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1. INTRODUCTION AND MAIN RESULTS

Throughout this article, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna’s value distribution theory of meromorphic functions (
see([4], [8]). To define the iterated order and fhe;|— order of meromorphic functions in the
complex plane, we use the same notations as in ($ee [1],[12],[13].[14],[16],[19]).

As far as we know, in[[17] Shen, Tu and Xu firstly introduced the concejpt,qf — ¢ order
of meromorphic functions in the complex plane to investigate the growth and zeros of second
order linear differential equations.

Definition 1.1. ([17]) Let  : [0, +00) — (0,+00) be a non-decreasing unbounded function,
andp, ¢ be positive integers that satisfy> ¢ > 1. Then the[p, q] — ¢ order and the lower
[p, q] — ¢ order of a meromorphic functiofi are respectively defined by

. log, T (r, f)
Pt (f, ) = limsup —2——=,
[p.] (f,%) —t log, ¢ (r)

log, T (r, f)
= lim inf —2—""~,
Hipg (f; ) = lim ind log, ¢ (1)
Definition 1.2. ([17]) Let f be a meromorphic function. Then, the q] — ¢ exponent of
convergence of zero-sequence (distinct zero-sequengedraf respectively defined by

log, n (r, %)
Ap.g (f, @) = limsup —————=
[p.q] ( ) oo Iqu © (7,)

and

_ log, (r, %)
Ap.g (f, ) = limsup ————~
[p,q] ( oo 1qu © (’I")

Remark 1.1. If ¢(r) = r in the Definitiong 1.[[-1]2 , then we will get the standard definitions
of the [p, ¢]-order and thep, g]-exponent of convergence.

Remark 1.2. ([17]) Throughout this paper, we assume that [0, +oc) — (0, +00) is @ non-
decreasing unbounded function and always satisfies the following two conditions:
. . log, 117
(1) lim == =0;
r——400 qu (p(’/‘)

I
logg #(01r) _ 4 for somea; > 1.

(“) TEI_POO log,, ¢ (r)
Proposition 1.1. ([3]) Suppose thap(r) satisfies the conditioft) — (i7) in Remark 1.2 :
a) If f is a meromorphic function, then

log, n (r, %) log, N (7‘, %)

Aip.g (f, ) = limsup = lim sup
vl () rtoo  log o (r) rtoo  log, ¢ (r)
_ log, (7", %) logpw (7’, %)
Aip.g (f, ) = limsup —————* = limsup ————*.
ral UF:2) r—too  10g (1) rtoo  log ()

b) If f is an entire function, then

log, T (r, f) log, (1 M (r, f)
f, ) = limsup —2——"> = limsup —2
Plp.q] (f,%) 00 logq @ (1) r——+00 10gq @ (r)

Y
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M[p ql <f7 gp) = liminf ng—(r,f) — liminf ng+1 (Ta f)
) r—+00 logq (2 (7”) r—+00 logq © (T)
In [15], Liu, Tu and Zhang studied the growth and zeros of solutions of equations

k—1

(-4 7Y+ ZAjf(j) +Aof =0
j=1

and
k—1
j=1

whereAq (z) # 0, Ay (2), ..., Ax—1 () and F' (z) # 0 are entire functions ofp, ¢q| — ¢ order
and they obtained the following results.

Theorem 1.2.([15]) Let A4, (=) (7 = 0,1, ...,k — 1) be entire functions satisfying
max {p[p,q] (Aj,0), 1=1,2,....k — 1} < Plp.g (Ao, @) < 00.
Then every solutiori # 0 of equation 1) satisfiesy,, 1 , (f,9) = pp.q (Ao, ¥) -
In the same paper they obtained the following results in the case of the non-homogeneous
equation(1.2)).
Theorem 1.3.([15]) Let A; (2) (j =0,1,....,k — 1) and F' (=) # 0 be entire functions, and let
f(z) be a solution of((1.2)) satisfying
max {p[p,q} (Aju 90) 7p[p,q] <F7 SO) ) j = 07 ]-7 ) k — 1} < p[p,q] (f7 W) :

Thenxmq] (fa 90) = A[p,q} (fa 90) = Plp.dl (f’ (p) :
Theorem 1.4.([15]) Let A, (2) ( = 0,1, ...,k — 1) and F' (2) # 0 be entire functions satisfy-
ing

max {p[p,q] (AJ,QO) 710[p+1,q} (FJ gp) ) .] = 1727 7k - 1} < p[p,q] (A07 %0) :

Then every solutioifi of equation satisfies\ 11,9 (f, ©) = Apr1,g (fr ) = Pipt1.q (fr0) =
Ppp.q (Ao, ) , With at most one exceptional solutignsatistyingpy, . 4 (fo, ) < p.q (Ao, ¥).

After this, Saidani and Belaidi studied some properties of solutions of the higher order linear
differential equations

(1.3) A () P + A (2) fE Y 4o A (2) f + Ag (2) f =0,

(1.4) A (2) fP 4+ Ay () [V 4+ A (2) f + Ao (2) f = F (2),
and they obtained the following results.

Theorem 1.5. ([16]) Let H C (1, +o0) be a set with a positive upper logarithmic density (or
my (H) = +o0) and letA; (z) (j =0,1,..., k) with A, (z) (% 0) be meromorphic functions
with finite [p, ¢]-order. If there exist a positive constant> 0 and an integes, 0 < s < k, such
that for sufficiently smalt > 0, we have{A, (z) | > exp,,, {(c —¢)log,r} as|z| = r € H,

r — +oo andp = max {ppq] (A;) (j #s)} < o, then every non-transcendental meromor-
phic solutionf # 0 of is a polynomial withdeg f < s — 1 and every transcendental

meromorphic solutiorf of (1 1.’ 3)) with Ap, g ( ) < i, g (f) satisfies

Plp, q}(f) Hip.ql (f) =400, 0 < Plp+1,q] (f) < Plp.ql (As) -
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Theorem 1.6. ([16]) Let H C (1, +o0) be a set with a positive upper logarithmic density (or
my (H) = +00), and letA; (z) ( = 0,1,...,k) and F' (z) # 0 be meromorphic functions with
finite [p, ¢|-order. If there exist a positive constamt> 0 and an integers, 0 < s < k, such
that for sufficiently smalt > 0, we have|A, (z)| > exp,, {(c —¢)log,r} as|z| = r €
H,r — +oo and max {py,, (4;) (j #s), ppq (F)} < o, then every non-transcendental
meromorphic solutiorf of (|1.4)) is a polynomial withleg f < s — 1 and every transcendental

meromorphic solutiorf of 1' with Ay, ¢ (%) < min {o, M@,q](f)} satisfies

X[p,q] (f) = )‘[p,q](f) = P[p,q}<f) = Hip,q (f) = +oa

and
o< X[p+1,q} (f) = )‘[p+1,q]<f) = Plp+1,q] (f) < Plp.dl (As) .

A natural question which arises: How about the growth of meromorphic solutions of equa-
tions (1.3 and(T.4) with meromorphic coefficients of finite, ¢] — » order when the dominant
coefficient is an arbitrary coefficient,?

