

STUDY OF COMPLEX OSCILLATION OF SOLUTIONS TO HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS OF FINITE [P,Q]-ϕ **ORDER**

MANSOURIA SAIDANI, FATIHA MEKIA BENGUETTAT AND BENHARRAT BELAÏDI

Received 26 January, 2024; accepted 14 July, 2024; published 10 September, 2024.

DEPARTMENT OF MATHEMATICS, LABORATORY OF PURE AND APPLIED MATHEMATICS, UNIVERSITY OF MOSTAGANEM (UMAB), B. P. 227 MOSTAGANEM, ALGERIA. [saidaniman@yahoo.fr](mailto: Author <saidaniman@yahoo.fr>) [benguettat.fatihamekkia@gmail.com](mailto: Author <benguettat.fatihamekkia@gmail.com>) [benharrat.belaidi@univ-mosta.dz](mailto: Author <benharrat.belaidi@univ-mosta.dz>)

ABSTRACT. In the present paper, we investigate the growth of meromorphic solutions to higher order homogeneous and nonhomogeneous linear differential equations with meromorphic coefficients of finite $[p, q]$ - φ order. We obtain some results about the $[p, q]$ - φ order and the $[p, q]$ - φ convergence exponent of solutions for such equations.

Key words and phrases: Linear differential equation; Meromorphic function; $[p, q] - \varphi$ order; $[p, q] - \varphi$ exponent of convergence of zeros.

2010 *[Mathematics Subject Classification.](https://www.ams.org/msc/)* Primary 34M10, Secondary 30D35.

ISSN (electronic): 1449-5910

c 2024 Austral Internet Publishing. All rights reserved.

1. **INTRODUCTION AND MAIN RESULTS**

Throughout this article, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory of meromorphic functions (see [\[4\]](#page-21-0), [\[8\]](#page-22-0)). To define the iterated order and the $[p, q]$ order of meromorphic functions in the complex plane, we use the same notations as in $($ see [\[1\]](#page-21-1), [\[12\]](#page-22-1), [\[13\]](#page-22-2), [\[14\]](#page-22-3), [\[16\]](#page-22-4), [\[19\]](#page-22-5)).

As far as we know, in [\[17\]](#page-22-6) Shen, Tu and Xu firstly introduced the concept of $[p, q] - \varphi$ order of meromorphic functions in the complex plane to investigate the growth and zeros of second order linear differential equations.

Definition 1.1. ([\[17\]](#page-22-6)) Let $\varphi : [0, +\infty) \to (0, +\infty)$ be a non-decreasing unbounded function, and p, q be positive integers that satisfy $p \ge q \ge 1$. Then the $[p, q] - \varphi$ order and the lower $[p, q] - \varphi$ order of a meromorphic function f are respectively defined by

$$
\rho_{[p,q]}(f,\varphi) = \limsup_{r \to +\infty} \frac{\log_p T(r,f)}{\log_q \varphi(r)},
$$

$$
\mu_{[p,q]}(f,\varphi) = \liminf_{r \to +\infty} \frac{\log_p T(r,f)}{\log_q \varphi(r)}.
$$

Definition 1.2. ([\[17\]](#page-22-6)) Let f be a meromorphic function. Then, the $[p, q] - \varphi$ exponent of convergence of zero-sequence (distinct zero-sequence) of f are respectively defined by

$$
\lambda_{[p,q]}(f,\varphi) = \limsup_{r \to +\infty} \frac{\log_p n\left(r, \frac{1}{f}\right)}{\log_q \varphi\left(r\right)}
$$

and

$$
\overline{\lambda}_{[p,q]}(f,\varphi) = \limsup_{r \to +\infty} \frac{\log_p \overline{n}\left(r, \frac{1}{f}\right)}{\log_q \varphi\left(r\right)}.
$$

Remark 1.1. If $\varphi(r) = r$ in the Definitions [1.1-](#page-1-0)[1.2](#page-1-1), then we will get the standard definitions of the $[p, q]$ -order and the $[p, q]$ -exponent of convergence.

Remark 1.2. ([\[17\]](#page-22-6)) Throughout this paper, we assume that $\varphi : [0, +\infty) \to (0, +\infty)$ is a nondecreasing unbounded function and always satisfies the following two conditions:

(i) $\lim_{r \to +\infty} \frac{\log_{p+1} r}{\log_q \varphi(r)} = 0;$ (iii) $\lim_{r \to +\infty} \frac{\log_q \varphi(\alpha_1 r)}{\log_q \varphi(r)} = 1$ for some $\alpha_1 > 1$.

Proposition 1.1. ([\[3\]](#page-21-2)) Suppose that $\varphi(r)$ satisfies the condition $(i) - (ii)$ in Remark [1.2](#page-1-2) : *a) If* f *is a meromorphic function, then*

$$
\lambda_{[p,q]}(f,\varphi) = \limsup_{r \to +\infty} \frac{\log_p n\left(r, \frac{1}{f}\right)}{\log_q \varphi(r)} = \limsup_{r \to +\infty} \frac{\log_p N\left(r, \frac{1}{f}\right)}{\log_q \varphi(r)},
$$

$$
\overline{\lambda}_{[p,q]}(f,\varphi) = \limsup_{r \to +\infty} \frac{\log_p \overline{n}\left(r, \frac{1}{f}\right)}{\log_q \varphi(r)} = \limsup_{r \to +\infty} \frac{\log_p \overline{N}\left(r, \frac{1}{f}\right)}{\log_q \varphi(r)}.
$$

b) If f *is an entire function, then*

$$
\rho_{[p,q]}(f,\varphi) = \limsup_{r \to +\infty} \frac{\log_p T(r,f)}{\log_q \varphi(r)} = \limsup_{r \to +\infty} \frac{\log_{p+1} M(r,f)}{\log_q \varphi(r)},
$$

$$
\mu_{[p,q]}(f,\varphi) = \liminf_{r \to +\infty} \frac{\log_p T(r,f)}{\log_q \varphi(r)} = \liminf_{r \to +\infty} \frac{\log_{p+1} M(r,f)}{\log_q \varphi(r)}
$$

In [\[15\]](#page-22-7), Liu, Tu and Zhang studied the growth and zeros of solutions of equations

(1.1)
$$
f^{(k)} + \sum_{j=1}^{k-1} A_j f^{(j)} + A_0 f = 0
$$

and

(1.2)
$$
f^{(k)} + \sum_{j=1}^{k-1} A_j f^{(j)} + A_0 f = F,
$$

where $A_0(z) \not\equiv 0, A_1(z), ..., A_{k-1}(z)$ and $F(z) \not\equiv 0$ are entire functions of $[p,q] - \varphi$ order and they obtained the following results.

Theorem 1.2. *(*[\[15\]](#page-22-7)*)* Let $A_i(z)$ $(j = 0, 1, ..., k - 1)$ be entire functions satisfying

$$
\max \left\{ \rho_{[p,q]} \left(A_j, \varphi \right), \ j = 1, 2, ..., k - 1 \right\} < \rho_{[p,q]} \left(A_0, \varphi \right) < \infty.
$$

Then every solution $f \not\equiv 0$ *of equation* (1.1) (1.1) *satisfies* $\rho_{[p+1,q]}(f, \varphi) = \rho_{[p,q]}(A_0, \varphi)$.

In the same paper they obtained the following results in the case of the non-homogeneous equation (1.2) (1.2) .

Theorem 1.3. *(*[\[15\]](#page-22-7)*)* Let $A_i(z)$ ($j = 0, 1, ..., k - 1$) and $F(z) \neq 0$ be entire functions, and let f(z) *be a solution of* (1.[2\)](#page-2-1) *satisfying*

$$
\max \left\{ \rho_{[p,q]} \left(A_j, \varphi \right), \rho_{[p,q]} \left(F, \varphi \right), \ j = 0, 1, ..., k - 1 \right\} < \rho_{[p,q]} \left(f, \varphi \right).
$$

Then $\lambda_{[p,q]}(f,\varphi) = \lambda_{[p,q]}(f,\varphi) = \rho_{[p,q]}(f,\varphi)$.

Theorem 1.4. *(*[\[15\]](#page-22-7)*)* Let $A_j(z)$ $(j = 0, 1, ..., k - 1)$ and $F(z) \neq 0$ be entire functions satisfy*ing*

$$
\max \left\{ \rho_{[p,q]}\left(A_j, \varphi \right), \rho_{[p+1,q]}\left(F, \varphi \right), \ j = 1, 2, ..., k-1 \right\} < \rho_{[p,q]}\left(A_0, \varphi \right).
$$

Then every solution f of equation (1.[2\)](#page-2-1) *satisfies* $\lambda_{[p+1,q]}(f,\varphi) = \lambda_{[p+1,q]}(f,\varphi) = \rho_{[p+1,q]}(f,\varphi)$ $\rho_{[p,q]}(A_0,\varphi)$, with at most one exceptional solution f_0 satisfying $\rho_{[p+1,q]}(f_0,\varphi)<\rho_{[p,q]}(A_0,\varphi)$.

After this, Saidani and Belaïdi studied some properties of solutions of the higher order linear differential equations

(1.3)
$$
A_k(z) f^{(k)} + A_{k-1}(z) f^{(k-1)} + \cdots + A_1(z) f' + A_0(z) f = 0,
$$

(1.4)
$$
A_k(z) f^{(k)} + A_{k-1}(z) f^{(k-1)} + \cdots + A_1(z) f' + A_0(z) f = F(z),
$$

and they obtained the following results.

Theorem 1.5. ([\[16\]](#page-22-4)*)* Let $H \subset (1, +\infty)$ be a set with a positive upper logarithmic density (or $m_l(H) = +\infty$) and let $A_i(z)$ ($j = 0, 1, ..., k$) with $A_k(z)$ ($\not\equiv 0$) be meromorphic functions *with finite* $[p, q]$ -order. If there exist a positive constant $\sigma > 0$ and an integer $s, 0 \le s \le k$, such *that for sufficiently small* $\varepsilon > 0$, we have $|A_s(z)| \geqslant \exp_{p+1} \left\{ (\sigma - \varepsilon) \log_q r \right\}$ as $|z| = r \in H$, $r \to +\infty$ and $\rho = \max\left\{\rho_{[p,q]}\left(A_j\right) \, (j \neq s)\right\} < \sigma$, then every non-transcendental meromor*phic solution* $f \not\equiv 0$ *of* (1.3) (1.3) *is a polynomial with* deg $f \le s - 1$ *and every transcendental meromorphic solution* f *of* [\(1](#page-2-2).3) *with* $\lambda_{[p,q]}$ $\left(\frac{1}{f}\right)$ $\left(\frac{1}{f}\right)<\mu_{[p,q]}\left(f\right)$ satisfies

$$
\rho_{[p,q]}(f) = \mu_{[p,q]}(f) = +\infty, \ \sigma \leqslant \rho_{[p+1,q]}(f) \leqslant \rho_{[p,q]}(A_s).
$$

.

Theorem 1.6. *(*[\[16\]](#page-22-4)*)* Let $H \subset (1, +\infty)$ be a set with a positive upper logarithmic density (or $m_l(H) = +\infty$, and let $A_i(z)$ ($j = 0, 1, ..., k$) and $F(z) \neq 0$ be meromorphic functions with *finite* $[p, q]$ -order. If there exist a positive constant $\sigma > 0$ and an integer $s, 0 \leq s \leq k$, such *that for sufficiently small* $\varepsilon > 0$, *we have* $|A_s(z)| \ge \exp_{p+1} \{ (\sigma - \varepsilon) \log_q r \}$ *as* $|z| = r \in$ $H, r \to +\infty$ and $\max \{ \rho_{[p,q]}(A_j) \ (j \neq s), \ \rho_{[p,q]}(F) \} < \sigma$, then every non-transcendental *meromorphic solution* f *of* (1.[4\)](#page-2-3) *is a polynomial with* deg f ≤ s − 1 *and every transcendental meromorphic solution* f *of* [\(1](#page-2-3).4) *with* $\lambda_{[p,q]}$ $\left(\frac{1}{f}\right)$ $\left(\frac{1}{f}\right)<\min\left\{ \sigma,\mu_{[p,q]}(f)\right\}$ satisfies

$$
\overline{\lambda}_{[p,q]}(f) = \lambda_{[p,q]}(f) = \rho_{[p,q]}(f) = \mu_{[p,q]}(f) = +\infty
$$

and

$$
\sigma \leqslant \overline{\lambda}_{[p+1,q]}(f) = \lambda_{[p+1,q]}(f) = \rho_{[p+1,q]}(f) \leqslant \rho_{[p,q]}(A_s).
$$

A natural question which arises: How about the growth of meromorphic solutions of equa-tions [\(1](#page-2-3).3) and (1.4) with meromorphic coefficients of finite $[p, q] - \varphi$ order when the dominant coefficient is an arbitrary coefficient A_s ?

The main purpose of this paper is to give an answer to the above question. We now present our main results, so for the homogeneous linear differential equation (1.3) (1.3) , we obtain the following results.

