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ABSTRACT. In this study, we prove the automatic continuity of surjective n-homomorphism
between complete p-normed algebras. We show also tReaifdB are complete *-p-normed
algebras® is *simple andy : 24 — 95 is a surjective n-homomorphism under certain conditions,

theny is continuous.
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1. INTRODUCTION

In this paper, the algebras considered are assumed complex, commutative, and not necessarily
unitary.

Definition 1.1. Let 2 be a vector space anpda real numbe(0 < p < 1). A real function
|- ||, A — R* is called a p-norm if :

o [lz]l, = 0.

° ||m||p:O<:>x:O.

o || Az]|, = |APP||z||, Yz € AandVA € C.

o [z +yllp < llelly + Iyl Vo, y € A

Definition 1.2. A(complex) p-normed algebra is a pafll,{| - ||,) where2( is a complex al-
gebra and| - ||, is a p-norm orl which is sub-multiplicative,i.e. for alt,y € 2 we have

lzylly < lzllpllylly

A complete p-normed algebra is a p-normed algebra which is complete as a normed space.

2. PRELIMINARIES

It is convenient to begin by recalling some definitions and known results.
If 2L does not have a unit, then we can adjoin one as follows:

Proposition 2.1. A p-normed algebra without a unit can be embedded into a unital p-normed
algebra2(* as an ideal of codimension one.

Proof. Let A% = A @ C Direct sum of2 and the field of complex numbers.
2% is a vector space under the usual operations :
4 AT A AF
((LU, Oé), (y7 5)) - (SC +y, o+ ﬁ)
X AT — A
(A, (2,0)) — (Az, Aa)
In addition to,2(* is an algebra when defining a multiplicationd¥ by :
O A x A*. — A*
(z, ), (y,8)) — (z,a) © (y,8)
(7,0) © (y,8) = (z,a)(y, B) := (vy + Br + ay, aff)

The operatior® is closed orR(*, and (2%, +, ., ©®) is algebra with unit elemer(b, 1).
Now, define the functiofj - ||, on2A# by :
Il - 2% — R
(z, @) — ||(z, a)llp = [|=]l, + |a]
then @#,| - ||,) is p-normed algebra.
Let B = {(z,0) : x € A}, and
Identify :
p:A— B

r — (x,0)

|(z,0)||, = |l=]l, + |0 |= ||=||, hencep is isometric isomorphe.
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We write (z, \) = (z,0) + A\(0, 1), sinceB is an ideal inA x C of codimension 1.

Now, define the spectrum and the spectral radius:

Let2( be an algebra :
(1) If 20 is unital with uniteg then the spectrum and the spectral radius afe defined by :

(2.1) spg(z) :={A € C: heg — = ¢ InvA}

(22) pal) = sup {|A] : X € spa(x)}

where Inv2l is the set of invertible elements o
(2) If 2 is nonunital, we define the quasi-producin 2 by
zwy=c+y—xzy (r,yeA)
An element x ofd is called quasi-invertible if there ig € 2 such thatr . y = 0 and
x .y = 0. The set of all quasi-invertible elementsis denoted by, — Inv¥l.
Let 2# the Banach algebra obtained by adjoining a uni(taalled the unitization of
2.
We define spectrum in non-unital Banach algebra :
spo(z) = {0} U {\ € C\{0} : 12 ¢ ¢ — InvA} and it is easy to see thapy(z) =
spa ((2,0)) andp,(z) = pay((x,0))
Definition 2.1. An involution = on an algebra&l is a mapping: : 2 — 2l satisfying :
(z+y) =2"+y" (A\x)" = Az*
(zy) =y'z"
with involution % , 2 is calledx-algebra.
Remark 2.1. If 2L is involutive, defining an involution o@# by : (z, \)* := (z*,X) ,V(z, \) €
A

Definition 2.2. Let 2 and ‘B be two algebras. A linear map : 2 — B is called ann-
homomorphism if for each, ..., «, € Atheny (a; ... a,) =¥ (1) ... Y () .

