THE AUTOMATIC CONTINUITY OF N-HOMOMORPHISMS IN CERTAIN *-BANACH ALGEBRAS

M. ABOULEKHLEF, Y. TIDLI

Received 24 June, 2023; accepted 24 October, 2023; published 24 November, 2023.

Laboratory of Applied Mathematics and Information and Communication Technology Polydisciplinary Faculty of Khouribga University of Sultan Moulay Slimane Morocco. aboulekhlef@gmail.com y.tidli@gmail.com

Abstract

In this study, we prove the automatic continuity of surjective n-homomorphism between complete p-normed algebras. We show also that if \mathfrak{A} and \mathfrak{B} are complete *-p-normed algebras, \mathfrak{B} is *simple and $\psi: \mathfrak{A} \rightarrow \mathfrak{B}$ is a surjective n-homomorphism under certain conditions, then ψ is continuous.

Key words and phrases: Automatic continuity; n-homomorphism; Banach algebra.

2010 Mathematics Subject Classification. primary 46J10, 16Wxx. Secondary 47B48.

1. Introduction

In this paper, the algebras considered are assumed complex, commutative, and not necessarily unitary.
Definition 1.1. Let \mathfrak{A} be a vector space and p a real number $(0<p \leq 1)$. A real function $\|\cdot\|_{p}: \mathfrak{A} \rightarrow \mathbb{R}^{+}$is called a p-norm if :

- $\|x\|_{p} \geq 0$.
- $\|x\|_{p}=0 \Longleftrightarrow x=0$.
- $\|\lambda x\|_{p}=|\lambda|^{p}\|x\|_{p} \forall x \in \mathfrak{A}$ and $\forall \lambda \in \mathbb{C}$.
- $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p} \forall x, y \in \mathfrak{A}$

Definition 1.2. A(complex) p-normed algebra is a pair $\left(\mathfrak{A},\|\cdot\|_{p}\right.$) where \mathfrak{A} is a complex algebra and $\|\cdot\|_{p}$ is a p-norm on \mathfrak{A} which is sub-multiplicative,i.e. for all $x, y \in \mathfrak{A}$ we have $\|x y\|_{p} \leq\|x\|_{p}\|y\|_{p}$

A complete p-normed algebra is a p-normed algebra which is complete as a normed space.

2. Preliminaries

It is convenient to begin by recalling some definitions and known results.
If \mathfrak{A} does not have a unit, then we can adjoin one as follows:

Proposition 2.1. A p-normed algebra without a unit can be embedded into a unital p-normed algebra $\mathfrak{A}^{\#}$ as an ideal of codimension one.

Proof. Let $\mathfrak{A}^{\#}=\mathfrak{A} \oplus \mathbb{C}$ Direct sum of \mathfrak{A} and the field of complex numbers.
$\mathfrak{A}^{\#}$ is a vector space under the usual operations :

$$
\begin{aligned}
+: \mathfrak{A}^{\#} \times \mathfrak{A}^{\#} & \longrightarrow \mathfrak{A}^{\#} \\
((x, \alpha),(y, \beta)) & \longrightarrow(x+y, \alpha+\beta) \\
\cdot: \mathfrak{C} \times \mathfrak{A}^{\#} & \longrightarrow \mathfrak{A}^{\#} \\
(\lambda,(x, \alpha)) & \rightarrow(\lambda x, \lambda \alpha)
\end{aligned}
$$

In addition to, $\mathfrak{A}^{\#}$ is an algebra when defining a multiplication in $\mathfrak{A} \#$ by :

$$
\begin{aligned}
\odot: \mathfrak{A}^{\#} \times \mathfrak{A}^{\#} & \longrightarrow \mathfrak{A}^{\#} \\
(x, \alpha),(y, \beta)) & \longrightarrow(x, \alpha) \odot(y, \beta) \\
(x, \alpha) \odot(y, \beta) & :=(x, \alpha)(y, \beta):=(x y+\beta x+\alpha y, \alpha \beta)
\end{aligned}
$$