Theorem 1.7. Let G be a set of complex numbers satisfying $\log dens\{|z| : z \in G\} > 0$, p, q be integers such that $p \ge q \ge 1$ and let $A_i(z)$ $(j = 0, 1, ..., k)$ such that $A_k \neq 0$ be *meromorphic functions with finite* $[p, q] - \varphi$ *order. Suppose there exist a positive constant* $\sigma > 0$ and an integer $s, 0 \leq s \leq k$ such that for sufficiently small $\varepsilon > 0$, we have $|A_s(z)| \geq$ $\exp_{p+1}\left\{(\sigma-\varepsilon)\log_q\varphi\left(r\right)\right\}$ as $z\in G, |z|=r\to+\infty$ and $\rho=\max\left\{\rho_{[p,q]}(A_j,\varphi)\,\,(j\neq s)\right\}<\infty$ σ. Then every non-transcendental meromorphic solution $f \not\equiv 0$ of (1.3) (1.3) is a polynomial with $\deg f \leqslant s - 1$ *and every transcendental meromorphic solution* f of (1.[3\)](#page-2-2) with $\lambda_{[p,q]}$ $\Big(\frac{1}{f}\Big)$ $\frac{1}{f},\varphi\Big)<$ $\mu_{[p,q]}\left(f,\varphi\right)$ satisfies

$$
\rho_{[p,q]}(f,\varphi)=\mu_{[p,q]}\left(f,\varphi\right)=+\infty, \sigma\leqslant\rho_{[p+1,q]}\left(f,\varphi\right)\leqslant\rho_{[p,q]}\left(A_s,\varphi\right).
$$

Corollary 1.8. *Under the hypotheses of Theorem [1.7,](#page-3-0) suppose further that* ψ *is a transcendental* meromorphic function satisfying $\rho_{[p+1,q]}$ $(\psi, \varphi) < \sigma$. Then, every transcendental meromorphic *solution* f *of equation* [\(1](#page-2-2).3) *with* $\lambda_{[p,q]}$ $\left(\frac{1}{f}\right)$ $\left(\frac{1}{f},\varphi \right)<\mu_{[p,q]}\left(f,\varphi \right)$ satisfies

$$
\sigma \leqslant \overline{\lambda}_{[p+1,q]}(f - \psi, \varphi) = \lambda_{[p+1,q]}(f - \psi, \varphi)
$$

= $\rho_{[p+1,q]}(f - \psi, \varphi) = \rho_{[p+1,q]}(f, \varphi) \leq \rho_{[p,q]}(A_s, \varphi).$

Considering nonhomogeneous linear differential equation (1.4) (1.4) , we obtain the following results.

Theorem 1.9. Let G be a set of complex numbers satisfying $\overline{\log dens}\{|z| : z \in G\} > 0$, *and let* $A_i(z)$ ($j = 0, 1, ..., k$) *and* $F(z) \neq 0$ *be meromorphic functions with finite* [p, q] $-\varphi$ *order.* If there exist a positive constant $\sigma > 0$ and an integer s, $0 \le s \le k$, such that for $sufficiently small \varepsilon > 0$, we have $|A_s(z)| \geqslant \exp_{p+1}\left\{(\sigma-\varepsilon)\log_q\varphi\left(r\right)\right\}$ as $z \in G, |z| = r \to \infty$ $+\infty$ and $\rho_1 = \max \{ \rho_{[p,q]}(A_j, \varphi) \, (j \neq s), \, \rho_{[p,q]}(F, \varphi) \} < \sigma$, then every non-transcendental *meromorphic solution* \int *of* (1.[4\)](#page-2-3) *is a polynomial with* deg $f \le s - 1$ *and every transcendental meromorphic solution* f *of* (1.4) (1.4) *with* $\lambda_{[p,q]}$ $\left(\frac{1}{f}\right)$ $\left\{ \frac{1}{f},\varphi\right\} <\min\left\{ \sigma,\mu_{\left[p,q\right] }(f,\varphi)\right\}$ satisfies

$$
\overline{\lambda}_{[p,q]}(f,\varphi) = \lambda_{[p,q]}(f,\varphi) = \rho_{[p,q]}(f,\varphi) = \mu_{[p,q]}(f,\varphi) = +\infty
$$

and

$$
\sigma \leq \overline{\lambda}_{[p+1,q]}(f,\varphi) = \lambda_{[p+1,q]}(f,\varphi) = \rho_{[p+1,q]}(f,\varphi) \leq \rho_{[p,q]}(A_s,\varphi).
$$

Corollary 1.10. Let $A_i(z)$ $(j = 0, 1, ..., k)$, $F(z)$, G *satisfy all the hypotheses of Theorem* [1.9,](#page-3-1) and let ψ be a transcendental meromorphic function satisfying $\rho_{[p+1,q]}(\psi,\varphi) < \sigma$. *Then, every transcendental meromorphic solution* f with $\lambda_{[p,q]}$ $\left(\frac{1}{f}\right)$ $\left(\frac{1}{f},\varphi \right) \, < \, \min\{\sigma,\mu_{[p,q]}\left(f,\varphi\right)\}$ *of equation* (1.[4\)](#page-2-3) *satisfies* $\sigma \leq \overline{\lambda}_{[p+1,q]}(f - \psi, \varphi) = \lambda_{[p+1,q]}(f - \psi, \varphi) = \rho_{[p+1,q]}(f - \psi, \varphi)$ $\rho_{[p+1,q]}(f,\varphi)\leqslant\rho_{[p,q]}(A_s,\varphi).$

2. **AUXILIARY LEMMAS**

In order to prove our theorems, we need the following proposition and lemmas. The Lebesgue linear measure of a set $E \subset [0, +\infty)$ is $m(E) = \int dt$, and the logarithmic measure of a set E $F \subset [1, +\infty)$ is $m_l(F) = \int$ F dt $\frac{t}{t}$. The upper density of $E \subset [0, +\infty)$ is given by

$$
\overline{dens}\left(E\right) = \limsup_{r \to +\infty} \frac{m\left(E \cap [0, r]\right)}{r}
$$

and the upper logarithmic density of the set $F \subset [1, +\infty)$ is defined by

$$
\overline{\log dens}\left(F\right) = \limsup_{r \to +\infty} \frac{m_l\left(F \cap [1, r]\right)}{\log r}.
$$

Proposition 2.1. *(*[\[1\]](#page-21-1)*)* For all $H \subset (1, +\infty)$ the following statements hold: (*i*) If $m_l(H) = +\infty$, then $m(H) = +\infty$; (iii) *If* \overline{dens} $(H) > 0$, *then* $m(H) = +\infty$; (iii) *If* $\overline{\log dens}(H) > 0$, *then* $m_l(H) = +\infty$.

Lemma 2.2. ([\[5\]](#page-21-3)) Let f be a transcendental meromorphic function in the plane, and let $\alpha > 1$ *be a given constant. Then, there exist a set* $E_1 \subset (1, +\infty)$ *that has a finite logarithmic measure, and a constant* $B > 0$ *depending only on* α *and* (i, j) $((i, j)$ *positive integers with* $i > j$) *such that for all* z *with* $|z| = r \notin [0, 1] \cup E_1$, *we have*

$$
\left| \frac{f^{(i)}(z)}{f^{(j)}(z)} \right| \leq B \left(\frac{T(\alpha r, f)}{r} (\log^{\alpha} r) \log T(\alpha r, f) \right)^{i - j}
$$

.

Lemma 2.3. *(Wiman-Valiron,* [\[7\]](#page-21-4)*,* [\[18\]](#page-22-8)*) Let* f *be a transcendental entire function, and let* z *be a point with* $|z| = r$ *at which* $|f(z)| = M(r, f)$ *. Then the estimation*

$$
\frac{f^{(j)}(z)}{f(z)} = \left(\frac{\nu_f(r)}{z}\right)^j (1+o(1)) \quad (j \geqslant 1 \text{ is an integer})
$$

holds for all |z| *outside a set* E_2 *of* r *of finite logarithmic measure, where* $v_f(r)$ *is the central index of* f.

Lemma 2.4. ([\[17\]](#page-22-6)) Let p, q be positive integers that satisfy $p \ge q \ge 1$. Let f be an entire *function of* $[p, q]$ - φ *order and let* $\nu_f(r)$ *be the central index of* f. *Then*

$$
\limsup_{r \to +\infty} \frac{\log_p \nu_f(r)}{\log_q \varphi(r)} = \rho_{[p,q]}(f,\varphi), \ \liminf_{r \to +\infty} \frac{\log_p \nu_f(r)}{\log_q \varphi(r)} = \mu_{[p,q]}(f,\varphi).
$$

Lemma 2.5. ([\[3\]](#page-21-2)*) Let* f *and* g *be non-constant meromorphic functions of* $[p, q] - \varphi$ *order. Then we have*

$$
\rho_{[p,q]}\left(f+g,\varphi\right)\leqslant\max\left\{ \rho_{[p,q]}\left(f,\varphi\right),\rho_{[p,q]}\left(g,\varphi\right)\right\}
$$

and

$$
\rho_{[p,q]}(fg,\varphi)\leqslant \max\left\{\rho_{[p,q]}(f,\varphi),\rho_{[p,q]}(g,\varphi)\right\}.
$$

 $\emph{Furthermore, if } \rho_{[p,q]}(f, \varphi) > \rho_{[p,q]}(g, \varphi)$, then we obtain

$$
\rho_{[p,q]}\left(f+g,\varphi\right)=\rho_{[p,q]}\left(fg,\varphi\right)=\rho_{[p,q]}\left(f,\varphi\right).
$$

Lemma 2.6. ([\[3\]](#page-21-2)) Let $p \geq q \geq 1$ be integers, and let f and g be non-constant meromorphic *functions with* $\rho_{[p,q]}(f,\varphi)$ *as* $[p,q] - \varphi$ *order and* $\mu_{(p,q)}(g,\varphi)$ *as lower* $[p,q] - \varphi$ *order. Then we have*

$$
\mu_{[p,q]}\left(f+g,\varphi\right)\leqslant\max\left\{ \rho_{[p,q]}\left(f,\varphi\right),\mu_{[p,q]}\left(g,\varphi\right)\right\}
$$

and

$$
\mu_{[p,q]}(fg,\varphi)\leqslant \max\left\{\rho_{[p,q]}(f,\varphi),\mu_{[p,q]}(g,\varphi)\right\}.
$$

Furthermore, if $\mu_{[p,q]}(g,\varphi) > \rho_{[p,q]}(f,\varphi)$ *, then we obtain*

$$
\mu_{[p,q]}(f+g,\varphi) = \mu_{[p,q]}(fg,\varphi) = \mu_{[p,q]}(g,\varphi).
$$

By using Lemma 3.6 in ([\[2\]](#page-21-5)) and mathematical induction, we easily obtain the following lemma.

Lemma 2.7. Let $f(z)$ be a meromorphic function of $[p,q] - \varphi$ order. Then $\rho_{[p,q]}(f,\varphi) =$ $\rho_{[p,q]}(f^{(k)},\varphi), \quad (k \in \mathbb{N}).$

Lemma 2.8. ([\[6\]](#page-21-6)) Let $\varphi : [0, +\infty) \to \mathbb{R}$ and $\psi : [0, +\infty) \to \mathbb{R}$ be monotone nondecreasing *functions such that* $\varphi(r) \leq \psi(r)$ *for all* $r \notin (E_3 \cup [0, 1])$, *where* E_3 *is a set of finite logarithmic measure. Let* $\nu > 1$ *be a given constant. Then, there exists an* $r_1 = r_1(\nu) > 0$ *such that* $\varphi(r) \leq \psi(\nu r)$ *for all* $r > r_1$ *.*

Lemma 2.9. ([\[8\]](#page-22-0)*)* Let f be a transcendental meromorphic function and let $k \in \mathbb{N}$. Then

$$
m\left(r, \frac{f^{(k)}}{f}\right) = O\left(\log(rT\left(r, f\right))\right),\,
$$

possibly outside a set $E_4 \subset (0, +\infty)$ *with a finite linear measure, and if f is of finite order of growth, then*

$$
m\left(r, \frac{f^{(k)}}{f}\right) = O\left(\log r\right).
$$

Lemma 2.10. ([\[3\]](#page-21-2)) Let f_1, f_2 be meromorphic functions of $[p,q]-\varphi$ order satisfying $\rho_{[p,q]}(f_1,\varphi)$ > $\rho_{[p,q]}\,(f_2,\varphi)$, where φ only satisfies $\lim_{r\to+\infty}\frac{\log_q\varphi(\alpha_1r)}{\log_q\varphi(r)}=1$ for some $\alpha_1>1$. Then there exists a set $E_5 \subset [1, +\infty)$ *having infinite logarithmic measure such that for all* $r \in E_5$ *, we have*

$$
\lim_{r \to +\infty} \frac{T(r, f_2)}{T(r, f_1)} = 0.
$$

Lemma 2.11. Let $f(z) = \frac{g(z)}{d(z)}$ be a meromorphic function, where $g(z)$, $d(z)$ are entire func*tions satisfying* $\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi) = \mu \leq \rho_{[p,q]}(f,\varphi) = \rho_{[p,q]}(g,\varphi) \leq +\infty$ and

