that for all|z| = r /∈ ([0, 1] ∪ E7) sufficiently large and|g (z) | = M (r, g) , we have

(3.2)

∣∣∣∣ f (z)

f (s) (z)

∣∣∣∣ 6 r2s, s > 1 is an integer.

From Lemma 2.2, there exist a setE1 ⊂ (1,+∞) that has a finite logarithmic measure, and a
constantB > 0, such that for allz satisfying|z| = r /∈ ([0, 1] ∪ E1)

(3.3)

∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ 6 B [T (2r, f)]k+1 , j = 1, 2, ..., k, j 6= s.

From the hypotheses of Theorem 1.7, there exist a setG with log dens{|z| : z ∈ G} > 0
(or by Proposition 2.1,ml({|z| : z ∈ G}) = ∞) and a positive constantσ > 0 such that for
sufficiently smallε > 0, we have

(3.4) |As (z) | > expp+1

{
(σ − ε) logq ϕ (r)

}
asz ∈ G, |z| = r → +∞. By (1.3) , we can write

(3.5) |As 6

∣∣∣∣ ff (s)

∣∣∣∣
|A0|+

k∑
j=1
j 6=s

|Aj|
∣∣∣∣f (j)

f

∣∣∣∣
 .

Substituting(3.1) , (3.2) , (3.3) and(3.4) into (3.5), for all z satisfying|z| = r ∈ {|z| : z ∈
G} \ ([0, 1] ∪ E1 ∪ E7), r → +∞, we obtain

expp+1

{
(σ − ε) logq ϕ (r)

}
6 Bkr2s expp+1

{
(ρ+ ε) logq ϕ (r)

}
[T (2r, f)]k+1 .
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From0 < 2ε < σ − ρ, we obtain

(3.6) exp
{
(1− o (1)) expp

{
(σ − ε) logq ϕ (r)

}}
6 Bkr2s [T (2r, f)]k+1 .

Using Lemma 2.8 and(3.6) , for any givenν > 1 there exists anr1 = r1 (ν) and sufficiently
larger > r1, r ∈ {|z| : z ∈ G} such that

exp
{
(1− o (1)) expp

{
(σ − ε) logq ϕ (r)

}}
6 Bk (νr)2s [T (2νr, f)]k+1 .

By making use of Definition 1.1 and Remark 1.2, we get

(3.7) ρ[p,q](f, ϕ) = µ[p,q] (f, ϕ) = +∞, σ 6 ρ[p+1,q] (f, ϕ) .

In view of Lemma 2.15, we have

max
{
ρ[p,q] (Aj, ϕ) : j = 0, 1, ..., k

}
= ρ[p,q] (As, ϕ) = δ < +∞.

Sincef is of infinite[p, q]-ϕ order meromorphic solution of equation(1.3) satisfyingλ[p,q]

(
1
f
, ϕ
)
<

µ[p,q] (f, ϕ), then by Lemma 2.20, we obtain

(3.8) ρ[p+1,q] (f, ϕ) 6 ρ[p,q] (As, ϕ) .

By (3.7) and(3.8) , we getµ[p,q] (f, ϕ) = ρ[p,q] (f, ϕ) = +∞ and

σ 6 ρ[p+1,q] (f, ϕ) 6 ρ[p,q] (As, ϕ) .

4. PROOF OF COROLLARY 1.8

Proof. Let ψ be a transcendental meromorphic function such thatρ[p+1,q] (ψ, ϕ) < σ. Putting
η = f−ψ.By Lemma 2.5, we obtainρ[p+1,q] (η, ϕ) = ρ[p+1,q] (f, ϕ). By making use of Theorem
1.7, we haveσ 6 ρ[p+1,q] (η, ϕ) 6 ρ[p,q] (As, ϕ) . Replacingf = η + ψ into (1.3), we get

Ak (z) η(k) + Ak−1 (z) η(k−1) + · · ·+ A1 (z) η′ + A0 (z) η

(4.1) = −
(
Ak (z)ψ(k) + Ak−1 (z)ψ(k−1) + · · ·+ A1 (z)ψ′ + A0 (z)ψ

)
= U(z).

Sinceρ[p+1,q] (ψ, ϕ) < σ, then according to Theorem 1.7, we can see thatψ is not a solution
of eqaution(1.3) , hence the right sideU(z) of equation(4.1) is non-zero. Furthermore, by
Lemma 2.5 and Lemma 2.7, we get

ρ[p+1,q] (U,ϕ) 6 max
{
ρ[p+1,q] (ψ, ϕ) , ρ[p+1,q] (Aj, ϕ) (j = 0, 1, ..., k)

}
< σ.

As a consequence

max
{
ρ[p+1,q] (U,ϕ) , ρ[p+1,q] (Aj, ϕ) (j = 0, 1, ..., k)

}
< σ 6 ρ[p+1,q] (η, ϕ) .