The operation \odot is closed on $\mathfrak{A}^{\#}$, and $\left(\mathfrak{A}^{\#},+, ., \odot\right)$ is algebra with unit element $(0,1)$.
Now, define the function $\|\cdot\|_{p}$ on $\mathfrak{A}^{\#}$ by :

$$
\|\cdot\|_{p}: \mathfrak{A}^{\#} \longrightarrow \mathbb{R}^{+}
$$

$(x, \alpha) \longrightarrow\|(x, \alpha)\|_{p}=\|x\|_{p}+|\alpha|$
then $\left(\mathfrak{A}^{\#},\|\cdot\|_{p}\right)$ is p -normed algebra.
Let $B=\{(x, 0): x \in A\}$, and
Identify:
$\phi: A \rightarrow B$

$$
x \rightarrow(x, 0)
$$

$\|(x, 0)\|_{p}=\|x\|_{p}+|0|=\|x\|_{p}$ hence ϕ is isometric isomorphe.

We write $(x, \lambda)=(x, 0)+\lambda(0,1)$, since B is an ideal in $A \times \mathbb{C}$ of codimension 1.

Now, define the spectrum and the spectral radius:

Let \mathfrak{A} be an algebra :
(1) If \mathfrak{A} is unital with unit $e_{\mathfrak{A}}$ then the spectrum and the spectral radius of x are defined by:

$$
\begin{align*}
\operatorname{sp}_{\mathfrak{A}}(x) & :=\left\{\lambda \in \mathbb{C}: \lambda e_{\mathfrak{A}}-x \notin \operatorname{Inv} \mathfrak{A}\right\} \tag{2.1}\\
\rho_{\mathfrak{A}}(x) & :=\sup \left\{|\lambda|: \lambda \in \operatorname{sp}_{\mathfrak{A}}(x)\right\} \tag{2.2}
\end{align*}
$$

where Inv \mathfrak{A} is the set of invertible elements of \mathfrak{A}.
(2) If \mathfrak{A} is nonunital, we define the quasi-product \cdot on \mathfrak{A} by

$$
x \cdot y=x+y-x y \quad(x, y \in \mathfrak{A})
$$

An element x of \mathfrak{A} is called quasi-invertible if there is $y \in \mathfrak{A}$ such that $x \cdot y=0$ and $x \cdot y=0$. The set of all quasi-invertible elements of \mathfrak{A} is denoted by $q-\operatorname{Inv} \mathfrak{A}$.
Let $\mathfrak{A}^{\#}$ the Banach algebra obtained by adjoining a unit to \mathfrak{A}, called the unitization of \mathfrak{A}.
We define spectrum in non-unital Banach algebra :
$\operatorname{sp}_{\mathfrak{A}}(x)=\{0\} \cup\left\{\lambda \in \mathbb{C} \backslash\{0\}: \frac{1}{\lambda} x \notin q-\operatorname{Inv} \mathfrak{A}\right\}$ and it is easy to see that $s p_{\mathfrak{A}}(x)=$ $s p_{\mathfrak{A} \#}((x, 0))$ and $\rho_{A}(x)=\rho_{A \#}((x, 0))$

Definition 2.1. An involution $*$ on an algebra \mathfrak{A} is a mapping $*: \mathfrak{A} \rightarrow \mathfrak{A}$ satisfying :

$$
\begin{array}{ll}
(x+y)^{*}=x^{*}+y^{*} & (\lambda x)^{*}=\bar{\lambda} x^{*} \\
(x y)^{*}=y^{*} x^{*} &
\end{array}
$$

with involution $*, \mathfrak{A}$ is called $*$-algebra.
Remark 2.1. If \mathfrak{A} is involutive, defining an involution on $\mathfrak{A}^{\#}$ by $:(x, \lambda)^{*}:=\left(x^{*}, \bar{\lambda}\right), \forall(x, \lambda) \in$ $\mathfrak{A}{ }^{\#}$

Definition 2.2. Let \mathfrak{A} and \mathfrak{B} be two algebras. A linear map $\psi: \mathfrak{A} \rightarrow \mathfrak{B}$ is called an n homomorphism if for each $\alpha_{1}, \ldots, \alpha_{n} \in \mathfrak{A}$ then $\psi\left(\alpha_{1} \ldots \alpha_{n}\right)=\psi\left(\alpha_{1}\right) \ldots \psi\left(\alpha_{n}\right)$.