 $\lambda_{[p,q]}\left(d, \varphi\right) \,=\, \rho_{[p,q]}\left(d, \varphi\right) \,=\, \lambda_{[p,q]}\left(\textstyle{\frac{1}{f}}\right)$ $\left(\frac{1}{f},\varphi\right)$ < μ . Then there exists a set $E_6 \subset (1,+\infty)$ of fi*nite logarithmic measure such that for all* $|z| = r \notin ([0, 1] \cup E_6)$ *and* $|g(z)| = M(r, q)$, *we have*

$$
\frac{f^{(n)}(z)}{f(z)} = \left(\frac{\nu_g(r)}{z}\right)^n (1 + o(1)), \ n \in \mathbb{N},
$$

where $\nu_q(r)$ *denotes be the central index of g.*

Proof. We use the mathematical induction to obtain the following expression

(2.1)
$$
f^{(n)} = \frac{g^{(n)}}{d} + \sum_{j=0}^{n-1} \frac{g^{(j)}}{d} \sum_{(j_1...j_n)} C_{j j_1...j_n} \left(\frac{d'}{d}\right)^{j_1} \times \cdots \times \left(\frac{d^{(n)}}{d}\right)^{j_n},
$$

where $C_{j_1...j_n}$ are constants and $j + j_1 + 2j_2 + \cdots + nj_n = n$. Then

$$
(2.2) \qquad \qquad \frac{f^{(n)}}{f} = \frac{g^{(n)}}{g} + \sum_{j=0}^{n-1} \frac{g^{(j)}}{g} \sum_{(j_1...j_n)} C_{j j_1...j_n} \left(\frac{d'}{d}\right)^{j_1} \times \cdots \times \left(\frac{d^{(n)}}{d}\right)^{j_n}.
$$

By Lemma [2.3,](#page-4-0) there exists a set $E_2 \subset [1, +\infty)$ with finite logarithmic measure such that for a point z satisfying $|z| = r \notin E_2$ and $|g(z)| = M (r, g)$, we get

(2.3)
$$
\frac{g^{(j)}(z)}{g(z)} = \left(\frac{\nu_g(r)}{z}\right)^j (1+o(1)) \quad (j=1,2,...,n),
$$

where $\nu_q(r)$ is the central index of g. By replacing [\(2](#page-6-0).3) into (2.[2\)](#page-6-1), we obtain

$$
\frac{f^{(n)}(z)}{f(z)} = \left(\frac{\nu_g(r)}{z}\right)^n \left[(1 + o(1))\right]
$$

$$
(2.4) \qquad \qquad + \sum_{j=0}^{n-1} \left(\frac{\nu_g(r)}{z} \right)^{j-n} (1+o(1)) \sum_{(j_1...j_n)} C_{j j_1...j_n} \left(\frac{d'}{d} \right)^{j_1} \times \cdots \times \left(\frac{d^{(n)}}{d} \right)^{j_n} .
$$

From the fact that $\rho_{[p,q]}(d,\varphi) = \beta < \mu$, for any given ε $(0 < 2\varepsilon < \mu - \beta)$ and for sufficiently large r , we have

$$
T(r,d) \leqslant \exp_p\left\{\left(\beta+\frac{\varepsilon}{2}\right)\log_q\varphi\left(r\right)\right\}.
$$

By Lemma [2.2](#page-4-1) for some α_1 (1 < α_1 < α) with α is a given constant, there exist a set $E_1 \subset$ $(1, +\infty)$ with $m_l(E_1) < \infty$ and a constant $B > 0$, such that for all z satisfying $|z| = r \notin$ $[0, 1] \cup E_1$, we have

$$
\left| \frac{d^{(m)}(z)}{d(z)} \right| \leq B \left[T \left(\alpha_1 r, d \right) \right]^{m+1}
$$

.

(2.5)
$$
\leq B \left[\exp_p \left\{ \left(\beta + \frac{\varepsilon}{2} \right) \log_q \varphi \left(\alpha_1 r \right) \right\} \right]^{m+1}
$$

By [\(2](#page-6-2).5) and Remark [1.2](#page-1-2) ($\lim_{r \to +\infty} \frac{\log_q \varphi(\alpha_1 r)}{\log_q \varphi(r)} = 1$ (1 < $\alpha_1 < \alpha$)), we obtain

$$
\left| \frac{d^{(m)}(z)}{d(z)} \right| \leq B \left[\exp_p \left\{ \left(\beta + \frac{\varepsilon}{2} \right) \frac{\log_q \varphi(\alpha_1 r)}{\log_q \varphi(r)} \cdot \log_q \varphi(r) \right\} \right]^{m+1}
$$
\n
$$
\leq \exp_p \left\{ \left(\beta + \varepsilon \right) \log_q \varphi(r) \right\}^m, \ m = 1, 2, ..., n.
$$

By using Lemma [2.4](#page-4-2) and $\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi) = \mu$, we have $\nu_g(r) > \exp_p \left\{ (\mu - \varepsilon) \log_q \varphi(r) \right\}$

for sufficiently large r. Then, since $j_1 + 2j_2 + \cdots + nj_n = n - j$, we get

$$
\left| \left(\frac{\nu_g(r)}{z} \right)^{j-n} \left(\frac{d'}{d} \right)^{j_1} \times \cdots \times \left(\frac{d^{(n)}}{d} \right)^{j_n} \right| \leq \left[\frac{\exp_p \left\{ (\mu - \varepsilon) \log_q \varphi(r) \right\}}{r} \right]^{j-n}
$$

$$
\times \left[\exp_p \left\{ (\beta + \varepsilon) \log_q \varphi(r) \right\} \right]^{n-j}
$$

$$
(2.7)
$$

$$
= \left[\frac{r \exp_p \left\{ (\beta + \varepsilon) \log_q \varphi(r) \right\}}{\exp_p \left\{ (\mu - \varepsilon) \log_q \varphi(r) \right\}} \right]^{n-j} \to 0
$$

as $r \to +\infty$, where $|z| = r \notin [0, 1] \cup E_6$, $E_6 = E_1 \cup E_2$ and $|g(z)| = M(r, g)$. From [\(2](#page-6-3).4) and (2.7) (2.7) , we obtain our assertion.

Lemma 2.12. Let $f(z) = \frac{g(z)}{d(z)}$ be a meromorphic function, where $g(z)$, $d(z)$ are entire func*tions satisfying* $\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi) = \mu \leq \rho_{[p,q]}(f,\varphi) = \rho_{[p,q]}(g,\varphi) \leq +\infty$ and $\lambda_{[p,q]}\left(d, \varphi\right) \, = \, \rho_{[p,q]}\left(d, \varphi\right) \, = \, \lambda_{[p,q]}\left(\frac{1}{f}\right)$ $\left(\frac{1}{f},\varphi\right)$ < μ . Then, there exists a set $E_7 \subset (1,+\infty)$ of fi*nite logarithmic measure such that for all* $|z| = r \notin (0, 1] \cup E_7$ *and* $|g(z)| = M(r, g)$ *, we have*

$$
\left|\frac{f(z)}{f^{(s)}(z)}\right| \leqslant r^{2s}, \quad (s \in \mathbb{N}).
$$

Proof. By Lemma [2.11,](#page-5-0) there exists a set E_6 of finite logarithmic measure such that the estimation

(2.8)
$$
\frac{f^{(s)}(z)}{f(z)} = \left(\frac{\nu_g(r)}{z}\right)^s (1+o(1)) \quad (s \geq 1 \text{ is an integer})
$$

is verified for all $|z| = r \notin [0, 1] \cup E_6$ and $|g(z)| = M(r, g)$, where $\nu_q(r)$ is the central index of g. Then again, from Lemma [2.4,](#page-4-2) for any given ε ($0 < \varepsilon < 1$), there exists $R > 1$ such that for all $r > R$, we have

(2.9)
$$
\nu_g(r) > \exp_p \left\{ (\mu - \varepsilon) \log_q (\varphi(r)) \right\}.
$$

If $\mu = +\infty$, then we can replace $\mu - \varepsilon$ by a large enough real number M. Let $E_7 = [1, R] \cup E_6$. Then $m_l (E_7) < +\infty$. Finally, by [\(2](#page-7-1).8) and (2.[9\)](#page-7-2), we get

$$
\left|\frac{f(z)}{f^{(s)}(z)}\right| = \left|\frac{z}{\nu_g\left(r\right)}\right|^s \frac{1}{\left|1 + o(1)\right|} \leq \frac{r^s}{\left(\exp_p\left\{\left(\mu - \varepsilon\right)\log_q\left(\varphi\left(r\right)\right)\right\}\right)^s} \leq r^{2s},
$$
\nwhere

\n
$$
|z| = r \notin [0, 1] \cup E_7, r \to +\infty \text{ and } |g(z)| = M(r, g) \cdot \blacksquare
$$

Lemma 2.13. Let f be an entire function such that $\rho_{[p,q]}(f,\varphi) < +\infty$. Then, there exist entire *functions* $h(z)$ *and* $L(z)$ *such that*

$$
f(z) = h(z)e^{L(z)},
$$

$$
\rho_{[p,q]}(f,\varphi) = \max \{ \rho_{[p,q]}(h,\varphi), \rho_{[p,q]}(e^{L(z)},\varphi) \}
$$

and

$$
\rho_{[p,q]}(h,\varphi) = \limsup_{r \to +\infty} \frac{\log_p N\left(r,\frac{1}{f}\right)}{\log_q \varphi\left(r\right)}.
$$

Moreover, for any given $\varepsilon > 0$ *, we have*

$$
|h(z)| \ge \exp \left\{-\exp_p \left\{ \left(\rho_{[p,q]}(h,\varphi) + \varepsilon\right) \log_q \varphi(r) \right\} \right\} (r \notin E_8),
$$

where $E_8 \subset (1, +\infty)$ *is a set of r of finite linear measure.*

Proof. By using Theorem 12.4 in ([\[10\]](#page-22-9)) and Theorem 2.2 in ([\[11\]](#page-22-10)), f can be represented by

$$
f(z) = h(z)e^{L(z)},
$$

with

$$
\rho_{[p,q]}\left(f,\varphi\right)=\max\left\{\rho_{[p,q]}\left(h,\varphi\right),\rho_{[p,q]}\left(e^{L(z)},\varphi\right)\right\}.
$$

On the other hand, by a similar proof of Proposition 6.1 in ([\[9\]](#page-22-11)), for any given $\varepsilon > 0$, we obtain

$$
|h(z)| \geq \exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(h,\varphi)+\varepsilon\right)\log_q\varphi\left(r\right)\right\}\right\}\left(r \notin E_8\right),\,
$$

where $E_8 \subset (1, +\infty)$ is a set of r of finite linear measure with

$$
\rho_{[p,q]}(h,\varphi) = \limsup_{r \to +\infty} \frac{\log_p N\left(r,\frac{1}{f}\right)}{\log_q \varphi\left(r\right)}.
$$

Lemma 2.14. *Suppose that* f *is a meromorphic function such that* $\rho_{[p,q]}(f, \varphi) < +\infty$ *. Then, there exist entire functions* $h_1(z)$ *,* $h_2(z)$ *and* $L(z)$ *such that*

(2.10)
$$
f(z) = \frac{h_1(z)e^{L(z)}}{h_2(z)}
$$

and

(2.11)
$$
\rho_{[p,q]}(f,\varphi) = \max \left\{ \rho_{[p,q]}(h_1,\varphi), \rho_{[p,q]}(h_2,\varphi), \rho_{[p,q]}(e^{L(z)},\varphi) \right\}.
$$

Moreover, for any given $\varepsilon > 0$ *, we have*

$$
\exp\left\{-\exp_{p}\left\{\left(\rho_{[p,q]}\left(f,\varphi\right)+\varepsilon\right)\log_{q}\varphi\left(r\right)\right\}\right\}\leqslant\left|f\left(z\right)\right|
$$

(2.12)
$$
\leqslant \exp_{p+1}\left\{(\rho_{[p,q]}(f,\varphi)+\varepsilon)\log_q\varphi(r)\right\} \quad (r \notin E_9),
$$

where $E_9 \subset (1, +\infty)$ *is a set of r of finite linear measure.*

Proof. By Hadamard factorization theorem, f can be written as $f(z) = \frac{g(z)}{d(z)}$, where $g(z)$ and $d(z)$ are entire functions satisfying

$$
\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi) = \mu \leq \rho_{[p,q]}(f,\varphi) = \rho_{[p,q]}(g,\varphi) < +\infty
$$

and

$$
\lambda_{[p,q]}(d,\varphi)=\rho_{[p,q]}(d,\varphi)=\lambda_{[p,q]}\left(\frac{1}{f},\varphi\right)<\mu.
$$

By using Lemma [2.13,](#page-7-3) we can find entire functions $h(z)$ and $L(z)$ such that

$$
g(z) = h(z)e^{L(z)},
$$

$$
\rho_{[p,q]}\left(g,\varphi\right)=\max\left\{\rho_{[p,q]}\left(h,\varphi\right),\rho_{[p,q]}\left(e^{L(z)},\varphi\right)\right\}.
$$

Then, there exist entire functions $h(z)$, $L(z)$ and $d(z)$ such that

$$
f(z) = \frac{h(z)e^{L(z)}}{d(z)}
$$

and

$$
\rho_{[p,q]}\left(f,\varphi\right)=\max\left\{\rho_{[p,q]}\left(h,\varphi\right),\rho_{[p,q]}\left(d,\varphi\right),\rho_{[p,q]}\left(e^{L(z)},\varphi\right)\right\}.
$$