The main purpose of this paper is to give an answer to the above question. We now present our
main results, so for the homogeneous linear differential equ4tisj, we obtain the following
results.

Theorem 1.7. Let G be a set of complex numbers satisfyingdens{|z| : z € G} > 0,
p,q be integers such thap > ¢ > 1 and letA; (z) (j =0,1,...,k) such that4d, # 0 be
meromorphic functions with finit, ¢ — ¢ order. Suppose there exist a positive constant
o > 0 and an integer, 0 < s < k such that for sufficiently smadl > 0, we have A, (2) | >

exp,,; {(0 —¢)log, ¢ (r)} asz € G, |z| = r — +ooandp = max {p;, 4 (4;,¢) (j #5)} <
0. Then every non-transcendental meromorphic solufica 0 of (1.3) is a polynomial with

deg f < s — 1 and every transcendental meromorphic solutjoof
Lpp.q (f,p) satisfies
p[p,q](f’ 90) = lu’[p7q} (fv 90) = 400,00 < p[p—i—l,q] (fa 90) < p[p,q] (Asu 90) :

Corollary 1.8. Under the hypotheses of Theollen] 1.7, suppose furtheptisad transcendental
meromorphic function satisfyingy, ., , (¢, ¢) < o. Then, every transcendental meromorphic

solution f of equation 1) with A, g (%, (,0) < g (f5 ) satisfies
S X[IH-LQ} (f — 1, 90) = >‘[p+1,q] (f — 1, 90)

= Ppi1g (f = 100) = ppi1g (F;0) < ppg (Asi ) -

Considering nonhomogeneous linear differential equafiof)), we obtain the following re-
sults.

Theorem 1.9. Let G be a set of complex numbers satisfyingdens{|z| : z € G} > 0,
and letA; (z) (j = 0,1,...,k) and F' (z) # 0 be meromorphic functions with finite, ¢|-¢
order. If there exist a positive constamt > 0 and an integers, 0 < s < k, such that for
sufficiently smalk > 0, we havel A, (z) | > exp,,, {(0c —¢)log, ¢ (r)} asz € G, |z| =1 —
+oo and p; = max {py, ; (A;,90) (j #5), ppq (F,@)} < o, then every non-transcendental
meromorphic solutiorf of (1.4) is a polynomial withleg f < s — 1 and every transcendental

meromorphic solutiorf of 1' with A, g G, <p> < min {a, uy, 4(f, )} satisfies

Mgl (F,0) = Apat(f©) = g (Fr0) = bpp g (f50) = 00
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and

o g )\[P‘Fl,q] (f? 90) = )‘[erl,q](fa SO) = p[p+1,q] (f? 90) < p[p7q] (AS7 90) .

Corollary 1.10. Let A4;(z) (j =0,1,...,k), F'(z), G satisfy all the hypotheses of Theo-
rem[1.9, and let) be a transcendental meromorphic function satisfyipg, , , (¥, ) < o.

Then, every transcendental meromorphic solutfowith A, (%,gp) < min{a, pi, o (f; )}

of equation(1.4) satisfiesr < N1 (f = ,0) = Aparg) (f = ¥, 90) = pparg (f — ¥,0) =
Pipirq (Fr0) < ppg (As, 0) -

2. AUXILIARY LEMMAS

In order to prove our theorems, we need the following proposition and lemmas. The Lebesgue
linear measure of a sé C [0, +o00) is m (E) = [dt, and the logarithmic measure of a set
E

F C [1,400)ism (F) = [%.The upper density of’ C [0, +o0) is given by
F

dens (E) = limsup M

r—-+4o00 T

and the upper logarithmic density of the $et_ [1, +oc0) is defined by

log dens (F') = lim supw.
00 log r
Proposition 2.1. ([1]) For all # C (1, +o0) the following statements hold:
(i) If my (H) = +o0, thenm (H) = +o0;
(i) If dens (H) > 0, thenm (H) = +o0;
(iii ) If log dens (H) > 0, thenm, (H) = +oc.

Lemma 2.2.([9]) Let f be a transcendental meromorphic function in the plane, and tet1
be a given constant. Then, there exist alsetC (1, +o00) that has a finite logarithmic measure,
and a constanB > 0 depending only on and (7, j) ((¢, j) positive integers with > j)) such
that for all z with |z| = r ¢ [0, 1] U E}, we have

[9C)| _ 5 (Tlar.f)
fO(2) r
Lemma 2.3. (Wiman-Valiron[7], [18]) Let f be a transcendental entire function, and idbte
a point with|z| = r at which|f (z)| = M (r, f). Then the estimation
f9G) _ (Vf ()
f(z) z

holds for all|z| outside a set; of r of finite logarithmic measure, wherg (r) is the central
index off.

~

(log® r)log T'(ar, f)>zj :

)j (I1+0(1)) (5 = 1isanintegey

Lemma 2.4. ([17]) Let p, ¢ be positive integers that satisfy > ¢ > 1. Let f be an entire
function of(p, ¢]-p order and letv; () be the central index of. Then

1 1
lim sup 2274 (1) %f(@“)):%q} (f.0).
r b

= , ), liminf
S g o (1) Pip.q (f5#)

r—+00 logq (2
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Lemma 2.5. ([3]) Let f andg be non-constant meromorphic functiong;of;] —¢ order. Then
we have

P (f +9,0) <max {py, i (f,0), g (9.9)}
and

Pipa (f9,0) <max{py, 1 (f.0), Py (9.0}
Furthermore, ifp, ;1 (f, ) > py,.q (9, %) , then we obtain

P (f+9,0) = ppg (F9,0) = ppg (i) -

Lemma 2.6. ([3]) Letp > ¢ > 1 be integers, and lef and g be non-constant meromorphic
functions withp, , (f, ) as [p, q] —¢ order andy, , (g, ») as lower[p, g] — order. Then
we have

L, (f + g5 ¢) < max {P[p,q} (fs0) s b g (95 )}
and

fipg (F9,0) <max {py, 0 (f,0) 1pq (9,9} -
Furthermore, ifuy, ; (9, ) > pp, 4 (f, ), then we obtain

Bipg (f +9,0) = b (F9:0) = p1 4 (9 9) -

By using Lemma 3.6 in [(J2]) and mathematical induction, we easily obtain the following
lemma.

Lemma 2.7. Let f(z) be a meromorphic function dp,q| — » order. Thenpy, ,(f,¢) =
P (f*,0), (keN).

Lemma 2.8. ([6]) Lety : [0,400) — R and : [0,+00) — R be monotone nondecreasing
functions such thap(r) < ¥ (r) forall » ¢ (E3 U [0, 1]) , whereFE; is a set of finite logarithmic
measure. Letr > 1 be a given constant. Then, there existsran= r;(v) > 0 such that
o(r) < (vr) forall r > ry.