An ideal J of $*$-algebra is called a $*$-ideal if $J^{*} \subseteq J$ (then $\left.J^{*}=J\right)$.
Recall that an algebra \mathfrak{A} is called simple if it has no proper ideals. An $*$-algebra \mathfrak{A} is called $*$ -simple if it has no proper $*$-ideals.

Proposition 2.2. [7] Let \mathfrak{A} be an *-simple algebra, if \mathfrak{A} is not simple. Then there exists a unitary simple subalgebra J of \mathfrak{A} such that $A=J \oplus J^{*}$

Definition 2.3. Let \mathfrak{A} be an algebra, \mathfrak{A} is called factorizable if for each $\gamma \in \mathfrak{A}$ there are $\alpha, \beta \in A$ such that $\gamma=\alpha \beta$.

Lemma 2.3. [9] Let \mathfrak{A} be a Banach algebra such that $x y=y x$. Then $\rho(x+y) \leq \rho(x)+\rho(y)$ and $\rho(x y) \leq \rho(x) \rho(y)$ for all $x, y \in \mathfrak{A}$

Definition 2.4. The (Jacobson) radical of an algebra \mathfrak{A} is denoted by $\operatorname{rad} \mathfrak{A}$ where $\operatorname{rad} \mathfrak{A}$ is the intersection of all maximal left (right) ideals in \mathfrak{A}.
Recall that an algebra \mathfrak{A} is called semisimple if $\operatorname{rad} \mathfrak{A}=\{0\}$.

Lemma 2.4. [5]. Let \mathfrak{B} be a Banach algebra, let $p(z)$ be a polynomial with coefficients in \mathfrak{B}, and let $R>0$. Then

$$
\begin{equation*}
\rho_{\mathfrak{B}}(p(1))^{2} \leq \sup _{|z|=R} \rho_{\mathfrak{B}}(p(z)) \sup _{|z|=\frac{1}{R}} \rho_{\mathfrak{B}}(p(z)) \tag{2.3}
\end{equation*}
$$

Lemma 2.5. Let \mathfrak{A} be a Banach algebra. Then
(1) given $x \in \mathfrak{A}$ and suppose that $\rho_{\mathfrak{A}}\left(x_{1} x_{2} \cdots x_{n-1} x\right)=0$ for all $x_{1}, x_{2}, \ldots, x_{n-1} \in \mathfrak{A}$, then $x \in \operatorname{rad} \mathfrak{A}$.
(2) given $x \in \mathfrak{A}$ and suppose that $\rho_{\mathfrak{A}}\left(x x_{1} x_{2} \cdots x_{n-1}\right)=0$ for all $x_{1}, x_{2}, \ldots, x_{n-1} \in \mathfrak{A}$, then $x \in \operatorname{rad} \mathfrak{A}$.

Recall the concept of separating space of a linear operator, let \mathfrak{A} and \mathfrak{B} be two Banach algebras, and let $\psi: \mathfrak{A} \longrightarrow \mathfrak{B}$ be a linear mapping. The separating space of ψ is defined by :
(2.4) $\quad \mathfrak{S}(\psi)=\left\{\beta \in \mathfrak{B}\right.$: there exists $\left(\alpha_{m}\right)_{m}$ in \mathfrak{A} such that $\alpha_{m} \rightarrow 0$ and $\left.\psi\left(\alpha_{m}\right) \rightarrow \beta\right\}$