Therefore (2.[10\)](#page-8-0) and (2.[11\)](#page-8-1) hold. Set $f(z) = \frac{h_1(z)e^{L(z)}}{h_0(z)}$ $\frac{(z)e^{i\omega}}{h_2(z)}$, where $h_1(z)$, $h_2(z)$ are the canonical products formed with the zeros and poles of f respectively. By using the definition of $[p, q] - \varphi$ order, for any given $\varepsilon > 0$ and sufficiently large r, we have

(2.13)
$$
|h_1(z)| \leq \exp_{p+1}\left\{ \left(\rho_{[p,q]}(h_1,\varphi) + \frac{\varepsilon}{3}\right) \log_q \varphi(r) \right\},\,
$$

(2.14)
$$
|h_2(z)| \leq \exp_{p+1}\left\{ \left(\rho_{[p,q]}(h_2,\varphi)+\frac{\varepsilon}{3}\right) \log_q \varphi(r)\right\}.
$$

From $\max\left\{\rho_{[p,q]}\left(h_1,\varphi\right),\rho_{[p,q]}\left(h_2,\varphi\right),\rho_{[p,q]}\left(e^{L(z)},\varphi\right)\right\}=\rho_{[p,q]}\left(f,\varphi\right),$ we get

(2.15)
$$
|h_1(z)| \leq \exp_{p+1}\left\{ \left(\rho_{[p,q]}(f,\varphi) + \frac{\varepsilon}{3}\right) \log_q \varphi(r) \right\},\,
$$

(2.16)
$$
|h_2(z)| \leq \exp_{p+1}\left\{ \left(\rho_{[p,q]}(f,\varphi) + \frac{\varepsilon}{3}\right) \log_q \varphi(r) \right\},\,
$$

(2.17)
$$
|e^{L(z)}| \leq \exp_{p+1}\left\{ \left(\rho_{[p,q]}(f,\varphi) + \frac{\varepsilon}{3}\right) \log_q \varphi(r)\right\}.
$$

Through the use of Lemma [2.13,](#page-7-3) there exists a set $E_9 \subset (1, +\infty)$ of r of finite linear measure such that for any given $\varepsilon > 0$, we have

$$
|h_1(z)| \ge \exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(h_1,\varphi)+\frac{\varepsilon}{3}\right)\log_q\varphi(r)\right\}\right\}
$$

(2.18)
$$
\geq \exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(f,\varphi)+\frac{\varepsilon}{3}\right)\log_q\varphi(r)\right\}\right\}, (r \notin E_9),
$$

$$
|h_2(z)| \geq \exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(h_2,\varphi)+\frac{\varepsilon}{3}\right)\log_q\varphi(r)\right\}\right\}
$$

(2.19)
$$
\geq \exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(f,\varphi)+\frac{\varepsilon}{3}\right)\log_q\varphi(r)\right\}\right\}, (r \notin E_9).
$$

By using (2.[15\)](#page-9-0), (2.[17\)](#page-9-1) and (2.[19\)](#page-9-2), for any given $\varepsilon > 0$ and sufficiently large $r \notin E_9$, we have

$$
|f(z)| = \frac{|h_1(z)||e^{L(z)}|}{|h_2(z)|}
$$

$$
\leq \frac{\exp_{p+1}\left\{(\rho_{[p,q]}(f,\varphi) + \frac{\varepsilon}{3})\log_q \varphi(r)\right\} \exp_{p+1}\left\{(\rho_{[p,q]}(f,\varphi) + \frac{\varepsilon}{3})\log_q \varphi(r)\right\}}{\exp\left\{-\exp_p\left\{(\rho_{[p,q]}(f,\varphi) + \frac{\varepsilon}{3})\log_q \varphi(r)\right\}\right\}}
$$

(2.20)

$$
\leq \exp_{p+1}\left\{(\rho_{[p,q]}(f,\varphi) + \varepsilon)\log_q \varphi(r)\right\}.
$$

On the other hand, we know $\rho_{[p-1,q]}(L,\varphi) = \rho_{[p,q]}(e^L,\varphi) \leq \rho_{[p,q]}(f,\varphi)$ and $|e^{L(z)}| \geq e^{-|L(z)|}$. From the definition of $[p, q] - \varphi$ order, we get

$$
|L(z)| \leq M(r, L) \leq \exp_p \left\{ \left(\rho_{[p-1,q]}(L, \varphi) + \frac{\varepsilon}{3} \right) \log_q \varphi(r) \right\}
$$

$$
\leq \exp_p \left\{ \left(\rho_{[p,q]}(f, \varphi) + \frac{\varepsilon}{3} \right) \log_q \varphi(r) \right\}.
$$

Then, for any given $\varepsilon > 0$ and sufficiently large r, we have

(2.21)
$$
\left|e^{L(z)}\right| \geq e^{-|L(z)|} \geq \exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(f,\varphi) + \frac{\varepsilon}{3}\right)\log_q\varphi\left(r\right)\right\}\right\}.
$$

By making use of (2.[16\)](#page-9-3), (2.[18\)](#page-9-4) and (2.[21\)](#page-9-5), for any given $\varepsilon > 0$ and sufficiently large $r \notin E_9$, we can easily obtain

$$
|f(z)| = \frac{|h_1(z)||e^{L(z)}|}{|h_2(z)|}
$$

$$
\geq \frac{\exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(f,\varphi)+\frac{\varepsilon}{3}\right)\log_q\varphi\left(r\right)\right\}\right\}}{\exp_{p+1}\left\{\left(\rho_{[p,q]}(f,\varphi)+\frac{\varepsilon}{3}\right)\log_q\varphi\left(r\right)\right\}}\times \exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(f,\varphi)+\frac{\varepsilon}{3}\right)\log_q\varphi\left(r\right)\right\}\right\}
$$
\n
$$
= \exp\left\{-3\exp_p\left\{\left(\rho_{[p,q]}(f,\varphi)+\frac{\varepsilon}{3}\right)\log_q\varphi\left(r\right)\right\}\right\}
$$
\n
$$
\geq \exp\left\{-\exp_p\left\{\left(\rho_{[p,q]}(f,\varphi)+\varepsilon\right)\log_q\varphi\left(r\right)\right\}\right\}.
$$

Finally Lemma [2.14](#page-8-2) is proved. ■

Lemma 2.15. *Under the assumptions of Theorem [1.7](#page-3-0) or Theorem [1.9,](#page-3-1) we have* $\rho_{[p,q]}(A_s,\varphi)$ = $\delta \geqslant \sigma$.

Proof. By using the proof by contradiction, we assume that $\rho_{[p,q]}(A_s, \varphi) = \delta < \sigma$. From the hypotheses of Theorems [1.7](#page-3-0) or [1.9,](#page-3-1) there exist a set G with $\log dens{|z| : z \in G} > 0$ and a positive constant $\sigma > 0$ such that for sufficiently small $\varepsilon > 0$, we have

(2.22)
$$
|A_s(z)| \geq \exp_{p+1}\left\{(\sigma-\varepsilon)\log_q(\varphi(r))\right\},\,
$$

as $z \in G$, $|z| = r \to +\infty$. By the definition of $[p, q] - \varphi$ order, for any given ε $(0 < 2\varepsilon < \sigma - \delta)$ and sufficiently large r , we have

(2.23)
$$
|A_s(z)| \leq \exp_{p+1} \left\{ \delta + \varepsilon \right\} \log_q \varphi(r) \right\}.
$$

Set $G_1 = \{ |z| : z \in G \}$, so by Proposition [2.1,](#page-4-3) we know that $m_l(G_1) = \infty$. Using (2.[22\)](#page-10-0) and (2.23) (2.23) , we obtain for $|z| = r \in G_1$, $r \to +\infty$

$$
\exp_{p+1}\left\{(\sigma-\varepsilon)\log_q(\varphi(r))\right\} \leqslant |A_s(z)| \leqslant \exp_{p+1}\left\{(\delta+\varepsilon)\log_q\varphi(r)\right\}
$$

which is a contradiction with the fact that $0 < 2\varepsilon < \sigma - \delta$. Then $\rho_{[p,q]}(A_s, \varphi) = \delta \geq \sigma$.

Lemma 2.16. Let $f(z) = \frac{g(z)}{d(z)}$ be a meromorphic function, where $g(z)$, $d(z)$ are entire func*tions.* If $0 \le \rho_{[p,q]}(d,\varphi) \le \mu_{[p,q]}(f,\varphi)$, *then* $\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi)$ *and* $\rho_{[p,q]}(g,\varphi) =$ $\rho_{[p,q]}(f,\varphi)$. Moreover, if $\rho_{[p,q]}(f,\varphi) = +\infty$, then $\rho_{[p+1,q]}(g,\varphi) = \rho_{[p+1,q]}(f,\varphi)$.

Proof. **Case 1.** $\rho_{[p,q]}(f, \varphi) < +\infty$. Using the definition of the $[p,q]$ - φ order, there exist an increasing sequence $\{r_n\}$, $(r_n \to +\infty)$ and a positive integer n_0 such that for all $n > n_0$ and for any given $\varepsilon \in \left(0, \frac{\rho_{[p,q]}(f,\varphi) - \rho_{[p,q]}(d,\varphi)}{2}\right)$ $\left(\frac{-\rho_{[p,q]}(d,\varphi)}{2}\right)\,\bigl(\text{as}\;0\leqslant\rho_{[p,q]}\,(d,\varphi)<\mu_{[p,q]}\,(f,\varphi)\leqslant\rho_{[p,q]}\,(f,\varphi)\bigr)\,,$ we have

$$
(2.24) \tT(r_n, d) \leq \exp_p \left\{ \left(\rho_{[p,q]}(d,\varphi) + \varepsilon \right) \log_q \varphi(r_n) \right\},
$$

and

(2.25)
$$
T(r_n, f) \geqslant \exp_p \left\{ \left(\rho_{[p,q]}(f, \varphi) - \varepsilon \right) \log_q \varphi(r_n) \right\}.
$$

Using the properties of the characteristic function, we get

(2.26)
$$
T(r, f) \leq T(r, g) + T(r, d) + O(1).
$$

By substituting (2.24) (2.24) and (2.25) (2.25) into (2.26) (2.26) , for all sufficiently large n, we obtain

$$
\exp_p \left\{ \left(\rho_{[p,q]} \left(f, \varphi \right) - \varepsilon \right) \log_q \varphi \left(r_n \right) \right\} \leq T(r_n, g)
$$

$$
(2.27) \qquad \qquad + \exp_p \left\{ \left(\rho_{[p,q]} \left(d, \varphi \right) + \varepsilon \right) \log_q \varphi \left(r_n \right) \right\} + O(1).
$$

Since
$$
\varepsilon \in \left(0, \frac{\rho_{[p,q]}(f,\varphi) - \rho_{[p,q]}(d,\varphi)}{2}\right)
$$
, then from (2.27), we obtain
\n
$$
(1 - o(1)) \exp_p \left\{ \left(\rho_{[p,q]}(f,\varphi) - \varepsilon\right) \log_q \varphi(r_n) \right\} \leq T(r_n, g) + O(1),
$$

for all sufficiently large n. Then $\rho_{[p,q]}(f, \varphi) \le \rho_{[p,q]}(g, \varphi)$. On the other hand, we have $T(r, g) \leqslant T(r, f) + T(r, d)$ and from $\rho_{[p,q]}^{(r, r)}(d, \varphi) < \rho_{[p,q]}^{(r, r)}(f, \varphi)$, we get $\rho_{[p,q]}^{(g)}(g, \varphi) \leqslant \rho_{[p,q]}^{(f)}(f, \varphi)$. Hence, $\rho_{[p,q]}(g,\varphi) = \rho_{[p,q]}(f,\varphi)$. Similarly, using the definition of lower $[p,q]$ - φ order $\mu_{[p,q]}(f,\varphi)$ and $\mu_{[p,q]}(g,\varphi)$, we can prove $\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi)$.

Case 2. $\mu_{[p,q]}(f, \varphi) = +\infty$. By $T(r, g) \leq T(r, f) + T(r, d)$ and Lemma [2.6](#page-5-1), we have

$$
\mu_{[p,q]}\left(g,\varphi\right)\leqslant\max\left\{ \mu_{[p,q]}\left(f,\varphi\right),\rho_{[p,q]}\left(d,\varphi\right)\right\} =\mu_{[p,q]}\left(f,\varphi\right).
$$

Now, we prove $\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi)$. We suppose that $\mu_{[p,q]}(g,\varphi) < \mu_{[p,q]}(f,\varphi)$. Using the definition of the $[p, q]$ - φ order and the lower $[p, q]$ - φ order, there exist an increasing sequence ${r_n}, (r_n \to +\infty)$ and a positive integer n_1 such that for all $n > n_1$ and for any given $\varepsilon > 0$

$$
T(r_n, d) \leq \exp_p \left\{ \left(\rho_{[p,q]}(d,\varphi) + \varepsilon \right) \log_q \varphi(r_n) \right\},
$$

$$
T(r_n, g) \leq \exp_p \left\{ \left(\mu_{[p,q]}(g,\varphi) + \varepsilon \right) \log_q \varphi(r_n) \right\}.
$$

From the fact that $T(r_n, f) \leq T(r_n, g) + T(r_n, d) + O(1)$, for all sufficiently large n, we obtain

$$
T(r_n, f) \le \exp_p \left\{ \left(\mu_{[p,q]}(g, \varphi) + \varepsilon \right) \log_q \varphi(r_n) \right\} + \exp_p \left\{ \left(\rho_{[p,q]}(d, \varphi) + \varepsilon \right) \log_q \varphi(r_n) \right\} + O(1),
$$

then $\mu_{[p,q]}(f, \varphi) \le \max \{ \mu_{[p,q]}(g, \varphi), \rho_{[p,q]}(d, \varphi) \}$ and this is a contradiction. Hence $\mu_{[p,q]}(g, \varphi) =$ $\mu_{[p,q]}(f,\varphi)$. Similarly, we can prove $\rho_{[p,q]}(g,\varphi) = \rho_{[p,q]}(f,\varphi)$.