Lemma 2.9. ([8]) Let f be a transcendental meromorphic function andilet N. Then

. ( %) — 0 (1og(rT (1. f)).

possibly outside a set, C (0, +o0) with a finite linear measure, and jf is of finite order of

growth, then
f)
m (r, —) =0 (logr).
f
Lemma 2.10.([3]) Let f1, f» be meromorphic functions @f, q|—¢ order satisfying, , (f1, ¢) >

log, plaar

Pip.q (f2; ), Whereyp only satisfies lim ) — 1 for somex; > 1. Then there exists a set

r—+oo 108 #(r)
E5 C [1,4+00) having infinite logarithmic measure such that for ake E5, we have

T(T’, f2) _

1m =
r—-+00 T(n fl)

Lemma 2.11.Let f (2) = flgj) be a meromorphic function, whetez), d (z) are entire func-

tions satisfyingu, , (9,0) = ppg (fr9) = 1 < ppg (fi9) = ppg(9:¢) < +oo and
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Al (ds0) = ppp g (dip) = Ap g (%,gp) < p. Then there exists a séf; C (1, +oo) of fi-
nite logarithmic measure such that for all = r ¢ ([0,1] U Eg) and|g (2) | = M (r,g), we

have .
I (N
f(Z) _( > ) (1+ (1))7 EN»

wherev, (r) denotes be the central index @f

Proof. We use the mathematical induction to obtain the following expression

(9) d J1 P Jn
(n) g
(2.1) +Z Z J41e-dn (E) X X (T) 5
Jj=0 (J1--Jn)

whereC};, ., are constants ang+ j; + 2j2 + - - - + nj, = n. Then

g L) A\ A\ 7
(22) T = 7 -+ Z— Z ijl~-~jn E X - X 7 .

i=0 9

By Lemmd 2.8, there exists a sBf C [1, +oo) with finite logarithmic measure such that for a
point z satisfying|z| = r ¢ E; and|g (z)| = M (r, g), we get
() J
g9 (2) ( <r>> .
2.3 = 1+o0(1 =1,2,...,n),
(2.3) o= () aremy g )

wherev, (r) is the central index of. By replacing(2.3) into (2.2]), we obtain

Q) (N
L —( ! ) (1+0(1))

ol v jin 7\ J1 (n)\ Jn
(2.4) ‘I‘Z (#) Z 0331 Jn (i) e X (dT))

(J1---dn

<.

From the fact thap;, ;, (d, ) = 3 < u, for any givens (0 < 2e < p — 3) and for sufficiently
larger, we have

T (r,d) < exp, { (ﬁ + g) log, ¢ (7’)} :

By Lemma[ 2.2 for some; (1 < oy < «) with « is a given constanthere exist a sef; C
(1,400) with m;(E;) < oo and a constanB > 0, such that for all: satisfying|z| = r ¢
[0,1] U E4, we have

‘d(;()(f) < BIT (our, )™
(2.5) < B [exp, { (8+5) log, ¢ (crr) }] .
By . ) and Remar.2rg+mloiq A 1 (1 < ay < a)), we obtain
] <2 o {0 D) B e}
(2.6) <exp, {(B+e)log, o (r)}", m=1,2,...n.
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By using Lemma 24 andy, ;, (9, ¢) = 11, (f, ) = p, we have

v (r) > exp, { (1 — &) log, ¢ (r)}
for sufficiently larger. Then, sincg; + 2j> + - - - + nj, = n — j, we get

(%m)j‘" (%)ﬁ X e X (?)jn . [epr{(u_g)long(r)}r_n

x [exp, { (B +¢)log, 0 (r)}]"

_ [rexpp {(6 +¢)log, ¢ (r)}] " o
exp,, { (1 — ) log, ¢ (1)}

asr — +oo, where|z| = r ¢ [0,1] U Es, Es = Ey U Ey and|g (z)| = M (r,g) . From (2.4))
and(2.7)), we obtain our assertiom

2.7)

Lemma 2.12.Let f (2) = % be a meromorphic function, whegez), d (z) are entire func-
tions satisfyinguy,  (9,%) = tipq (f,9) = 1 < ppg (f,9) = ppg(9,9) < +oo and
Al (ds0) = ppg (dy0) = Ap g (%,gp) < u. Then, there exists a sét; C (1, +o0) of fi-
nite logarithmic measure such that for all| = r ¢ ([0,1]U E7) and|g (z) | = M (r,g), we
have

f(2)

f(2)
Proof. By Lemmg 2.1]1, there exists a g&f of finite logarithmic measure such that the estima-
tion
%) _ (v’ oo
: = 2
(2.8) 8 . (1+0(1)) (s> 1isaninteger
is verified for all|z| = r ¢ [0,1] U Es and|g (2)| = M (r, g), wherev,, (r) is the central index

of g. Then again, from Lemnia 2.4, for any giverf0 < ¢ < 1), there exists® > 1 such that
forall > R, we have

(2.9) vy (r) > exp, { (1 —¢)log, (¢ (1))} -
If © = +o0, then we can replage—e by a large enough real numbgf. Let £; = [1, R|U E.
Thenm, (E;) < +oo. Finally, by (2.8) and(2.9), we get

<r*, (seN).

° 1 TS 2s
vy ()| T o] < (om, {(—)log, )]~
where|z| =r ¢ [0,1] U E7,r — +ooandlg (z)| = M (r,g) . n

' re) | _
7O ()

Lemma 2.13. Let f be an entire function such that, ; (f,») < +oc. Then, there exist entire
functionsh(z) and L(z) such that

f(2) = h(z)e"®,

Plp.d] (f, ¢) = max {p[p,q] (h, ) 1 Plp,g] (€L(Z)> 90)}

log, N (7‘, %)
h,p) = limsup ————*
Pl (h.2) r—-+00 logq @ (r)

and
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Moreover, for any givea > 0, we have

|h(2)] = exp {—exp, {(ppq (h©) +€) log, ¢ (1)} } (r ¢ Es),
whereEs C (1, +00) is a set ofr of finite linear measure.

Proof. By using Theorem 12.4 in[([10]) and Theorem 2.2 in {[1¥]xan be represented by
f(z) = h(z)e"®
with
P (f0) = max {py, g (h, ) ppq ("%, 0) }
On the other hand, by a similar proof of Proposition 6.1in ([9]), for any given0, we obtain
[h(2)] 2 exp {=exp, { (pq (B, @) + ) log, @ (1)} } (r ¢ Es),
whereEs C (1, +00) is a set ofr of finite linear measure W|th

log, N <r, %)
h,p) =limsup ——=~.
Plpd ( 90) r—+o0 Iqu ¥ (T‘)
|

Lemma 2.14. Suppose thaf is a meromorphic function such that, . (f,¢) < +oo. Then,
there exist entire functions, (z), ho(2) and L(z) such that

h L(z)
(2.10) Floy ="
and
(2.11) Pipg (0) = max {pp, o (h,0) s ppg (h2, @), pppg (€77, 0) } -

Moreover, for any givea > 0, we have
eXP{_epr{( Pl (J>#) +¢)log, v (M} <

(212) < epr+1 {(p[p,q} (f7 90) + 5) 1qu ¥ (T’)} (T ﬁé E9) )
whereE, C (1, +0o0) is a set ofr of finite linear measure.