We know that $\mathfrak{S}(\psi)$ is a closed linear subspace of \mathfrak{B}. By the closed graph theorem, ψ is continuous if and only if $\mathfrak{S}(\psi)=\{0\}$ [2, 5.1.2]
Proposition 2.6. Let \mathfrak{A} and \mathfrak{B} be topological algebras and $\psi: \mathfrak{A} \rightarrow \mathfrak{B}$ be a dense range n-homomorphism with $\psi(\mathfrak{A})$ is factorizable. Then $\mathfrak{S}(\psi)$ is a closed (two-sided) ideal in \mathfrak{B}.
Proof. By [[2], Proposition 5.1.2], $\mathfrak{S}(\psi)$ is a closed linear subspace of \mathfrak{B}. Let $y \in \mathfrak{S}(\psi)$ and $x \in \mathfrak{A}$. There exists a net $\left\{x_{m}\right\}$ in \mathfrak{A} such that $x_{m} \rightarrow 0$ and $\psi\left(x_{m}\right) \rightarrow y$. Since $\psi(\mathfrak{A})$ is a factorizable algebra, there are $x_{1}^{\prime}, \ldots, x_{n-1}^{\prime} \in \mathfrak{A}$ such that $\psi(x)=\psi\left(x_{1}^{\prime}\right) \cdots \psi\left(x_{n-1}^{\prime}\right)$. Since $x_{1}^{\prime} \cdots x_{n-1}^{\prime} x_{m} \rightarrow 0$ and $\psi\left(x_{1}^{\prime} \cdots x_{n-1}^{\prime} x_{m}\right) \rightarrow \psi\left(x_{1}^{\prime}\right) \cdots \psi\left(x_{n-1}^{\prime}\right) y=\psi(x) y$, it follows that $\psi(x) y \in \mathfrak{S}(\psi)$. Similarly, $y \psi(x) \in \mathfrak{S}(\psi)$
If $y^{\prime} \in \mathfrak{B}$ then there exists a net $\left\{x_{k}^{\prime}\right\}$ in \mathfrak{A} such that $\psi\left(a_{k}^{\prime}\right) \rightarrow y^{\prime}$ and so $\psi\left(x_{k}^{\prime}\right) y \rightarrow y^{\prime} y$. Since $\psi\left(x_{k}^{\prime}\right) y \in \mathfrak{S}(\psi)$ and $\mathfrak{S}(\psi)$ is closed, it follows that $y^{\prime} y \in \mathfrak{S}(\psi)$. Similarly, yy $\in \mathfrak{S}(\psi)$. Hence $\mathfrak{S}(\psi)$ is an ideal in \mathfrak{B}

3. MAin result

Theorem 3.1. Let \mathfrak{A} and \mathfrak{B} be complete p-normed algebras, and let $\psi: \mathfrak{A} \rightarrow \mathfrak{B}$ be a surjective n-homomorphism, and suppose that \mathfrak{B} is semisimple and factorizable. Then ψ is automatically continuous.

Proof. Let \mathfrak{A} be a complete p-normed algebra and $x_{m} \rightarrow 0$ in \mathfrak{A} such that $\psi\left(x_{m}\right) \rightarrow y$ in \mathfrak{B}
Let $x \in \mathfrak{A}$ with $\psi(x)=y$, and for $m \geq 1$, and let $P_{m}(z)=z \psi\left(x_{m}\right)+\left(\psi(x)-\psi\left(x_{m}\right)\right)$
Then for all $z \in \mathbb{C}: \rho_{\mathfrak{B}}\left(P_{m}(z)\right) \leq\left\|P_{m}(z)\right\|_{p} \leq|z|\left\|\psi\left(x_{m}\right)\right\|_{p}+\left\|\psi(x)-\psi\left(x_{m}\right)\right\|_{p}$

$$
\rho_{\mathfrak{B}}\left(P_{m}(z)^{n-1}\right) \leq \rho_{\mathfrak{A}}\left(\left(z x_{m}+\left(x-x_{m}\right)\right)^{n-1}\right) \leq\left\|\left(z x_{m}+\left(x-x_{m}\right)\right)^{n-1}\right\|_{p}
$$

for all $z \in \mathbb{C}$:

$$
\leq\left\|z x_{m}+\left(x-x_{m}\right)\right\|_{p}^{n-1} \leq\left(|z|\left\|x_{m}\right\|_{p}+\left\|x-x_{m}\right\|_{p}\right)^{n-1}
$$