Case 3. $\mu_{[p,q]}(f,\varphi) < +\infty$ and $\rho_{[p,q]}(f,\varphi) = +\infty$. We can prove Case 3 by using the similar method we used to prove Cases 1 and 2.

As last, we will prove $\rho_{[p+1,q]}(g,\varphi) = \rho_{[p+1,q]}(f,\varphi)$. We assume that $\rho_{[p,q]}(f,\varphi) = +\infty$. Then, there exists an increasing sequence $\{r_n\}$, $(r_n \rightarrow +\infty)$, such that

$$
\rho_{[p+1,q]}(f,\varphi) = \lim_{n \to \infty} \frac{\log_{p+1} T(r_n, f)}{\log_q \varphi(r_n)}.
$$

Using $\rho_{[p,q]}(d,\varphi) < \mu_{[p,q]}(f,\varphi)$ and the definitions of $[p,q]-\varphi$ order and the lower $[p,q]-\varphi$ order, we obtain

$$
\lim_{n \to +\infty} \frac{T(r_n, d)}{T(r_n, f)} = 0,
$$

then

$$
T(r_n, d) = o(T(r_n, f))
$$

as $n \to +\infty$. Therefore, by using $T(r_n, f) \leq T(r_n, g) + T(r_n, d) + O(1)$, there exists a positive integer n_2 , such that for $n > n_2$

 $(1 - o(1)) T(r_n, f) \leq T(r_n, g) + O(1)$

which implies $\rho_{[p+1,q]}(f,\varphi) \leq \rho_{[p+1,q]}(g,\varphi)$. By using the same arguments as in the proof of Case 1, from $T(r, g) \leq T(r, f) + T(r, d)$, we can find a positive integer $n > n_3$, such that for $n > n_3$, we have

$$
T(r_n, g) \leqslant (1 + o(1)) T(r_n, f) \leqslant 2T(r_n, f).
$$

Then,
$$
\rho_{[p+1,q]}(g, \varphi) \leqslant \rho_{[p+1,q]}(f, \varphi) \text{ . Thus } \rho_{[p+1,q]}(f, \varphi) = \rho_{[p+1,q]}(g, \varphi) \text{ . }
$$

Lemma 2.17. *Let* $A_i(z)$ ($j = 0, 1, ..., k$), $A_k(z)$ ($\neq 0$), $F(z)$ ($\neq 0$) *be meromorphic functions and let* $f(z)$ *be a meromorphic solution of* [\(1](#page-2-3).4) *of infinite* [p, q] $-\varphi$ *order satisfying the following condition*

$$
b = \max \left\{ \rho_{[p+1,q]} \left(F, \varphi \right), \ \rho_{[p+1,q]} \left(A_j, \varphi \right) (j=0,1,...,k) \right\} < \rho_{[p+1,q]} \left(f, \varphi \right).
$$

Then

$$
\overline{\lambda}_{[p+1,q]}(f,\varphi)=\lambda_{[p+1,q]}(f,\varphi)=\rho_{[p+1,q]}(f,\varphi).
$$

Proof. Assume that $f(z)$ is a meromorphic solution of (1.[4\)](#page-2-3) that has infinite [p, q] φ order. We can rewrite (1.[4\)](#page-2-3) as

$$
(2.28) \qquad \frac{1}{f} = \frac{1}{F} \left(A_k \left(z \right) \frac{f^{(k)}}{f} + A_{k-1} \left(z \right) \frac{f^{(k-1)}}{f} + \dots + A_1 \left(z \right) \frac{f'}{f} + A_0 \left(z \right) \right).
$$

By Lemma [2.9](#page-5-2) and (2.[28\)](#page-12-0), for $|z| = r$ outside a set $E_4 \subset (0, +\infty)$ of finite linear measure, we get

(2.29)
$$
m\left(r, \frac{1}{f}\right) \leq m\left(r, \frac{1}{F}\right) + \sum_{j=1}^{k} m\left(r, \frac{f^{(j)}}{f}\right) + \sum_{j=0}^{k} m(r, A_j) + O(1)
$$

$$
\leq m\left(r, \frac{1}{F}\right) + \sum_{j=0}^{k} m(r, A_j) + O\left(\log rT\left(r, f\right)\right).
$$

From (1.[4\)](#page-2-3), it is easy to see that if f has a zero at z_0 of order $m (m > k)$, and $A_0, A_1, ..., A_k$ $(\neq 0)$ are all analytic at z_0 , then F must have a zero at z_0 of order at least $m - k$. Hence

$$
n\left(r, \frac{1}{f}\right) \leq k\overline{n}\left(r, \frac{1}{f}\right) + n\left(r, \frac{1}{F}\right) + \sum_{j=0}^{k} n\left(r, A_j\right),
$$

and

$$
(2.30) \t\t N\left(r,\frac{1}{f}\right) \leq k\overline{N}\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{F}\right) + \sum_{j=0}^{k} N\left(r,A_j\right).
$$

Combining (2.[29\)](#page-12-1) with (2.[30\)](#page-12-2), for all sufficiently large $r \notin E_4$, we get

$$
T(r, f) = T\left(r, \frac{1}{f}\right) + O\left(1\right)
$$

$$
\text{(2.31)} \qquad \qquad \leqslant T\left(r, F\right) + \sum_{j=0}^{k} T\left(r, A_j\right) + k \overline{N}\left(r, \frac{1}{f}\right) + O\left(\log r T\left(r, f\right)\right).
$$

For sufficiently large r , we have

$$
(2.32)\qquad \qquad O\left(\log rT\left(r,f\right)\right) \leqslant \frac{1}{2}T(r,f).
$$

From the definition of the $[p,q]-\varphi$ order, for any given $\varepsilon(0<2\varepsilon<\rho_{[p+1,q]}(f,\varphi)-b)$ and for sufficiently large r , we have

(2.33)
$$
T(r, F) \leq \exp_{p+1} \left\{ (b+\varepsilon) \log_q \varphi(r) \right\},
$$

(2.34)
$$
T(r, A_j) \le \exp_{p+1} \{(b+\varepsilon) \log_q \varphi(r) \}, j = 0, 1, ..., k.
$$

By substituting (2.32) (2.32) , (2.33) (2.33) , (2.34) (2.34) into (2.31) (2.31) , for $r \notin E_4$ sufficiently large, we obtain

(2.35)
$$
T(r, f) \leq 2k \overline{N}\left(r, \frac{1}{f}\right) + 2(k+2) \exp_{p+1}\left\{(b+\varepsilon)\log_q \varphi(r)\right\}.
$$

By using Lemma [2.8](#page-5-3) and (2.[35\)](#page-12-7), for any given $\nu > 1$ there exists a $r_1 = r_1(\nu)$ and sufficiently large $r > r_1$, such that

$$
(2.36) \tT(r, f) \leq 2k \overline{N} \left(\nu r, \frac{1}{f} \right) + 2 (k+2) \exp_{p+1} \left\{ (b+\varepsilon) \log_q \varphi \left(\nu r \right) \right\}
$$

which gives

$$
\rho_{[p+1,q]}(f,\varphi) \leqslant \overline{\lambda}_{[p+1,q]}(f,\varphi)
$$

and therefore

$$
\rho_{[p+1,q]}(f,\varphi)\leqslant \overline{\lambda}_{[p+1,q]}(f,\varphi)\leqslant \lambda_{[p+1,q]}(f,\varphi).
$$

Since by definition we have $\overline{\lambda}_{[p+1,q]}(f, \varphi) \leq \lambda_{[p+1,q]}(f, \varphi) \leq \rho_{[p+1,q]}(f, \varphi)$, then we obtain

$$
\lambda_{[p+1,q]}(f,\varphi)=\lambda_{[p+1,q]}(f,\varphi)=\rho_{[p+1,q]}(f,\varphi).
$$

\blacksquare

Lemma 2.18. Let G be a set of complex numbers satisfying $\overline{\log dens}[z]$: $z \in G$ > 0*, and let* $A_i(z)$ ($j = 0, 1, ..., k$) *with* $A_k(z) \neq 0$ *and* $F(z) \neq 0$ *be meromorphic functions with finite* $[p, q]$ - φ *order.* If there exist a positive constant $\sigma > 0$ and an integer s, $0 \le s \le k$, such *that for sufficiently small* $\varepsilon > 0$, we have $|A_s(z)| \geqslant \exp_{p+1} \left\{ (\sigma - \varepsilon) \log_q \varphi(r) \right\}$ as $z \in G$, $|z| = r \rightarrow +\infty$ *and*

$$
\max\left\{\rho_{[p,q]}(A_j,\varphi)\ (j\neq s),\ \rho_{[p,q]}(F,\varphi)\right\}<\sigma,
$$

then every transcendental meromorphic solution f of equation (1.4) (1.4) *satisfies* $\rho_{[p,q]}(f,\varphi) \geq \sigma$.

Proof. Suppose the contrary. Let f be a transcendental meromorphic solution of the equation (1.[4\)](#page-2-3) such that $\rho_{[p,q]}(f,\varphi) < \sigma$. From (1.4), we get

(2.37)
$$
A_s = \frac{F}{f^{(s)}} - \sum_{\substack{j=0 \ j \neq s}}^k A_j \frac{f^{(j)}}{f^{(s)}}.
$$

From the hypotheses of Lemma [2.18,](#page-13-0) we have

$$
\max \left\{ \rho_{[p,q]} \left(A_j, \varphi \right) \ (j \neq s), \ \rho_{[p,q]} \left(F, \varphi \right) \right\} < \sigma.
$$

Then by using the assumption $\rho_{[p,q]}(f, \varphi) < \sigma$ and Lemma [2.7,](#page-5-4) from (2.[37\)](#page-13-1) we get

$$
\rho_2 = \rho_{[p,q]}(A_s, \varphi)
$$

$$
\leqslant \max \left\{ \rho_{[p,q]}\left(A_j, \varphi\right) \ (j \neq s), \ \rho_{[p,q]}\left(F, \varphi\right), \ \rho_{[p,q]}\left(f, \varphi\right) \right\} < \sigma.
$$

Then, for any given $\varepsilon(0 < 2\varepsilon < \sigma - \rho_2)$ and sufficiently large r, we have

$$
(2.38) \quad |A_s(z)| \le \exp_{p+1}\left\{(\rho_{(p,q)}(A_s,\varphi)+\varepsilon)\log_q\varphi(r)\right\} = \exp_{p+1}\left\{(\rho_2+\varepsilon)\log_q\varphi(r)\right\}.
$$

By the hypotheses of Lemma [2.18,](#page-13-0) we have

(2.39)
$$
|A_s(z)| \geq \exp_{p+1} \left\{ (\sigma - \varepsilon) \log_q \varphi(r) \right\}
$$

holds for all z satisfying $z \in G$, $|z| = r \to +\infty$. Set $G_2 = \{ |z| : z \in G \}$, so $m_l(G_2) = \infty$. By combining (2.[38\)](#page-13-2) with (2.[39\)](#page-13-3), for all z satisfying $|z| = r \in G_2$, $r \to +\infty$, we obtain

$$
\exp_{p+1}\left\{(\sigma-\varepsilon)\log_q\varphi\left(r\right)\right\}\leqslant \exp_{p+1}\left\{(\rho_2+\varepsilon)\log_q\varphi\left(r\right)\right\},\,
$$

hence

$$
\sigma-\varepsilon<\rho_2+\varepsilon
$$

and this contradicts the fact that $0 < 2\varepsilon < \sigma - \rho_2$. Consequently, any transcendental meromor-phic solution f of the equation [\(1](#page-2-3).4) satisfies $\rho_{[p,q]}(f, \varphi) \geq \sigma$.