Proof. By Hadamard factorization theoreryi,can be written ag'(z) = gg; whereg(z) and
d(z) are entire functions satisfying

“[p,q](gv(p) :H’[p,q}(f7 ) lu\p[pq(fa ) [pq](g790) < +00
and

1
Al (ds ) = g (ds ©) = Apg) (;a %0) < p-

By using Lemma 2.13, we can find entire functidris) and L(z) such that

g(2) = h(z)e"®

Pina) (9:9) = max {pp g (h,9) , ppp g (")}
Then, there exist entire functions$z), L(z) andd(z) such that
B h(z)el?)

f(z) = Ta)

and
Pipa) (Fr0) = max {p g (1, 9) Py (ds0) s g (6", 0) )

AJMAA Vol. 21(2024), No. 2, Art. 10, 23 pp. AIMAA
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Therefore(2.10) and (2.11)) hold. Setf (z) = hli)(ej)(z), whereh, (z), ho(z) are the canonical

products formed with the zeros and polesfakspectively. By using the definition §f, ] — ¢
order, for any giverr > 0 and sufficiently large, we have

(2.13) 1 ()] < expype { (P (b1 ) + 5 ) log, 0 (1)
g
(214) e (2)] < expye { (P (h2 ) + 5 ) Tog, 0 (1)}
Frommax {py, ; (h1,9) , P (ha, ©) s Py (€29, 0) } = pp g (f, @), We get
9
(2.15) 1 (2)] < exppin { (P () + 5 ) log, 0 (1)}
g
(2.16) lhy (2)| < expiq {(p[p,q} (fi ) + g) log, ¢ (T)} ,
€
(217) 4] < expyr { (Pppay (£20) + 5 ) ogy 0 (1)}

Through the use of Lemnja 2]13, there exists ai%et (1, +oo) of r of finite linear measure
such that for any given > 0, we have

[ (2)] = exp { = exp, { (b1 (b1, 0) + 5 ) log, 0 (1)} }

(2.18) > exp {—exp, { (P (f.0)+ ) log, 0 (N} | (r ¢ Ey).
|ha (2)] = exp {— exp, { (p[p,q] (ha, ) + %) log, ¢ (7’)}}
(2.19) > exp {— exp, { (p[p,q} (f o) + %) log, ¢ (7")}} ,(r & Ey).
By using((2.15)), (2.17) and(2.19), for any givene > 0 and sufficiently large ¢ Ey, we have
(2] = Talelle )
|ha(2)]

< XPp+1 {(p[nq] (f’ 90) + %) lqu ¥ (r)} CXPpt1 {(p[p,q] (f’ 90) + %) 1qu ¥ (T)}
- exp {_ €XPy {(p[pﬂ] (f’ 90) + %) 1qu ¥ (T)}}
(2.20) < expyiy { (g (fs0) +€)log, o (r)}.

On the other hand, we knowy, , , (L, ) = py, 4 (€5, ¢) < ppq (f, @) and]eFE)| > eI
From the definition ofp, q] — ¢ order, we get

LG < ML) < expy { (pporg (£:0) + 5 ) log, 0 ()]
< exp, { (p@,q] (fip) + g) log, ¢ (7“)} -

Then, for any giverr > 0 and sufficiently large’, we have

(2.21) ‘eL(Z)’ > e L@ > exp {— exp, { (p[p’q] (f, o)+ g) log, ¢ (T‘)}} )

By making use off2.16), (2.18) and({2.21) , for any givens > 0 and sufficiently large: ¢ Ey,

we can easily obtain

_ Im()le )
FE=
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_ e {— e, { (2 () + 5) om0 (1)}
EXPp+1 {(p[p,q} (f’ 90) + %) Iqu ¥ (7“)}

X exp {— exp,, { (p[m] (f, ) + %) log, ¢ (7")}}

= exp {—3 exp,, {(p[p,q] (f, SO) + %) loquO(T)}}
> exp{—exp, {(p[p,q} (f.¢) +¢)log, o (r)}}.
Finally Lemmd 2.14 is proved

Lemma 2.15. Under the assumptions of Theor 1.7 or The 1.9, we paye( A, ) =
0>o0.

Proof. By using the proof by contradiction, we assume that, (As,p) = § < o. From the
hypotheses of Theorerps [L.7[or|1.9, there exist &ssith Tog dens{|z| : z € G} > 0 and a
positive constané > 0 such that for sufficiently smadl > 0, we have

(2.22) |45 (2) | = exp, 1 {(0 =€) log, (¢ (1))},

asz € G, |z| = r — +o0. By the definition oflp, ¢| — ¢ order, for any given (0 < 2¢ < 0 — 9)
and sufficiently large, we have

(2.23) | A (2) | < exp,yy {0+¢)log, o (r)}.
SetG; = {|z| : = € G}, so by Propositioh 2|1, we know that; (G;) = co. Using (2.22) and
(2.23]) , we obtain for|z| = r € G1,r — +00

expyyq {(0 —&)log, (¢ (1)} < [As (2)| < expyyy {(0+ ) log, ¢ (1)}
which is a contradiction with the fact that< 2 < o — 4. Thenpy, , (A5, ) =0 > 0. 1

Lemma 2.16.Let f (z) = gg; be a meromorphic function, whetez), d (z) are entire func-
tions. If0 < ppq (dsp) < g (f,0), thenpy, (g, 0) = ppq (f,¢) and pp, 4 (9,9) =
Pip.q (f5 ) . Moreover, ifpy, . (f,p) = +o0, thenpy, 1 , (9, 0) = pypy1q (f,0)-

Proof. Case 1. p, , (f,») < +oc. Using the definition of thep, g- order, there exist an
increasing sequende, }, (r, — -+oc) and a positive integet, such that for all. > n, and

H (f’ )7 (d> )
for any givere € (0, Dovr Pow il ) (as0 < py g (d, @) < g (f0) < ppg (fr0)) , we
have

(2.24) T (rn,d) < exp, {(p[p,q] (d, ) + 5) log, ¢ (Tn)} ,
and

(2.25) T (rn, f) = expy, { (Pppg (f> ) =€) log, @ (ra) } -
Using the properties of the characteristic function, we get

(2.26) T(r,f) <T(r,g)+T(r,d)+O(1).

By substituting(2.24]) and ([2.25)) into (2.26)) , for all sufficiently largen, we obtain
CXPp {(p[p,q} () = 5) log, ¢ (rn)} < T(rn,9)

(2.27) + exp, { (Ppp.q (d, @) +€) log, @ (rn) } + O(1).