An ideal J ofx-algebra is called a-ideal if J* C J (thenJ* = J).
Recall that an algebrd is called simple if it has no proper ideals. Aralgebra?( is calledsx
-simple if it has no propes -ideals.

Proposition 2.2.[7] Let2l be an *-simple algebra, #( is not simple. Then there exists a unitary
simple subalgebra J & such thatd = J & J*

Definition 2.3. Let 2 be an algebr&ll is called factorizable if for each € 2 there arev, 3 € A
such thaty = apf.

Lemma 2.3. [9] Let2l be a Banach algebra such thay = yz. Thenp(z + y) < p(z) + p(y)
andp(zy) < p(z)p(y) forall z,y € A

Definition 2.4. The (Jacobson) radical of an algelas denoted byad 2f whererad 2 is the
intersection of all maximal left (right) ideals .
Recall that an algebr is called semisimple ifad 2 = {0}.
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Lemma 2.4. [5]. Let®B be a Banach algebra, lef(z) be a polynomial with coefficients 8,
and letR > 0. Then

(2.3) pe(p(1))® < sup, P (p(2)) |S|lipi P (p(2))

Lemma 2.5. Let2 be a Banach algebra. Then

(1) givenz € 2 and suppose thaty (z125 -+ - z,—1x) = 0 for all xy,2zo,..., 2,1 € X,
thenx € rad .

(2) givenz € 2 and suppose thaty (zz125---x,—1) = 0 for all xy,zo,..., 2,1 € X,
thenx € rad .

Recall the concept of separating space of a linear operato? ktd B be two Banach
algebras, and let : 24 — 5 be a linear mapping. The separating space o defined by :

(24) ©()={p B : there exists(a,,),, in A such thatv,,, — 0 andy (o,,,) — 5}

We know thatS(v) is a closed linear subspace #8f. By the closed graph theorent, is
continuous if and only if5(y) = {0} [2, 5.1.2]

Proposition 2.6. Let 2l and 8 be topological algebras andy : 20 — 9B be a dense range
n-homomorphism witky () is factorizable. Thei®(v)) is a closed (two-sided) ideal 5.

Proof. By [[2], Proposition 5.1.2]S(v) is a closed linear subspaceBf Lety € S(v) and
x € 2. There exists a nefz,,} in 2 such thatz,, — 0 andv (z,,) — y. Sincey () is a
factorizable algebra, there aré, ..., 2/, _, € A such that)(z) = ¢ (z})---¢ («},_,). Since
Tyl T, — 0andy (22l 3m) — ¥ (2h) 0 (o)) y = ¥(x)y, it follows that

n—1

P(x)y € &(v). Similarly, yu(x) € &(¢)
If 4/ € B then there exists a nét}.} in 2 such that) (a}) — ' and soy (z},) y — y'y. Since

Y (x))y € S(¢) and&(v) is closed, it follows thay'y € &(v). Similarly, yy' € &(v). Hence
S(v) is an ideal inB &

3. MAIN RESULT

Theorem 3.1.Let2 and®B be completg-normed algebras, and let : 2 — B be a surjective
n-homomorphism, and suppose thais semisimple and factorizable. Theris automatically
continuous.

Proof. Let 2 be a complete-normed algebra and,, — 0 in 2 such that) (z,,) — yin B
Letz € A with ¢)(z) = y, and form > 1, and letP,,(z) = 2¢ (z,,,) + (¢(a:) U (z))
Thenforallz € C: py (Pn(2)) < [|1Pn(2)l, < 2] 19 (zm)l, + [0 (2) — ¢ (zm)],

P (Pm(z)n_l) < Py ((me + (z — Im))n ' S || 2T+ (T — 7)) 1H

forall z € C: -
< ewm+ (@ =zl < (e, + 2 = 2nll, )

If A € spas (P(2)) then\" ™ € spas (P (2)" 1)
Hencepy (Pru(2)) < [2] [|[zmll, + |z — 2|, forallm > 1, and all? > 0:

P < (Rllzmll, + o = 2all,) (B 10 @)l + 14(@) = ¢ (@), )

Letting firstm — oo, and thenk — oo, it follows thatpg(y) = 0.