Lemma 2.19. *Let* $A_0, A_1, ..., A_k \neq 0, F \neq 0$ *be finite* [p, q]- φ *order meromorphic functions. If* f is a meromorphic solution of the equation [\(1](#page-2-3).4) with $\rho_{[p,q]}(f,\varphi) = +\infty$ and $\rho_{[p+1,q]}(f,\varphi) =$ $\rho < +\infty$, *then*

$$
\lambda_{[p,q]}(f,\varphi) = \lambda_{[p,q]}(f,\varphi) = \rho_{[p,q]}(f,\varphi) = +\infty
$$

and

$$
\overline{\lambda}_{[p+1,q]}(f,\varphi) = \lambda_{[p+1,q]}(f,\varphi) = \rho_{[p+1,q]}(f,\varphi) = \rho.
$$

Proof. Assume that f is a meromorphic solution of [\(1](#page-2-3).4) that has infinite $[p, q]$ - φ order and $\rho_{[p+1,q]}(f,\varphi) = \rho < +\infty$. The equation (1.[4\)](#page-2-3) can be rewritten as

$$
(2.40) \qquad \frac{1}{f} = \frac{1}{F} \left(A_k \left(z \right) \frac{f^{(k)}}{f} + A_{k-1} \left(z \right) \frac{f^{(k-1)}}{f} + \dots + A_1 \left(z \right) \frac{f'}{f} + A_0 \left(z \right) \right).
$$

By Lemma [2.9](#page-5-2) and (2.[40\)](#page-14-0), for $|z| = r$ outside a set E_4 of a finite linear measure, we get

(2.41)
$$
m\left(r, \frac{1}{f}\right) \leq m\left(r, \frac{1}{F}\right) + \sum_{j=1}^{k} m\left(r, \frac{f^{(j)}}{f}\right) + \sum_{j=0}^{k} m(r, A_j) + O(1)
$$

$$
\leq m\left(r, \frac{1}{F}\right) + \sum_{j=0}^{k} m(r, A_j) + O\left(\log rT(r, f)\right).
$$

On the other, from [\(1](#page-2-3).4), if f has a zero at z_0 of order α ($\alpha > k$), and $A_0, A_1, ..., A_k$ are all analytic at z_0 , then F must have a zero at z_0 of order at least $\alpha - k$. Then

$$
n\left(r, \frac{1}{f}\right) \leq k\overline{n}\left(r, \frac{1}{f}\right) + n\left(r, \frac{1}{F}\right) + \sum_{j=0}^{k} n\left(r, A_j\right)
$$

and

(2.42)
$$
N\left(r,\frac{1}{f}\right) \leq k\overline{N}\left(r,\frac{1}{f}\right) + N\left(r,\frac{1}{F}\right) + \sum_{j=0}^{k} N\left(r,A_j\right).
$$

By (2.[41\)](#page-14-1) and (2.[42\)](#page-14-2), for all sufficiently large $r \notin E_4$, we get

(2.43)
\n
$$
T(r, f) = T\left(r, \frac{1}{f}\right) + O(1) \leq T(r, F) + \sum_{j=0}^{k} T(r, A_j)
$$
\n
$$
+ k\overline{N}\left(r, \frac{1}{f}\right) + O(\log rT(r, f)).
$$

From the hypotheses of Lemma [2.19,](#page-13-4) we have

$$
\rho_{[p,q]}(f,\varphi) > \rho_{[p,q]}(F,\varphi), \rho_{[p,q]}(f,\varphi) > \rho_{[p,q]}(A_j,\varphi), \ j = 0, 1, ..., k.
$$

Then by using Lemma [2.10,](#page-5-5) there exists a set $E_5 \subset [1, +\infty)$ having infinite logarithmic measure such that for all $r \in E_5$, we have

$$
\max\left\{\frac{T(r, F)}{T(r, f)}, \frac{T(r, A_j)}{T(r, f)}, j = 0, 1, ..., k\right\} \to 0 \text{ for } r \to +\infty,
$$

hence as $r \in E_5$, $r \to +\infty$

(2.44)
$$
T(r, F) = o(T(r, f)), T(r, Aj) = o(T(r, f)), j = 0, 1, ..., k.
$$

Since f is transcendental, then for sufficiently large r , we have

(2.45)
$$
O(\log rT(r, f)) = o(T(r, f)).
$$

Substituting (2.[44\)](#page-14-3) and (2.[45\)](#page-14-4) into (2.[43\)](#page-14-5), for $r \in E_5 \setminus E_4$, we get

$$
T(r, f) \leq k \overline{N}\left(r, \frac{1}{f}\right) + o\left(T(r, f)\right).
$$

Hence

$$
(2.46) \qquad (1 - o(1)) (T(r, f)) \leq k \overline{N} \left(r, \frac{1}{f} \right).
$$

Then, by making use of Proposition [1.1,](#page-1-3) Lemma [2.8,](#page-5-3) Definition [1.1,](#page-1-0) Remark [1.2](#page-1-2) and (2.[46\)](#page-15-0), for any f with $\rho_{[p,q]}(f, \varphi) = +\infty$ and $\rho_{[p+1,q]}(f, \varphi) = \rho$, we obtain

$$
+\infty = \rho_{[p,q]}(f,\varphi) \leq \overline{\lambda}_{[p,q]}(f,\varphi), \ \rho_{[p+1,q]}(f,\varphi) \leq \overline{\lambda}_{[p+1,q]}(f,\varphi),
$$

hence

$$
\rho_{[p+1,q]}(f,\varphi) \leqslant \overline{\lambda}_{[p+1,q]}(f,\varphi) \leqslant \lambda_{[p+1,q]}(f,\varphi).
$$

On the other hand, we know that by definition, we have

$$
\overline{\lambda}_{[p+1,q]}\left(f, \varphi\right) \leqslant \lambda_{[p+1,q]}\left(f, \varphi\right) \leqslant \rho_{[p+1,q]}\left(f, \varphi\right),
$$

and therefore

$$
\rho_{[p+1,q]}(f,\varphi) = \overline{\lambda}_{[p+1,q]}(f,\varphi) = \lambda_{[p+1,q]}(f,\varphi) = \rho.
$$

 \blacksquare

Lemma 2.20. *Assume that* $k \ge 2$ *and* $A_0, A_1, ..., A_k \ne 0$, *F are meromorphic functions.* Let $\rho_3 = \max \{ \rho_{[p,q]}(A_j, \varphi), (j = 0, 1, ..., k), \rho_{[p,q]}(F, \varphi) \} < \infty$ and let f be a meromor*phic solution of infinite* $[p, q]$ - φ *order of equation* [\(1](#page-2-3).4) *with* $\lambda_{[p,q]}$ $\left(\frac{1}{f}\right)$ $\left(\frac{1}{f},\varphi\right)<\mu_{[p,q]}\left(f,\varphi\right)$. Then, $\rho_{[p+1,q]}(f,\varphi)\leqslant \rho_3.$

Proof. Suppose that f is a meromorphic solution of equation [\(1](#page-2-3).4) of infinite $[p, q]$ - φ order with $\lambda_{[p,q]}\left(\frac{1}{f}\right)$ $\left(\frac{1}{f},\varphi\right)<\mu_{[p,q]}\left(f,\varphi\right)$. By using the Hadamard factorization theorem, f can be written as $f(z) = \frac{g(z)}{d(z)}$, where $g(z)$ and $d(z)$ are entire functions such that

$$
\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi) = \mu \leq \rho_{[p,q]}(f,\varphi) = \rho_{[p,q]}(g,\varphi) = +\infty
$$

and

$$
\lambda_{[p,q]}\left(d,\varphi\right) = \rho_{[p,q]}\left(d,\varphi\right) = \lambda_{[p,q]}\left(\frac{1}{f},\varphi\right) \leqslant \mu.
$$

By Lemma [2.14,](#page-8-2) there exists a set $E_9 \subset (1, +\infty)$ of r of finite linear measure such that for all $|z| = r \notin E_9$ and any given $\varepsilon > 0$, by using the hypotheses of Lemma [2.20,](#page-15-1) we get

$$
|A_{k}(z)| \ge \exp \left\{-\exp _{p}\left\{(\rho_{(p,q)}(A_{k}, \varphi) + \varepsilon) \log _{q}\varphi\left(r\right)\right\}\right\}
$$

(2.47)
$$
\geq \exp\left\{-\exp_p\left\{(\rho_3+\varepsilon)\log_q\varphi(r)\right\}\right\}.
$$

For any given $\varepsilon > 0$ and sufficiently large r, we have

$$
\left|A_j\left(z\right)\right| \leqslant \exp_{p+1}\left\{\left(\rho_{\left(p,q\right)}\left(A_j,\varphi\right)+\varepsilon\right) \log_q\varphi\left(r\right)\right\}
$$

(2.48)
$$
\leq \exp_{p+1}\left\{(\rho_3+\varepsilon)\log_q\varphi(r)\right\},\ j=0,1,...,k-1,
$$

and

$$
(2.49) \quad |F(z)| \le \exp_{p+1}\left\{(\rho_{(p,q)}(F,\varphi)+\varepsilon)\log_q\varphi(r)\right\} \le \exp_{p+1}\left\{(\rho_3+\varepsilon)\log_q\varphi(r)\right\}.
$$

From the definition of the $[p, q] - \varphi$ order, the lower $[p, q] - \varphi$ order and (2.[49\)](#page-15-2), for any given ε $(0 < 2\varepsilon < \mu_{[p,q]}(f, \varphi) - \rho_{[p,q]}(d, \varphi))$, and for all z satisfying $|z| = r$ sufficiently large at which $|g(z)| = M(r, g)$, we obtain

$$
\left| \frac{F(z)}{f(z)} \right| = \frac{|F(z)|}{|g(z)|} |d(z)|
$$

$$
\leq \frac{\exp_{p+1} \left\{ (\rho_{[p,q]}(d,\varphi) + \varepsilon) \log_q \varphi(r) \right\} \exp_{p+1} \left\{ (\rho_3 + \varepsilon) \log_q \varphi(r) \right\}}{\exp_{p+1} \left\{ (\mu_{[p,q]}(f,\varphi) - \varepsilon) \log_q \varphi(r) \right\}}
$$

(2.50)
$$
\leqslant \exp_{p+1}\left\{(\rho_3+\varepsilon)\log_q\varphi(r)\right\}.
$$

From Lemma [2.11,](#page-5-0) there exists a set $E_6 \subset (1, +\infty)$ of finite logarithmic measure such that for all $|z| = r \notin [0, 1] \cup E_6$ and $|g(z)| = M (r, g)$, we have

(2.51)
$$
\frac{f^{(j)}(z)}{f(z)} = \left(\frac{\nu_g(r)}{z}\right)^j (1+o(1)), \ j = 1, ..., k.
$$

By equation (1.4) (1.4) , we have

$$
(2.52) \qquad \left| \frac{f^{(k)}(z)}{f(z)} \right| \leq \frac{1}{|A_k(z)|} \left(|A_0(z)| + \left| \frac{F(z)}{f(z)} \right| + \sum_{j=1}^{k-1} |A_j(z)| \left| \frac{f^{(j)}(z)}{f(z)} \right| \right).
$$

Replacing (2.47) (2.47) , (2.48) (2.48) , (2.50) (2.50) and (2.51) (2.51) into (2.52) (2.52) , we get

$$
\left| \frac{\nu_g\left(r\right)}{z} \right|^k \left| 1 + o\left(1\right) \right| \le \frac{1}{\exp\left\{-\exp_p\left\{\left(\rho_3 + \varepsilon\right)\log_q\varphi\left(r\right)\right\}\right\}} \times
$$
\n
$$
\left(\left\{ 2 + \sum_{j=1}^{k-1} \left| \frac{\nu_g\left(r\right)}{z} \right|^j \left| 1 + o\left(1\right) \right| \right\} \exp_{p+1}\left\{ \left(\rho_3 + \varepsilon\right)\log_q\varphi\left(r\right) \right\} \right)
$$
\n
$$
= \left\{ 2 + \sum_{j=1}^{k-1} \left| \frac{\nu_g\left(r\right)}{z} \right|^j \left| 1 + o\left(1\right) \right| \right\} \exp\left\{ 2\exp_p\left\{ \left(\rho_3 + \varepsilon\right)\log_q\varphi\left(r\right) \right\} \right\}.
$$

Then

(2.53)
$$
|\nu_g(r)| |1 + o(1)| \le (k+1) r |1 + o(1)| \exp \{2 \exp_p \{ (\rho_3 + \varepsilon) \log_q \varphi(r) \} \}
$$

holds for all z satisfying $|z| = r \notin ([0, 1] \cup E_6 \cup E_9)$ and $|g(z)| = M(r, g), r \to +\infty$. From (2.53) (2.53) , we obtain

(2.54)
$$
\limsup_{r \to +\infty} \frac{\log_{p+1} \nu_g(r)}{\log_q \varphi(r)} \leq \rho_3 + \varepsilon.
$$

Using the fact that $\varepsilon > 0$ is arbitrary, by (2.[54\)](#page-16-4) and Lemma [2.4,](#page-4-2) we obtain $\rho_{[p+1,q]}(g,\varphi) \leq \rho_3$. Since $\rho_{[p,q]}(d, \varphi) < \mu_{[p,q]}(f, \varphi)$, so by Lemma [2.16,](#page-10-6) we get $\rho_{[p+1,q]}(g, \varphi) = \rho_{[p+1,q]}(f, \varphi)$. Finally, $\rho_{[p+1,q]}(f,\varphi) \leq \rho_3$. Therefore, Lemma [2.20](#page-15-1) is proved.