Sinces € (0, o)/ "0);[’ “”‘”(d’“a)) , then from(2.27) , we obtain

(1—o0(1)exp, {(ppq (fr ) —€)log, @ (1)} < T(ra,g) + O(1),
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for all sufficiently largen. Thenpy, . (f,¢) < ppq(9,%). On the other hand, we have

T<T7 g) < T(T7 f)"—T(T, d) and fromp[p,q] (da (,0) < p[p,q} (f7 90)’ we getp[p,q] <g7 30) < p[p,q] (fa (,0) :
Hencepy, 1 (9, ¢) = pp.q (f, ). Similarly, using the definition of lowep, g-¢ ordery, , (f, »)

andpy, 4 (9, ¢) , We can provew, ; (g, ¢) = i, 4 (f, ¢) -
Case 2.1y, (f,¢) = +oo. By T'(r, g) < T(r, f) + T(r,d) and Lemma 2]6we have

:u’[pq] (9,90) maX{M[pq] f @) p[pq 7<p)}:u[p,q] (f,(p)

Now, we provey, , (g, 9) = kg (f, ). We suppose that, , (9, ¢) < pp,q (f,¢) - Using
the definition of thep, q]- order and the lowep, g]- order, there exist an increasing sequence

{r.}, (rn, — 4+00) and a positive integet, such that for al. > n, and for any giverz > 0
T(ra,d) < exp, {(ppg (d.9) +¢)log ¢ (ra)}
T(ra,g9) < exp, { (Hpq (9:%) +€)log, @ (rn) } -

From the fact thal (r,,, f) < T'(r,, g9) + T(r,,d) + O(1), for all sufficiently largen, we obtain

T(rp, ) < exp, { (g (9, ) + ) log, ¢ (rn)}

+ exp, {(p[p g (d,p) + 5) log, ¢ (rn) } +O(1
thenuy, ; (f, ) < max {4 (9,9) , ppq (d }andthls |sacontrad|ct|on Henge i (g, %) =
Hip.q (f5 ) - Similarly, we can prove)[m (g,gp) P (fr9) -
Case 3.py, 4 (f, ) < +ocandpy, ,(f,¢) = +oo. We can prove Case 3 by using the similar
method we used to prove Cases 1 and 2.
As last, we will provepy, 1 ;i (9, ) = P14 (f, »). We assume that, , (f,¢) = +oo. Then,
there exists an increasing sequeficg}, (r, — +o0), such that

log, T (ry, f)
Plp+1,q) (f <P) = lim IPH
n—oo  log, ¢ ()

Usingpy, , (d, @) < py, 4 (f, ) and the definitions df, ¢]-¢ order and the lowep, g-¢ order,
we obtain

then
T (Tm d) = O<T (Tm f))
asn — +oo. Therefore, by using’(r,., f) < T(r,, g9)+ 1 (r,,d)+ O(1), there exists a positive
integerns, such that fom > n,
(1=0()T(rn, f) < T(rn,9) +O(1)
which impliespy,, g (f,¢) < py1,4 (9, ) - By using the same arguments as in the proof of
r,

<
Case 1, fromi'(r,g) < T'(r, f) + T'(r,d), we can find a positive integer > n3, such that for
n > ns3, we have

T(rn,9) < (L+0Q1))T(rn, f) < 2T (rn, ).
Then’p[erl,q] (ga 90) < p[erl,q] (f’ ()0) : Thusp[p+1,q] (f7 QD) = p[erl,q] (gv (P) -
Lemma2.17.LetA; (2) ( =0,1,....k), A; (2) (Z0), F (2) (# 0) be meromorphic functions
and letf (z) be a meromorphic solution @t .4)) of infinite p, ¢]-¢ order satisfying the following
condition

b = max {p[p+17q] (F7 ¢)7 p[p-‘rl,q] (AJJ 80) (j - 07 3oy } < p[p+1q (f gp)

Then _

/\[p+1,q}(f7 SO) = )‘[P+17q]<f7 QO) = p[p-&—l,q} (f7 90) :
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Proof. Assume thayf(z) is a meromorphic solution that has infinitép, ¢|- order. We
can rewrite(1.4) as

(2.28) b1

(Ak (2) e + Ag-1 (2) il ot +AL(2) Ly Ao (2)> -

foF f f f
By Lemmd 2.9 and2.28) , for |z| = r outside a seE, C (0, +oo) of finite linear measure, we
get

b (4) k
m (r, l) <m (r, %) + Zm (r, f—) + Zm (r,A;) + O (1)
f j=1 / J=0
k
1

(2.29) <m (r, F) + jzom (r,A;) 4+ O (logrT (1, f)).

From (1.4) , it is easy to see that if has a zero at, of orderm (m > k), and A, Ay, ..., A
(# 0) are all analytic at,, thenF” must have a zero at, of order at leastn — k. Hence

1 1 1 i
n (7’, ?) < kn (7’, ?) +n <7", f) + j;n (r,A;),
and

(2.30) N (r, %) < kN (r, %) +N <7~, %) + Zk:N (r, 4;).
=0

Combining([2.29) with (2.30) , for all sufficiently larger ¢ E,, we get

T f) =T <r, %) +0(1)

k
(2.31) <T(r,F)+ ZT (r,A;) + kN (7", %) + O (logrT (r, f)) .

j=0
For sufficiently large-, we have

(2.32) O (log 1T (1, f)) < %T(r, f).

From the definition of thép, ¢| — » order, for any given (O <2 < pprrq (fre) — b) and for
sufficiently larger, we have

(2.33) T (r,F) < expy; {(b+¢e)log, ¢ (r)},

(2.34) T (r,A;) <exp,q {(b+e)log,o(r)}, j=0,1,.. k.
By substituting(2.32) , (2.33)), (2.34) into (2.31)), for r ¢ E, sufficiently large, we obtain

(2.35) T(r, f) < 2kN (r, %) +2(k+2)exp,y {(b+e)log, ¢ (r)}.

By using Lemma 2]8 an(®.35)) , for any givenw > 1 there exists &, = () and sufficiently
larger > rq, such that

(2.36) T(r, f) < 2kN (VT‘, %) +2(k+2)exp,,, {(b+¢)log, ¢ (vr)}
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which gives

Pipi1g (F0) < Xpirg (f, ©)
and therefore

Plp+1,q] (fip) < X[;D—i-l,q] (fip) < Alp+1,q] (f, o).
Since by definition we havay, 1 (f, ) < Apr1.q (f,9) < ppi1g (f5 ©), then we obtain

A0 (f>©) = Apsra (f©) = pprag (Fr0) -
1

Lemma 2.18. Let G be a set of complex numbers satisfylngdens{|z| : z € G} > 0, and
let A; (=) j =0,1,...,k) with A; (2) # 0 and F' (z) # 0 be meromorphic functions with finite
[p,q]-¢ order. If there exist a positive constamt > 0 and an integers, 0 < s < k, such
that for sufficiently smalt > 0, we have|4, (z) | > exp,,, {(c —¢)log, ¢ (r)} asz € G,
|z| =7 — +o0 and

max {py, g (45, 0) (7 # 5), Py (Fr0)} <o,

then every transcendental meromorphlc solutfoof equatlon satisfies;, , (f, ¢) > o.