B is factorizable, then for every € B there are/|, ..., vy, , € Bsuchthay' =, ...y, ,
By choosingz, e 2,i=1,...,n— 1L, with¢ (z}) =vy.,i=1,...,n—1,
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we haver) ...z}, 1z, — 0in2Aandy (2} ...z, _12n) = y1...¥,_1y =Yy inB py (y'y) =

n—1
0.
Sincey’ is arbitrary, by Lemmf 2]5, it follows thate rad 9B, and hence = 0
|

Theorem 3.2. Let2l and®B be complete p-normed algebras withis an unital, strongly semi-
simple algebra. If) : 24 — B is a dense range-homomorphism such that2() is factorizable,
theny has a closed graph.

Proof. Let M be a maximal ideal o%. Since®s is an unital complete p-normed algebra, M is
closed and so, by, 6.14(3)],B/M is a complete p-normed algebra. Since ideal8jf\/ are

in the form of J/M, whereJ is an ideal inB containing), the only ideals of3/M are zero
(thatis,M ) and®B /M. HenceB /M is simple.

Letw : 2 — B /M, which is the composition af, and the canonical map frof& ontoB /M.

By Proposition} 2.6 () is an ideal of8 /M. On the other hand, by Lemrha P.4 we have

poyn (T(x)" 1) < pg (271 (2 € A)

If X € spg (m(x)) then\"! ¢ spa/n (m(2)" ) @and Sopg p, (7(2)) < pylx). If esynr €
G () then there exists a ngt;, } in 2 such thatr, — 0in A andr (x5,) — ep/n inB.
Moreover,

1= po/m (6%/M> < psar (7 (k) + Pogyaar (3%/M - (wk))

< po (@) + posyar (€ssynr — m (1)) -
Or pg @ndpg ), are continuous at zero and so

Pa (Tr) + Py (e — 7 (1)) — 0

which is a contradiction. Henesey s ¢ & (7). SinceB /M is simple, it follows thatS (7) =
M, that is,r is continuous and hence(x;) — 0, which implies thaty € M. SincelM is an
arbitrary maximal ideal, we conclude that R(%5). SinceB is strongly semisimple, we have
y=0.

|

Theorem 3.3. Let ¢y be a surjective n-homomorphism from a complete p-normed alg#bra
onto a complete *-p-normed algeb, and suppose tha®8 is *-simple. Then) is continuous.

Proof. Since®B is a *-simple algebra, there exists a unitary simple subalgebr&Jsfch that:
B = J @ J*; of the following algebraic isomorphisny: ~ B /.J*.
We deduce that J is a maximal idealBf Hence J(resp/* ) is closed inB. Hence, J (resp’)
is a complete p-normed subalgebra.

Let :Pr; : 8 — J (resp.Pry : 28 — J*) the canonical projection B on J (resp. of3 on
J*).
SincePr; (resp.Pry ) is a continuous epimorphisn®r; o ¢ ( resp. Pry o 1) is continuous.
As aresulty) = (Pry + Pry) o) = Pry o + Pry o 1) is continuous.

|

Theorem 3.4. Let vy be a surjective n-homomorphism from a complete p-normed alg#bra
onto a complete *-p-normed algeba. If 95 is *-semi-simple ther is continuous.

Proof. Let M un ideal *-maximum of8 andr : 8 — B/M the canonical surjection. Asis
surjective and continuous, it, therefore, follows that ¢ is a surjective homomorphism in the
quotient algebr& /M which is *-simple. Since M is a closed ideal ¥, ®B/M is a complete
p-normed algebra. So, by Theor 31 ¢ is continuous. as a resul§(w o 1) = (0),0r0
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is the class o06.

Or & (mo ) =7n(6(v)) whencer(S(y)) = {0},

which implies&(y) C M

Since M is arbitrary, the® () C NM or NM = Rad.(2) = {0} whencey is continuousa
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