3. **PROOF OF THEOREM [1.7](#page-3-0)**

Proof. Let $f \not\equiv 0$ be a rational solution of (1.3) (1.3) . First, we will prove that f must be a polynomial with deg $f \le s - 1$. If either f is a rational function, which has a pole at z_0 of degree $m \ge 1$, or f is a polynomial with deg $f \geq s$, then $f^{(s)}(z) \not\equiv 0$. From equation [\(1](#page-2-2).3) we have

$$
A_s(z) f^{(s)}(z) = - \sum_{\substack{j=0 \ j \neq s}}^k A_j(z) f^{(j)}(z).
$$

By Lemma [2.5](#page-4-4) and Lemma [2.15,](#page-10-7) we obtain

$$
\sigma \leq \rho_{[p,q]}(A_s, \varphi) = \rho_{[p,q]}(A_s f^{(s)}, \varphi)
$$

$$
= \rho_{[p,q]} \left(-\sum_{\substack{j=0 \ j\neq s}}^k A_j f^{(j)}, \varphi \right)
$$

$$
\leq \max_{j=0,1,\dots,k,j\neq s} \left\{ \rho_{[p,q]}(A_j, \varphi) \right\},
$$

which is a contradiction. Therefore, f must be a polynomial with deg $f \le s - 1$. In the second part, we assume that f is a transcendental meromorphic solution of (1.3) (1.3) such that $\lambda_{[p,q]}\left(\frac{1}{f}\right)$ $\left(\frac{1}{f},\varphi\right) < \mu_{[p,q]}(f,\varphi)$. For any given ε $(0 < 2\varepsilon < \sigma - \rho)$ and sufficiently large r, we have $|A_j(z)| \leq \exp_{p+1} \left\{ (\rho_{[p,q]}(A_j, \varphi) + \varepsilon) \log_q \varphi(r) \right\}$

(3.1)
$$
\leqslant \exp_{p+1}\left\{(\rho+\varepsilon)\log_q\varphi(r)\right\}, \ j=0,1,...,k, \ j\neq s.
$$

By making use of Lemma [2.12,](#page-7-4) there exists a set $E_7 \subset (1, +\infty)$ of finite logarithmic measure such that for all $|z| = r \notin ([0, 1] \cup E_7)$ sufficiently large and $|g(z)| = M(r, g)$, we have

(3.2)
$$
\left|\frac{f(z)}{f^{(s)}(z)}\right| \leq r^{2s}, \ \ s \geq 1 \ \text{is an integer.}
$$

From Lemma [2.2](#page-4-1), there exist a set $E_1 \subset (1, +\infty)$ that has a finite logarithmic measure, and a constant $B > 0$, such that for all z satisfying $|z| = r \notin ([0, 1] \cup E_1)$

(3.3)
$$
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq B \left[T(2r,f)\right]^{k+1}, \ j=1,2,...,k, \ j \neq s.
$$

From the hypotheses of Theorem [1.7](#page-3-0), there exist a set G with $\log dens{|z|} : z \in G$ > 0 (or by Proposition [2.1,](#page-4-3) $m_l({|z| : z \in G}) = \infty$) and a positive constant $\sigma > 0$ such that for sufficiently small $\varepsilon > 0$, we have

(3.4)
$$
|A_s(z)| \geq \exp_{p+1}\left\{(\sigma-\varepsilon)\log_q \varphi(r)\right\}
$$

as $z \in G$, $|z| = r \rightarrow +\infty$. By [\(1](#page-2-2).3), we can write

 \sim

$$
(3.5) \t\t |A_s \leqslant \left|\frac{f}{f^{(s)}}\right| \left(|A_0| + \sum_{\substack{j=1 \ j \neq s}}^k |A_j| \left|\frac{f^{(j)}}{f}\right|\right).
$$

Substituting (3.1) (3.1) , (3.2) , (3.3) and (3.4) (3.4) into (3.5) (3.5) , for all z satisfying $|z| = r \in \{ |z| : z \in \mathbb{R} \}$ $G\} \setminus ([0, 1] \cup E_1 \cup E_7), r \rightarrow +\infty$, we obtain

$$
\exp_{p+1}\left\{(\sigma-\varepsilon)\log_q\varphi\left(r\right)\right\}\leqslant Bkr^{2s}\exp_{p+1}\left\{(\rho+\varepsilon)\log_q\varphi\left(r\right)\right\}\left[T\left(2r,f\right)\right]^{k+1}.
$$

From $0 < 2\varepsilon < \sigma - \rho$, we obtain

(3.6)
$$
\exp\left\{(1-o(1))\exp_p\left\{(\sigma-\varepsilon)\log_q\varphi(r)\right\}\right\}\leqslant Bkr^{2s}\left[T(2r,f)\right]^{k+1}.
$$

Using Lemma [2.8](#page-5-3) and [\(3](#page-18-0).6), for any given $\nu > 1$ there exists an $r_1 = r_1(\nu)$ and sufficiently large $r > r_1$, $r \in \{ |z| : z \in G \}$ such that

$$
\exp\left\{(1-o\left(1\right))\exp_p\left\{(\sigma-\varepsilon)\log_q\varphi\left(r\right)\right\}\right\}\leq Bk\left(\nu r\right)^{2s}\left[T\left(2\nu r,f\right)\right]^{k+1}.
$$

By making use of Definition [1.1](#page-1-0) and Remark [1.2,](#page-1-2) we get

(3.7)
$$
\rho_{[p,q]}(f,\varphi) = \mu_{[p,q]}(f,\varphi) = +\infty, \ \sigma \leq \rho_{[p+1,q]}(f,\varphi).
$$

In view of Lemma [2.15,](#page-10-7) we have

$$
\max \{ \rho_{[p,q]} (A_j, \varphi) : j = 0, 1, ..., k \} = \rho_{[p,q]} (A_s, \varphi) = \delta < +\infty.
$$

Since f is of infinite $[p, q]$ - φ order meromorphic solution of equation [\(1](#page-2-2).3) satisfying $\lambda_{[p,q]}$ $\Big(\frac{1}{f}$ $\frac{1}{f},\varphi\Big)<$ $\mu_{[p,q]} \left(f, \varphi \right)$, then by Lemma [2.20](#page-15-1), we obtain

(3.8) $\rho_{[p+1,q]}(f,\varphi) \leq \rho_{[p,q]}(A_s,\varphi).$

By [\(3](#page-18-1).7) and (3.[8\)](#page-18-2), we get $\mu_{[p,q]}(f, \varphi) = \rho_{[p,q]}(f, \varphi) = +\infty$ and

$$
\sigma \leqslant \rho_{[p+1,q]} \left(f, \varphi \right) \leqslant \rho_{[p,q]} \left(A_s, \varphi \right).
$$

 \blacksquare

4. **PROOF OF COROLLARY [1.8](#page-3-2)**

Proof. Let ψ be a transcendental meromorphic function such that $\rho_{[p+1,q]}(\psi,\varphi) < \sigma$. Putting $\eta = f - \psi$. By Lemma [2.5,](#page-4-4) we obtain $\rho_{[p+1,q]}(\eta, \varphi) = \rho_{[p+1,q]}(f, \varphi)$. By making use of Theorem [1.7,](#page-3-0) we have $\sigma \leq \rho_{[p+1,q]}(\eta, \varphi) \leq \rho_{[p,q]}(A_s^{\sigma}, \varphi)$. Replacing $f = \eta + \psi$ into [\(1](#page-2-2).3), we get

$$
A_k(z)\,\eta^{(k)} + A_{k-1}(z)\,\eta^{(k-1)} + \cdots + A_1(z)\,\eta' + A_0(z)\,\eta
$$

(4.1)
$$
= -\left(A_k(z)\psi^{(k)} + A_{k-1}(z)\psi^{(k-1)} + \cdots + A_1(z)\psi' + A_0(z)\psi\right) = U(z).
$$

Since $\rho_{[p+1,q]}(\psi,\varphi) < \sigma$, then according to Theorem [1.7,](#page-3-0) we can see that ψ is not a solution of equation (1.3) (1.3) , hence the right side $U(z)$ of equation (4.1) (4.1) is non-zero. Furthermore, by Lemma [2.5](#page-4-4) and Lemma [2.7,](#page-5-4) we get

$$
\rho_{\left[p+1,q\right]}\left(U,\varphi\right)\leqslant\max\left\{ \rho_{\left[p+1,q\right]}\left(\psi,\varphi\right),\;\rho_{\left[p+1,q\right]}\left(A_{j},\varphi\right)\left(j=0,1,...,k\right)\right\} <\sigma.
$$

As a consequence

$$
\max \left\{ \rho_{[p+1,q]} \left(U, \varphi \right), \, \, \rho_{[p+1,q]} \left(A_j, \varphi \right) \left(j = 0, 1, ..., k \right) \right\} < \sigma \leq \rho_{[p+1,q]} \left(\eta, \varphi \right).
$$

From Lemma [2.17,](#page-11-0) we get

$$
\sigma \leq \overline{\lambda}_{[p+1,q]} (f - \psi, \varphi) = \lambda_{[p+1,q]} (f - \psi, \varphi)
$$

= $\rho_{[p+1,q]} (f - \psi, \varphi) = \rho_{[p+1,q]} (f, \varphi) \leq \rho_{[p,q]} (A_s, \varphi).$

Г

5. **PROOF OF THEOREM [1.9](#page-3-1)**

Proof. Let $f \not\equiv 0$ be a rational solution of (1.4) (1.4) . First, we will prove that f must be a polynomial with deg $f \le s-1$. If either $f(z)$ is a rational function, which has a pole at z_0 of degree $m \ge 1$, or f is a polynomial with $\deg f \geq s$, then $f^{(s)}(z) \not\equiv 0$. By [\(1](#page-2-3).4) we have

$$
A_{s}f^{(s)} = F - \sum_{\substack{j=0 \ j \neq s}}^{k} A_{j}(z) f^{(j)}
$$

and by Lemma [2.5](#page-4-4) and Lemma [2.15,](#page-10-7) we obtain

$$
\sigma \leq \rho_{[p,q]}(A_s, \varphi) = \rho_{[p,q]}(A_s f^{(s)}, \varphi)
$$

$$
= \rho_{[p,q]} \left(F - \sum_{\substack{j=0 \ j \neq s}}^k A_j(z) f^{(j)}, \varphi \right)
$$

$$
\leq \max_{j=0,1,\dots,k, j \neq s} \left\{ \rho_{[p,q]}(A_j, \varphi), \rho_{[p,q]}(F, \varphi) \right\}
$$

,

which is a contradiction. Therefore, f must be a polynomial with deg $f \le s - 1$. Assum-ing now that f is a transcendental meromorphic solution of [\(1](#page-2-3).4) that satisfies $\lambda_{[p,q]}$ $\left(\frac{1}{f}\right)$ $\frac{1}{f},\varphi\Big) <$ $\mu_{[p,q]}(f,\varphi)$. By Lemma [2.18,](#page-13-0) we know that f satisfies $\rho_{[p,q]}(f,\varphi) \geq \sigma$. Since $\lambda_{[p,q]}(\frac{1}{f})$ $\frac{1}{f},\varphi\Big) <$ $\min\{\mu_{[p,q]}(f,\varphi),\sigma\}$, then by Hadamard factorization theorem, there exist entire functions $g(z)$ and $d(z)$ such that $f(z) = \frac{g(z)}{d(z)}$ and

$$
\mu_{[p,q]}(g,\varphi) = \mu_{[p,q]}(f,\varphi) = \mu \leq \rho_{[p,q]}(g,\varphi) = \rho_{[p,q]}(f,\varphi),
$$

$$
\rho_{[p,q]}(d,\varphi) = \lambda_{[p,q]} \left(\frac{1}{f},\varphi\right) < \min\{\mu_{[p,q]}(f,\varphi),\sigma\}.
$$

From the definition of the lower $[p, q] - \varphi$ order, for any given $\varepsilon > 0$ and sufficiently large r, we get

(5.1)
$$
|g(z)| = M(r, g) \ge \exp_{p+1}\left\{(\mu_{[p,q]}(g,\varphi) - \varepsilon)\log_q \varphi(r)\right\}.
$$

Let

$$
\rho_1 = \max \{ \rho_{[p,q]} (A_j, \varphi), j \neq s, \rho_{[p,q]} (F, \varphi) \} < \sigma.
$$

Then, by [\(5](#page-19-0).1), for any given ε satisfying

$$
0<2\varepsilon<\min\{\sigma-\rho_1,\mu_{[p,q]}(g,\varphi)-\rho_{[p,q]}(d,\varphi)\},\,
$$

and all z satisfying $|z| = r$ sufficiently large at which $|g(z)| = M(r, g)$, we have

$$
\left| \frac{F(z)}{f(z)} \right| = \frac{|F(z)|}{|g(z)|} |d(z)|
$$

$$
\leq \frac{\exp_{p+1} \left\{ (\rho_{[p,q]}(d,\varphi) + \varepsilon) \log_q \varphi(r) \right\} \exp_{p+1} \left\{ (\rho_1 + \varepsilon) \log_q \varphi(r) \right\}}{\exp_{p+1} \left\{ (\mu_{[p,q]}(g,\varphi) - \varepsilon) \log_q \varphi(r) \right\}}
$$

(5.2)
$$
\leq \exp_{p+1} \left\{ (\rho_1 + \varepsilon) \log_q \varphi(r) \right\}.
$$