Proof. Suppose the contrary. Lgtbe a transcendental meromorphic solution of the equation

(1.4) such thatp, . (f,¢) < o. From(L.4) , we get

(2.37) As f(s) Z Jf(s).
J#s
From the hypotheses of Lemina 2.18, we have
max{ppq] ) (]7&5) pq 790)}<O-‘
Then by using the assumptlmm(f, ) < oand Lemm?, fron|2.37) we get

P2 = p[p,q] (A87 90)

<max{ppq] ) (]7&5) pq (F 90)7 p[p,q} (fvSO)}<U
Then, for any giver (0 < 2 < o — p,) and sufficiently large:, we have
(2.38) [A (2)] < expyiy {(P(pg) (As 0) +€)log, @ (1)} = exp,.y {(py + ) log, o (r)} .
By the hypotheses of Lemma 2|18, we have
(2.39) |As (2)] = expyyq { (0 — ) log, ¢ (1)}
holds for allz satisfying z € G, |z| = r — +00. SetGy = {|z] : z € G}, som; (G2) = .
By combining([2.38)) with (2.39)), for all z satisfying |z| = r € G5, r — 400, we obtain
exp,,; {(0 —e)log, ¢ (r)} < exp,yy {(py +€)log, o (r)},
hence
o—e<py+e

and this contradicts the fact thak 2c < o — p,. Consequently, any transcendental meromor-
phic solutionf of the equation(1.4) satisfiesp, ,; (f,») > o. 1
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Lemma 2.19. Let Ay, Ay, ..., Ay, #Z 0, F # 0 be finite[p, q]-¢» order meromorphic functions. If
f is a meromorphic solution of the equatigh4) with p, . (f,») = +ocoandpy, 1, (f, ) =
p < +oo, then

Al (F:©) = Apa (f,0) = ppg (f,9) = +00
and

X[p+1,q] (f,o) = )‘[p+1,q]<fv @) = p[p+l,q](f7 ©) = p.

Proof. Assume thatf is a meromorphic solution dfl.4) that has infinitep, ¢|-p order and
Pp+1.q (fs ) = p < +oo. The equatiorfL.4) can be rewritten as

(k) (k—1) /
(2.40) } ;<Ak( )ff +Ak_1(z)ff +---+A1(z)f7+A0(Z)>.

By Lemmd 2.9 and2.40), for |z| =  outside a sef, of a finite linear measure, we get

() n(ed) s S0 ) s

(2.41) <m (7’ l) Zm r, A;) + O (logrT'(r, f)) .

7=0

On the other, from(1.4)), if f has a zero at, of ordera (o« > k), and Ay, Ay, ..., A, are all
analytic atzg, thenF must have a zero at of order at leasty — k. Then

1 /1 1 .
n(r,?) < kn (r,?) +n<T,F> +Z%n(r,Aj)

J
and

1 /1 1 i
(2.42) N (r, ?) < kN (r, ?) + N <7", F) + ;N(r, Aj).

By (2.41) and(2.42), for all sufficiently larger ¢ E,4, we get

T(r,f):T( ]{)+0() T F)+ 3T (A

(2.43) + kN (r, l) + O (logrT(r, f)) .

f
From the hypotheses of Lemina 2.19, we have

p[p,q] (f? 90) > p[p,q} (F7 gp) 7p[p,q] (f? 90) > p[p,q} (Aja gp) ) j = 07 17 SEE) k.
Then by using Lemma 2.110, there exists a BetC [1,+o00) having infinite logarithmic
measure such that for alle £, we have
maX{T(r, F)7 T(r, A;)
T(r.f) T(r.f)

hence as € E5, r — +o0

,j:(),l,...,k}—>0 for r — 400,

(2.44) T(r,F)=o0(T(r,f)),T(r,A;)) =0(T(r,f)),7=0,1,..., k.
Sincef is transcendental, then for sufficiently largeve have
(2.45) O (logrT (r, f)) =o(T(r, f)).
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Substituting(2.44]) and(2.45)) into (2.43)) , for r € E5 \ E,, we get

T(r,f) <kN <r, %) +o(T(r, f)).

Hence
(2.46) (1—0(1)(T(r, f)) < kN (r, %) .

Then, by making use of Propositipn [1.1, Lemmag 2.8, Definitioh 1.1, Remalrk 1.aft
for any f with p, . (f,») = +ooandpy,.; ,(f, ) = p, we obtain
00 = Ppg) (f,0) < X[1041} (f,9), Plp+1,q) (f,p) < X[p+1,q] (f. o),

hence

p[p—i—l,q] (f7 QO) < )‘[p-l—l,q] (fu ()0) < >\[p+1,q] (fa ()0) .
On the other hand, we know that by definition, we have

X[PJFL(]] (f’ SO) < )‘[erl,q] (f7 SO) < Plp+1,q] (fa 90) )
and therefore

Pppr1.q (F0) = Aprrg (Fs ) = Apirg (fr0) = p.

|

Lemma 2.20. Assume that > 2 and Ay, A,,...,Ax # 0, F' are meromorphic functions.
Let p; = max {4 (4;,¢),([ =0,1,...k), p, 4 (F.¢)} < oo and letf be a meromor-

phic solution of infinitep, ¢]-¢ order of equation(1.4)) with Ay, (%, cp) < fppq (f5 ). Then,
Pipi1,q(fr0) < p3

Proof. Suppose thaf is a meromorphic solution of equatigh.4)) of infinite [p, ¢]-¢ order with
Alp.al G, (,0) < pyp.q (f5 ) - By using the Hadamard factorization theorefrgan be written as

f(z) = 45, whereg(=) andd(z) are entire functions such that

pg (9:0) = tpg (f0) = 1 < pp g (f2©) = pppg (9, 0) = +00
and

1
Apgl (d,0) = pp g (d,0) = Ap g <? 90) < L.

By Lemmad 2.1}, there exists a 98¢ C (1, +o0) of r of finite linear measure such that for all
|z| =r ¢ Ey and any giverr > 0, by using the hypotheses of Lem@ 20, we get

|Ak (Z) | > exXp {—Gpr {(p(p,q) (Ak7 ) +e logq }}

(2.47) > exp {— exp,, {(ps+e )log, ¢ (r)}}.
For any givere > 0 and sufficiently large, we have

145 (2) | < expyiy { (P (Aj,0) + ) log, o (r)}

(2.48) expp+1{ ps +¢€)log, ¢ } Jj= vk —1,
and

(2.49) |F ()] < exp,yy {(p(w) (F, @) +¢)log, ¢ (T)} <exp,y {(p3 +¢)log, ¥ (7“)} )
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From the definition of thép, ¢| — ¢ order, the lowefp, q] — ¢ order and(2.49)), for any given
€ (0 < 2e < pip g (fs0) = pppg (d, gp)) , and for all z satisfying|z| = r sufficiently large at
which |g(z)| = M(r, g), we obtain

_IF ()
9(2)

'F@ haz)

f(z)

_ Py {(pppg (d, ) +)log, o (r) } exp,.y {(p3 +¢)log, o (r) }
h expy1 { (kg (f, @) —2)log, @ (r)}

(250) < expp+1 {(p3 + 8) lqu ¥ ('I")} .
From Lemma 2.1]1, there exists a g&t C (1, +-c0) of finite logarithmic measure such that for
all|z| =r ¢ [0,1]U Eg and|g () | = M (r, g) , we have
(2.51) 16 _ (Vg(r))j(uo(l)) J=1..k
: ) . : s k.