From Lemma 2.17, we get

σ 6 λ[p+1,q] (f − ψ, ϕ) = λ[p+1,q] (f − ψ, ϕ)

= ρ[p+1,q] (f − ψ, ϕ) = ρ[p+1,q] (f, ϕ) 6 ρ[p,q] (As, ϕ) .
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5. PROOF OF THEOREM 1.9

Proof. Letf 6≡ 0 be a rational solution of(1.4) . First, we will prove thatf must be a polynomial
with deg f 6 s−1. If eitherf(z) is a rational function, which has a pole atz0 of degreem > 1,
or f is a polynomial withdeg f > s, thenf (s)(z) 6≡ 0. By (1.4) we have

Asf
(s) = F −

k∑
j=0
j 6=s

Aj (z) f (j)

and by Lemma 2.5 and Lemma 2.15, we obtain

σ 6 ρ[p,q] (As, ϕ) = ρ[p,q]

(
Asf

(s), ϕ
)

= ρ[p,q]

F −
k∑

j=0
j 6=s

Aj (z) f (j), ϕ


6 max

j=0,1,...,k, j 6=s

{
ρ[p,q] (Aj, ϕ) , ρ[p,q] (F, ϕ)

}
,

which is a contradiction. Therefore,f must be a polynomial withdeg f 6 s − 1. Assum-

ing now thatf is a transcendental meromorphic solution of(1.4) that satisfiesλ[p,q]

(
1
f
, ϕ
)
<

µ[p,q](f, ϕ). By Lemma 2.18, we know thatf satisfiesρ[p,q] (f, ϕ) > σ. Sinceλ[p,q]

(
1
f
, ϕ
)
<

min{µ[p,q](f, ϕ), σ}, then by Hadamard factorization theorem, there exist entire functionsg (z)

andd (z) such thatf (z) = g(z)
d(z)

and

µ[p,q](g, ϕ) = µ[p,q](f, ϕ) = µ 6 ρ[p,q](g, ϕ) = ρ[p,q](f, ϕ),

ρ[p,q](d, ϕ) = λ[p,q]

(
1

f
, ϕ

)
< min{µ[p,q](f, ϕ), σ}.

From the definition of the lower[p, q] − ϕ order, for any givenε > 0 and sufficiently larger,
we get

(5.1) |g (z)| = M(r, g) > expp+1

{
(µ[p,q] (g, ϕ)− ε) logq ϕ (r)

}
.

Let

ρ1 = max
{
ρ[p,q] (Aj, ϕ) , j 6= s, ρ[p,q] (F, ϕ)

}
< σ.

Then, by(5.1), for any givenε satisfying

0 < 2ε < min{σ − ρ1, µ[p,q] (g, ϕ)− ρ[p,q] (d, ϕ)},

and allz satisfying|z| = r sufficiently large at which|g (z) | = M(r, g), we have∣∣∣∣F (z)

f (z)

∣∣∣∣ =
|F (z)|
|g(z)|

|d (z)|

6
expp+1

{
(ρ[p,q] (d, ϕ) + ε) logq ϕ (r)

}
expp+1

{
(ρ1 + ε) logq ϕ (r)

}
expp+1

{
(µ[p,q] (g, ϕ)− ε) logq ϕ (r)

}
(5.2) 6 expp+1

{
(ρ1 + ε) logq ϕ (r)

}
.

AJMAA, Vol. 21 (2024), No. 2, Art. 10, 23 pp. AJMAA

https://ajmaa.org


STUDY OF COMPLEX OSCILLATION OF SOLUTIONS TO HIGHER ORDER LDE 21

Using the similar way as in the proof of Theorem 1.7, for any givenε satisfying0 < 2ε <
min{σ − ρ1, µ[p,q] (g, ϕ) − ρ[p,q] (d, ϕ)} and all z satisfying |z| = r ∈ {|z| : z ∈ G} \
([0, 1] ∪ E1 ∪ E7) , r → +∞ at which|g (z) | = M(r, g), we have(3.2) , (3.3) , (3.4) and

(5.3) |Aj (z) | 6 expp+1

{
(ρ1 + ε) logq ϕ (r)

}
, j = 0, 1, ..., k, j 6= s.

From(1.4) , we have

(5.4) |As| 6
∣∣∣∣ ff (s)

∣∣∣∣
|A0|+

k∑
j=1
j 6=s

|Aj|
∣∣∣∣f (j)

f

∣∣∣∣+ ∣∣∣∣Ff
∣∣∣∣
 .