Using the similar way as in the proof of Theorem [1.7,](#page-3-0) for any given ε satisfying $0 < 2\varepsilon <$ $\min\{\sigma - \rho_1, \mu_{[p,q]}(g,\varphi) - \rho_{[p,q]}(d,\varphi)\}\$ and all z satisfying $|z| = r \in \{|z| : z \in G\} \setminus$ $([0, 1] \cup E_1 \cup \overrightarrow{E_7})$, $r \to +\infty$ at which $|g(z)| = M(r, g)$, we have (3.2) (3.2) , (3.3) (3.3) , (3.4) and

(5.3)
$$
|A_j(z)| \le \exp_{p+1} \{(p_1 + \varepsilon) \log_q \varphi(r)\}, \ j = 0, 1, ..., k, \ j \ne s.
$$

From (1.4) (1.4) , we have

(5.4)
$$
|A_s| \leq \left| \frac{f}{f^{(s)}} \right| \left(|A_0| + \sum_{\substack{j=1 \ j \neq s}}^k |A_j| \left| \frac{f^{(j)}}{f} \right| + \left| \frac{F}{f} \right| \right).
$$

Replacing $(3.2), (3.3), (3.4), (5.2)$ $(3.2), (3.3), (3.4), (5.2)$ $(3.2), (3.3), (3.4), (5.2)$ $(3.2), (3.3), (3.4), (5.2)$ $(3.2), (3.3), (3.4), (5.2)$ $(3.2), (3.3), (3.4), (5.2)$ $(3.2), (3.3), (3.4), (5.2)$ $(3.2), (3.3), (3.4), (5.2)$ $(3.2), (3.3), (3.4), (5.2)$ and (5.3) into $(5.4),$ for all z satisfying $|z| = r \in \{ |z| :$ $z \in G$ \ $([0, 1] \cup E_1 \cup E_7)$, $r \to +\infty$, at which $|g(z)| = M(r, g)$ and any given ε satisfying

$$
0<2\varepsilon<\min\{\sigma-\rho_1,\mu_{[p,q]}(g,\varphi)-\rho_{[p,q]}(d,\varphi)\},\,
$$

we obtain

$$
\exp_{p+1}\left\{(\sigma-\varepsilon)\log_q\varphi(r)\right\} \leq r^{2s} \left(\exp_{p+1}\left\{(\rho_1+\varepsilon)\log_q\varphi(r)\right\}
$$

$$
+\sum_{j=1,j\neq s}^k \exp_{p+1}\left\{(\rho_1+\varepsilon)\log_q\varphi(r)\right\} B \left[T (2r,f)\right]^{k+1}
$$

$$
+\exp_{p+1}\left\{(\rho_1+\varepsilon)\log_q\varphi(r)\right\}\right)
$$

(5.5) $\leq B (k+1) r^{2s} [T (2r, f)]^{k+1} \exp_{p+1} \{(p_1 + \varepsilon) \log_q \varphi(r)\}.$

The fact that $0 < 2\varepsilon < \sigma - \rho_1$ gives

(5.6)
$$
\exp \left\{ (1 - o(1)) \exp_p (\sigma - \varepsilon) \log_q \varphi(r) \right\} \leq B (k+1) r^{2s} \left[T (2r, f) \right]^{k+1}.
$$

Using Lemma [2.8](#page-5-3) and [\(5](#page-20-2).6), for any given $\nu > 1$ there exists an $r_2 = r_2(\nu)$ and sufficiently large $r > r_2$, $r \in \{ |z| : z \in G \}$ such that

$$
(5.7) \qquad \exp\left\{(1-o\left(1\right))\exp_p\left\{(\sigma-\varepsilon)\log_q\varphi\left(r\right)\right\}\right\} \leqslant B\left(k+1\right)\left(\nu r\right)^{2s}\left[T\left(2\nu r,f\right)\right]^{k+1}.
$$

By making use of Definition [1.1](#page-1-0) and Remark [1.2,](#page-1-2) we get

(5.8)
$$
\rho_{[p,q]}(f,\varphi) = \mu_{[p,q]}(f,\varphi) = +\infty, \ \sigma \leq \rho_{[p+1,q]}(f,\varphi).
$$

According to Lemma [2.15](#page-10-7) and the hypotheses of Theorem [1.9,](#page-3-1) we get

$$
\max \left\{ \rho_{[p,q]}\left(A_j, \varphi \right) \, \left(j = 0, 1, ..., k \right), \, \rho_{[p,q]}\left(F, \varphi \right) \right\} = \rho_{[p,q]}\left(A_s, \varphi \right) = \delta < +\infty.
$$

Using Lemma [2.20](#page-15-1) and the fact that f is a meromorphic solution of equation [\(1](#page-2-3).4) of $[p, q]$ - φ order with $\lambda_{[p,q]}$ $\left(\frac{1}{f}\right)$ $\left(\frac{1}{f},\varphi\right)<\mu_{[p,q]}\left(f,\varphi\right),$ we obtain

(5.9)
$$
\rho_{[p+1,q]}(f,\varphi) \leq \max \left\{ \rho_{[p,q]}(A_j,\varphi) \ (j=0,1,...,k), \ \rho_{[p,q]}(F,\varphi) \right\} = \rho_{[p,q]}(A_s,\varphi)
$$
. From Lemma 2.19 and since $F \not\equiv 0$, we get

(5.10)
$$
\overline{\lambda}_{[p,q]}(f,\varphi) = \lambda_{[p,q]}(f,\varphi) = \mu_{[p,q]}(f,\varphi) = \rho_{[p,q]}(f,\varphi) = +\infty
$$

and

(5.11)
$$
\sigma \leqslant \overline{\lambda}_{[p+1,q]}(f,\varphi) = \lambda_{[p+1,q]}(f,\varphi) = \rho_{[p+1,q]}(f,\varphi).
$$

Then from (5.9) (5.9) , (5.10) (5.10) and (5.11) (5.11) , we conclude that

$$
\overline{\lambda}_{[p,q]}(f,\varphi) = \lambda_{[p,q]}(f,\varphi) = \mu_{[p,q]}(f,\varphi) = \rho_{[p,q]}(f,\varphi) = +\infty
$$

and

$$
\sigma \leqslant \overline{\lambda}_{[p+1,q]}(f,\varphi) = \lambda_{[p+1,q]}(f,\varphi) = \rho_{[p+1,q]}(f,\varphi) \leqslant \rho_{[p,q]}(A_s,\varphi).
$$

 \mathbf{r}

6. **PROOF OF COROLLARY [1.10](#page-4-5)**

Let ψ be a transcendental meromorphic function such that $\rho_{[p+1,q]}(\psi,\varphi) < \sigma$. Putting $\vartheta =$ $f - \psi$, then $\rho_{[p+1,q]}(\vartheta, \varphi) = \rho_{[p+1,q]}(f, \varphi)$, and by Theorem [1.9,](#page-3-1) we have $\sigma \leq \rho_{[p+1,q]}(\vartheta, \varphi) \leq$ $\rho_{[p,q]}(A_s, \varphi)$. Replacing $f = \vartheta + \psi$ into [\(1](#page-2-3).4), we get

$$
A_k(z) \vartheta^{(k)} + A_{k-1}(z) \vartheta^{(k-1)} + \cdots + A_1(z) \vartheta + A_0(z) \vartheta
$$

(6.1)
$$
= F(z) - \left(A_k(z) \psi^{(k)} + A_{k-1}(z) \psi^{(k-1)} + \cdots + A_1(z) \psi' + A_0(z) \psi \right) = V(z).
$$

Since $\rho_{[p+1,q]}(\psi,\varphi) < \sigma$, then according to Theorem [1.9,](#page-3-1) ψ is not a solution of equation (1.[4\)](#page-2-3), hence the right side $V(z)$ of equation [\(6](#page-21-7).1) is non zero. Furthermore, by Lemma [2.5](#page-4-4) and Lemma [2.7,](#page-5-4) we obtain

$$
\rho_{[p+1,q]}(V,\varphi) \leq \max \left\{ \rho_{[p+1,q]}(\psi,\varphi), \ \rho_{[p+1,q]}(A_j,\varphi) \ (j=0,1,...,k) \right\} < \sigma.
$$

As a consequence

$$
\max \left\{ \rho_{[p+1,q]} \left(V, \varphi \right), \, \, \rho_{[p+1,q]} \left(A_j, \varphi \right) (j=0,1,...,k) \right\} < \sigma \leq \rho_{[p+1,q]} \left(\vartheta, \varphi \right).
$$

Thus, by Lemma [2.17,](#page-11-0) we get

$$
\sigma \leq \overline{\lambda}_{[p+1,q]} (f - \psi, \varphi) = \lambda_{[p+1,q]} (f - \psi, \varphi)
$$

= $\rho_{[p+1,q]} (f - \psi, \varphi) = \rho_{[p+1,q]} (f, \varphi) \leq \rho_{[p,q]} (A_s, \varphi).$

Acknowledgements. The third author is supported by University of Mostaganem (UMAB) (PRFU Project Code C00L03UN270120220007).

REFERENCES

- [1] B. BELAÏDI, Iterated order of meromorphic solutions of homogeneous and non-homogeneous linear differential equations, *ROMAI J.*, **11** (2015), No. 1, pp. 33–46.
- [2] N. BISWAS, S. K. DATTA and S. TAMANG, On growth properties of transcendental meromorphic solutions of linear differential equations with entire coefficients of higher order, *Commun. Korean. Math. Soc.*, **34** (2019), No. 4, pp. 1245–1259. https://doi.org/10.4134/CKMS.c180448
- [3] R. BOUABDELLI and B. BELAÏDI, Growth and complex oscillation of linear differential equations with meromorphic coefficients of $[p, q]$ - φ order, *Int. J. Anal. Appl.*, **6** (2014), No. 2, pp. 178–194.
- [4] A. GOLDBERG and I. OSTROVSKII, *Value distribution of meromorphic functions*, Transl. Math. Monogr., vol. 236, Amer. Math. Soc., Providence RI, 2008.
- [5] G. G. GUNDERSEN, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, *J. London Math. Soc.*, **37** (1988), No. 1, pp. 88–104. https://doi.org/10.1112/jlms/s2- 37.121.88
- [6] G. G. GUNDERSEN, Finite order solutions of second order linear differential equations, *Trans. Amer. Math. Soc.*, **305** (1988), No. 1, pp. 415–429. https://doi.org/10.1090/S0002-9947-1988- 0920167-5
- [7] W. K. HAYMAN, The local growth of power series: a survey of the Wiman-Valiron method, *Canad. Math. Bull.*, **17** (1974), No. 3, pp. 317–358. https://doi.org/10.4153/CMB-1974-064-0
- [8] W. K. HAYMAN, *Meromorphic functions*, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [9] G. JANK and L. VOLKMANN, Untersuchungen ganzer und meromorpher funktionen unendlicher ordnung, *Arch. Math. (Basel)*, **39** (1982), No. 1, pp.32–45. https://doi.org/10.1007/BF01899242
- [10] J. JANK and L. VOLKMANN, *Einführung in die theorie der ganzen und meromorphen funktionen mit anwendungen auf differentialgleichungen*, Birkhäuser Verlag, Basel, 1985.
- [11] G. JANK and H. WALLNER, Über das wachstum gewisser klassen kanonischer produkte, *Arch. Math. (Basel)*, **28** (1977), pp. 274–280. https://doi.org/10.1007/BF01223921
- [12] L. KINNUNEN, Linear differential equations with solutions of finite iterated order, *Southeast Asian Bull. Math.*, **22** (1998), No. 4, pp. 385–405.
- [13] L. M. LI and T. B. CAO, Solutions for linear differential equations with meromorphic coefficients of (p, q)-order in the plane, *Electron. J. Differential Equations*, **2012** (2012), No. 195, pp. 1–15.
- [14] J. LIU, J. TU and L. Z. SHI, Linear differential equations with entire coefficients of [p, q]-order in the complex plane, *J. Math. Anal. Appl.*, **372** (2010), No. 1, pp. 55–67. https://doi.org/10.1016/j.jmaa.2010.05.014
- [15] G. S. LIU, J. TU and H. ZHANG, The growth and zeros of linear differential equations with entire coefficients of $[p, q]$ - φ order, *J. Comput. Anal. Appl.*, **27** (2019), No.4, pp. 681–689.
- [16] M. SAIDANI and B. BELAÏDI, Some properties on the $[p, q]$ -order of meromorphic solutions of homogeneous and non-homogeneous linear differential equations with meromorphic coefficients, *Eur. J. Math. Anal.*, **1** (2021), pp. 86–105. https://doi.org/10.28924/ada/ma.1.86
- [17] X. SHEN, J. TU and H. Y. XU, Complex oscillation of a second-order linear differential equation with entire coefficients of $[p, q]$ - φ order, *Adv. Difference Equ.*, **2014** (2014), No. 200, 14 pp. https://doi.org/10.1186/1687-1847-2014-200
- [18] G. VALIRON, *Lectures on the general theory of integral functions*, translated by E. F. Collingwood, Chelsea, New York, 1949.
- [19] M. L. ZHAN and X. M. ZHENG, Solutions to linear differential equations with some coefficient being lacunary series of [p, q]-order in the complex plane, *Ann. Differential Equations*, **30** (2014), No. 3, pp. 364–372.