By equation(1.4)), we have
F® (2) 1 ] F(z) k-l . FO) (2
e | < (‘AO( )’+‘f(2)‘+;’AJ( 1

Replacing(2.47) , (2.48)) , (2.50) and(2.51)) into (2.52)), we get

vy (1)

>)'

1
exp {— exp, {(ps +2)10g, 9 (N} }

[1+o(1)] <

k-1 i
({2+Z %(T) (1)|}expp+1{(p3+5)logqg0(r)}>
k—1 j
:{2—1—2 %(7“) (1)\}exp{2expp{(p3—i—s)logqu(r)}}.

Then

(2.53) lvg (M14+o0(1)| < (k+1)r|1+o0(1) exp{?expp{(pg—i-e log, ¢ }}

holds for allz satisfying|z| = r ¢ ([0,1] U Es U Ey) and|g (z) | = M (r,g) , 7 — +00. From

(2.53), we obtain
lo Vg (7
(2.54) lim sup M
r—-+o0 logq ¥ (7‘)

Using the fact that > 0 is arbitrary, by(2.54) and Lemma 2}4, we obtaj, ,, , (g %) < ps.
Sincep[p,q} (d7 90) < Hip,q) (f7 90) , SO by Lem6! we ge’{erl,q] (gv 90) = Plp+1,q] (f7 SO) :

Finally, py,.1 4 (f, ) < ps. Therefore, Lemma 2.20 is proved.

<,03+€.
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3. PROOF OF THEOREM [1.7

Proof. Let f # 0 be arational solution dfL.3)) . First, we will prove thayf must be a polynomial
with deg f < s — 1. If either f is a rational function, which has a polegtof degreem > 1,
or f is a polynomial withdeg f > s, thenf(*)(z) # 0. From equatior{1.3) we have

k

AR = =3 A4, 19 ).
2

By Lemmg 2.5 and Lemmja 2.[15, we obtain
o < p[p,q] (A87 90) = p[p,q] (Asf(S)v 90)

k
= Ppa |~ 2 AT ¢
7=0
j#s
< .
< gmax Ay (45 0)}
which is a contradiction. Thereforef must be a polynomial withleg f < s — 1. In the
second part, we assume thétis a transcendental meromorphic solution(df3) such that

Alp.d] G, (,0) < fip,q (f5 ) - Forany givere (0 < 2e < o — p) and sufficiently large, we have
|45 (2) | < expyyy { (g (Aj ) +€)log, @ (1)}

(3.1) <exp, i {(pte)log,o(r)}, j=0,1,..k j#s.
By making use of Lemma 2.12, there exists aBgetC (1, +o0) of finite logarithmic measure
such that for allz| = r ¢ ([0, 1] U E;) sufficiently large andg (z) | = M (r, g) , we have
f(z)
fO (2)
From Lemma 2 Rthere exist a sef; C (1, +oo) that has a finite logarithmic measure, and a
constantB > 0, such that for alk satisfying|z| = » ¢ ([0, 1] U E})
@) (2)
f(z)
From the hypotheses of Theorem |itfiere exist a se@ with logdens{|z| : z € G} > 0
(or by Propositiofi 2]y ({|2] : z € G}) = o0) and a positive constant > 0 such that for
sufficiently smalls > 0, we have
(3.4) |As (2) | = expyyy { (0 — ) log, ¢ (1)}
asz € G, |z| =r — +o0. By , We can write

(3.2) < r*, s> 1lisaninteger.

(3.3) <B[T@2r O, j=1,2,.k j+#s.

/
(3.5) 4, < ‘W

k .
f(J)
|A0‘+Z‘AJ| 11l
j=1 /
i

Substituting(3.1)) , (3.2), (3.3) and(3.4)) into (3.5)), for all z satisfying|z| = r € {|z]| : z €

G}\ ([0,1] U Ey U E7), r — 400, we obtain
eXPp11 {(J —¢) log, ¢ (7’)} < Bkr? eXPp1q {(p +¢) log, ¢ (r)} [T (2r, f)]kJrl )
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From0 < 2¢ < 0 — p, we obtain

(3.6) exp {(1—o(1))exp, {(c —¢e)log, ¢ (r)}} < Bkr* [T (2r, PP

Using Lemm4d 28 an@3.6)) , for any givenv > 1 there exists am; = r; (v) and sufficiently
larger > r1,r € {|z| : z € G} such that

exp {(1 —o(1))exp, {(a —¢)log, ¢ }} BE (vr) 28 (T (2vr, f)}k’dr1 )
By making use of Definitioh 1|1 and Rem1.2, we get
(3.7) Pipg (f+0) = Bppg (f, ) = 400, 0 < ppy g (Fr9) -
In view of Lemmd 2.1p, we have
max {ppq] (Aj, ) j=0,1,....k} = Pip.g (As, ) = 0 < +00.

Sincef is of infinite p, ¢]-¢ order meromorphic solution of equatifh3) satisfying\, 4 ( ,gp) <
fipq (f; ©), then by Lemma 2.2Gve obtain
(3.8) Pip1.q (Fs0) < ppg (Ass ) -
By and(3.8) , we getuy, , (f,¢) = ppq (f, ) = +oo and

0 < Ppr1g (F+0) < ppg (As, ) -

4. PROOF OF COROLLARY [1.8

Proof. Let ¢ be a transcendental meromorphic function such that , (¥, ) < o. Putting
n = f—1.ByLemmg2.}, we obtaip, 1, (1,¢) = p,114 (f,¢). By making use of Theorem
[1.7, we haver < pp,pq 4 (1,9) < pppg (As, ) - Replacing f = n + ¢ into (L.3), we get

Ag (2) n(k) + A1 (2) n(k_l) +o+ A ()0 +Ag(2)n

(4.1) — <Ak ()™ + Ay (2)* Y b Ay ()0 + Ay (2) ¢) —U(2).