Replacing(3.2) , (3.3) , (3.4) , (5.2) and(5.3) into (5.4) , for all z satisfying|z| = r ∈ {|z| :
z ∈ G} \ ([0, 1] ∪ E1 ∪ E7) , r → +∞, at which|g (z) | = M (r, g) and any givenε satisfying

0 < 2ε < min{σ − ρ1, µ[p,q] (g, ϕ)− ρ[p,q] (d, ϕ)},
we obtain

expp+1

{
(σ − ε) logq ϕ (r)

}
6 r2s

(
expp+1

{
(ρ1 + ε) logq ϕ (r)

}
+

k∑
j=1,j 6=s

expp+1

{
(ρ1 + ε) logq ϕ(r)

}
B [T (2r, f)]k+1

+ expp+1

{
(ρ1 + ε) logq ϕ (r)

})
(5.5) 6 B (k + 1) r2s [T (2r, f)]k+1 expp+1

{
(ρ1 + ε) logq ϕ (r)

}
.

The fact that0 < 2ε < σ − ρ1 gives

(5.6) exp
{
(1− o (1)) expp (σ − ε) logq ϕ (r)

}
6 B (k + 1) r2s [T (2r, f)]k+1 .

Using Lemma 2.8 and(5.6) , for any givenν > 1 there exists anr2 = r2 (ν) and sufficiently
larger > r2, r ∈ {|z| : z ∈ G} such that

(5.7) exp
{
(1− o (1)) expp

{
(σ − ε) logq ϕ (r)

}}
6 B (k + 1) (νr)2s [T (2νr, f)]k+1 .

By making use of Definition 1.1 and Remark 1.2, we get

(5.8) ρ[p,q](f, ϕ) = µ[p,q] (f, ϕ) = +∞, σ 6 ρ[p+1,q] (f, ϕ) .

According to Lemma 2.15 and the hypotheses of Theorem 1.9, we get

max
{
ρ[p,q] (Aj, ϕ) (j = 0, 1, ..., k), ρ[p,q] (F, ϕ)

}
= ρ[p,q] (As, ϕ) = δ < +∞.

Using Lemma 2.20 and the fact thatf is a meromorphic solution of equation(1.4) of [p, q]-ϕ

order withλ[p,q]

(
1
f
, ϕ
)
< µ[p,q] (f, ϕ) , we obtain

(5.9) ρ[p+1,q] (f, ϕ) 6 max
{
ρ[p,q] (Aj, ϕ) (j = 0, 1, ..., k), ρ[p,q] (F, ϕ)

}
= ρ[p,q] (As, ϕ) .

From Lemma 2.19 and sinceF 6≡ 0, we get

(5.10) λ[p,q] (f, ϕ) = λ[p,q](f, ϕ) = µ[p,q] (f, ϕ) = ρ[p,q](f, ϕ) = +∞
and

(5.11) σ 6 λ[p+1,q] (f, ϕ) = λ[p+1,q](f, ϕ) = ρ[p+1,q](f, ϕ).

Then from(5.9) , (5.10) and(5.11) , we conclude that

λ[p,q] (f, ϕ) = λ[p,q](f, ϕ) = µ[p,q] (f, ϕ) = ρ[p,q](f, ϕ) = +∞
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and
σ 6 λ[p+1,q] (f, ϕ) = λ[p+1,q](f, ϕ) = ρ[p+1,q](f, ϕ) 6 ρ[p,q] (As, ϕ) .

6. PROOF OF COROLLARY 1.10

Let ψ be a transcendental meromorphic function such thatρ[p+1,q] (ψ, ϕ) < σ. Puttingϑ =
f − ψ, thenρ[p+1,q] (ϑ, ϕ) = ρ[p+1,q] (f, ϕ) , and by Theorem 1.9, we haveσ 6 ρ[p+1,q] (ϑ, ϕ) 6
ρ[p,q] (As, ϕ) . Replacingf = ϑ+ ψ into (1.4), we get

Ak (z)ϑ(k) + Ak−1 (z)ϑ(k−1) + · · ·+ A1 (z)ϑ+ A0 (z)ϑ

(6.1) = F (z)−
(
Ak (z)ψ(k) + Ak−1 (z)ψ(k−1) + · · ·+ A1 (z)ψ′ + A0 (z)ψ

)
= V (z) .

Sinceρ[p+1,q] (ψ, ϕ) < σ, then according to Theorem 1.9,ψ is not a solution of equation(1.4) ,
hence the right sideV (z) of equation(6.1) is non zero. Furthermore, by Lemma 2.5 and
Lemma 2.7, we obtain

ρ[p+1,q] (V, ϕ) 6 max
{
ρ[p+1,q] (ψ, ϕ) , ρ[p+1,q] (Aj, ϕ) (j = 0, 1, ..., k)

}
< σ.

As a consequence

max
{
ρ[p+1,q] (V, ϕ) , ρ[p+1,q] (Aj, ϕ) (j = 0, 1, ..., k)

}
< σ ≤ ρ[p+1,q] (ϑ, ϕ) .

Thus, by Lemma 2.17, we get

σ 6 λ[p+1,q] (f − ψ, ϕ) = λ[p+1,q] (f − ψ, ϕ)

= ρ[p+1,q] (f − ψ, ϕ) = ρ[p+1,q] (f, ϕ) ≤ ρ[p,q] (As, ϕ) .
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