Sincepy,. 1,4 (¥, ) < o, then according to Theore@.?, we can see tha not a solution
of eqaution(1.3)) , hence the right sidé&/(z) of equation(4.1)) is non-zero. Furthermore, by
Lemmg 2.5 and Lemnja 2.7, we get

pr—H,q] <U7 90) < max {pﬁp—i-l,q] ("lb, @) ) p[P-‘rl,q] (Aja ()0) (j = Oa 17 e k)} <o0.
As a consequence

max { P11, (U, 9) s Ppirg (A5 0) (G =0,1,...k)} <0 < ppyrg (0:0)-
From Lemma 2.17, we get

g g X[p-l-l,q] (f - % 90) = )‘[p+1,q} (f - ?/f, 90)

= Ppi1,qg (=0 0) = ppirg (F, ) < ppg (As, 0) -
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5. PROOF OF THEOREM

Proof. Let f # 0 be arational solution dfl.4)) . First, we will prove thayf must be a polynomial
with deg f < s — 1. If either f(z) is a rational function, which has a polezgtof degreen > 1,
or f is a polynomial withdeg f > s, thenf®)(z) # 0. By (1.4) we have

and by Lemma 2]5 and Lemra 215, we obtain

0 S Ppg (As, ) = Plpq] (Asf(s)a 90)

k
Plp.qgl F_ZAj (Z) f(])ﬂﬂ
i=0
s

< max {P[p,q] (Aj, ), Plp.q] (F, ('0)} ’

§=0,1,....k, j#s
which is a contradiction. Thereforef must be a polynomial withleg f < s — 1. Assum-
ing now thatf is a transcendental meromorphic solution(ofl]) that satisfies\, (%, go) <

g (f5 ). By Lemmag 2.1B, we know that satisfiespy, ; (f, ¢) = o. Sincel, 4 (%,gp) <
min{py, . (f; ), o}, then by Hadamard factorization theorem, there exist entire funcjions

andd (z) such thatf (z) = 38 and

Lip.a (9 P) = b (fs0) = 10 < pp g (9 0) = pp.g (f59),

1 .
p[PyQ](d7 90) = )\[pﬂ] (?7 90) < mln{ﬂ[p,q](f? 90)7 U}'

From the definition of the lowelp, ] — ¢ order, for any giverr > 0 and sufficiently larger,
we get

(5.1) g (2)] = M(r,9) > exp,y { (g (9:0) —)log, 0 (r)}.
Let
pr = max {p, 1 (A,0), 5 # 8 ppg (Fr0)} <o
Then, by(5.1)), for any givere satisfying
0 < 2e <min{o — py, fp, (9,9) = Ppg (d:9)},
and allz satisfying|z| = r sufficiently large at whichyg (2) | = M (r, g), we have
'F ()| _IF ()
fG) 1 lg(2)]
_ Py {(ppq (d,0) + ) log, @ (1)} exp, 1 {(py +€)log, ¢ (r) }
exp, 1 { (. (9, 0) — ) log, o (r)}

a2))

(5.2) <exp,yy {(p) +¢)log, o (r)}.
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Using the similar way as in the proof of Theorém]|1.7, for any givesatisfying0 < 2¢ <
min{o — py, iy 4 (9, 9) — Ppg (dsp)} and allz satlsfylng|z| =r € {z] : 2z € G} \
([0,1]UE, UE;), r — 400 atwhlch|g( )| = M(r,g), we have(3.2)) , (3.3) , (3.4) and

(5.3) |4 (2) ]| < exppyq { (o1 +¢) log, ¢ <r>} L J=0,1,0k j#s.
From (1.4)) , we have

f

1) | Ao

(5.4) Al < ]

)
J#S

Replacing(3.2) , (3.3)) , (3.4) , (5.2) and (5.3)) into (5.4) , for all = satisfying|z| = r € {|z| :

ze€ GH\ ([0,1]UE, U E;), r — 400, at which|g (z) | = M (r, g) and any giver satisfying

0 < 2e <min{o — py, pyp g (9,9) = Ppg (d, )},
we obtain

exp, 1 { (0 —e)log, ¢ (r)} < (exp,,, {(p1 +&)log, ¢ (r)}

* Z exp,yq {(py +€)log, o(r)} B[T (2r, £
j=T s

+ eXPpiq {(Pl +¢)log, ¢ (1) })
(5.5) < B(k+ 1) [T (2r, /)" expyy {(p1 +2)log, o ()} -
The fact tha) < 2¢ < 0 — p; gives
(5.6) exp {(1 —o(l))exp, (0 —¢)log, ¢ (r)} < B(k+1)r* T (2, f)]kJrl .

Using Lemm4d 28 andb.6)) , for any givenv > 1 there exists am, = r, (v) and sufficiently
larger > rq, 7 € {|2| : z € G} such that

(5.7) exp {(1 —o(1))exp, {(0 —¢)log, @ }} B(k+1)(vr) 28 [T (2vr, f)]]€+1 )
By making use of Definitioh 1]1 and Remark]1.2, we get
(58) p[p,q](f? 90) = lu[p,q] (fa 90) = +00, 0 < p[p+1,q} (fv ‘P) :

According to Lemma 2.15 and the hypotheses of Thegrem 1.9, we get

max {ppq] Aj790) (] = 07 1a ) k)7 p[p,q} (Fa 90)} = p[p,q} (Asa 90) =0 < 400,
Using Lemma 2.20 and the fact thais a meromorphic solution of equatidi.4)) of [p, ¢]-¢
order with\p, 4 %,gp) < g (f; ), we obtain

(5:9)  pppr1g (i) Smax{py g (Aj,0) (=01, k), ppg (F0)} = pppq (As, 0)
From Lemma 2.19 and sinde # 0, we get

(5.10) X[p,q] (f,) = Alp, q](f7 ©) = Hip.ql (f,0) = P[p,q}(ﬁ ¢) = +00
and
(5.11) o< X[p+17q] (fa %0) = )‘[p+1,q](fa 90) = p[p+1,q](f7 90)'

Then from(5.9) , (5.10) and(5.11)) , we conclude that
Apaal (F,0) = Apat(f>©) = g (f10) = pppgg (f50) = +00
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and
g < )‘[p+17q] (f? @) = )‘[p-l-l,q](f? QO) = p[p+1,q](f7 90) < p[p,q] (AS7 90> .

6. PROOF OF COROLLARY [1.10

Let ¢) be a transcendental meromorphic function such ghat , (¢, ») < o. Puttingy =
f - 77Z)7 thenp[p—s—l,q} (197 gp) = p[p+l,q} (f7 90) ) and by Theore 9, we ha\’ﬂe< p[p+1,q} (197 gp) <
Pip.q (As; ) - Replacing f = 4+ into (1.4), we get

A (2)0W + Ay (2) 9% D 4o A (2) 9+ Ag (2) 9

6.1) =F(z)— (Ak ()™ + Ay ()% b Ay (2) 0+ Ay (2) ¢> —V (2).

Sincepy,,1 4 (¥, ) < o, then according to Theor.@,is not a solution of equatiofi..4))
hence the right sidé& (z) of equation(6.1]) is non zero. Furthermore, by Lemrpa|2.5 and
Lemmd 2.V, we obtain

p[p—i—l,q] (‘/7 gp) < max {p[p-i-l,q] (M QO) ) p[p—l—l,q] (Aj7 gp) (j = 07 17 EEE) k)} <a.
As a consequence

max {p[P-FL(ﬂ (V’ (‘0) 1 Plp+1,q) (Aj7 (10) (j =0,1,.., k)} <o < Plp+1,q] (19, 90) .
Thus, by Lemma 2.17, we get
7 < Aprig (f = 9,0) = Aprrg (f — ¥, )
= p[p+1,q} (f - wv 90) = p[p+1,q] (f7 90) < p[p,q] (AS7 SO) .
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