If $\lambda \in s p_{\mathfrak{B}}\left(P_{m}(z)\right)$ then $\lambda^{n-1} \in s p_{\mathfrak{B}}\left(P_{m}(z)^{n-1}\right)$
Hence $\rho_{\mathfrak{B}}\left(P_{m}(z)\right) \leq|z|\left\|x_{m}\right\|_{p}+\left\|x-x_{m}\right\|_{p}$ for all $m \geq 1$, and all $R>0$:
$\rho_{B}(y)^{2} \leq\left(R\left\|x_{m}\right\|_{p}+\left\|x-x_{m}\right\|_{p}\right)\left(R^{-1}\left\|\psi\left(x_{m}\right)\right\|_{p}+\left\|\psi(x)-\psi\left(x_{m}\right)\right\|_{p}\right)$
Letting first $m \rightarrow \infty$, and then $R \rightarrow \infty$, it follows that $\rho_{\mathfrak{B}}(y)=0$.
\mathfrak{B} is factorizable, then for every $y^{\prime} \in \mathfrak{B}$ there are $y_{1}^{\prime}, \ldots, y_{n-1}^{\prime} \in \mathfrak{B}$ such that $y^{\prime}=y_{1}^{\prime} \ldots y_{n-1}^{\prime}$ By choosing $x_{i}^{\prime} \in \mathfrak{A}, i=1, \ldots, n-1$, with $\psi\left(x_{i}^{\prime}\right)=y_{i}^{\prime}, i=1, \ldots, n-1$,
we have $x_{1}^{\prime} \ldots x_{n-1}^{\prime} x_{m} \rightarrow 0$ in \mathfrak{A} and $\psi\left(x_{1}^{\prime} \ldots x_{n-1}^{\prime} x_{m}\right) \rightarrow y_{1} \ldots y_{n-1}^{\prime} y=y^{\prime} y$ in $\mathfrak{B} \rho_{\mathfrak{B}}\left(y^{\prime} y\right)=$ 0.

Since y^{\prime} is arbitrary, by Lemma 2.5, it follows that $y \in \operatorname{rad} \mathfrak{B}$, and hence $y=0$

Theorem 3.2. Let \mathfrak{A} and \mathfrak{B} be complete p-normed algebras with \mathfrak{B} is an unital, strongly semisimple algebra. If $\psi: \mathfrak{A} \rightarrow \mathfrak{B}$ is a dense range n-homomorphism such that $\psi(\mathfrak{A})$ is factorizable, then ψ has a closed graph.

Proof. Let M be a maximal ideal of \mathfrak{B}. Since \mathfrak{B} is an unital complete p-normed algebra, M is closed and so, by $[1,6.14(3)], \mathfrak{B} / M$ is a complete p-normed algebra. Since ideals in \mathfrak{B} / M are in the form of J / M, where J is an ideal in \mathfrak{B} containing M, the only ideals of \mathfrak{B} / M are zero (that is, M) and \mathfrak{B} / M. Hence \mathfrak{B} / M is simple.
Let $\pi: \mathfrak{A} \rightarrow \mathfrak{B} / M$, which is the composition of ψ, and the canonical map from \mathfrak{B} onto \mathfrak{B} / M. By Proposition 2.6, $\mathfrak{S}(\pi)$ is an ideal of \mathfrak{B} / M. On the other hand, by Lemma 2.4 we have

$$
\rho_{\mathfrak{B} / M}\left(\pi(x)^{n-1}\right) \leq \rho_{\mathfrak{A}}\left(x^{n-1}\right) \quad(x \in \mathfrak{A})
$$

If $\lambda \in \operatorname{sp}_{\mathfrak{B} / M}(\pi(x))$ then $\lambda^{n-1} \in \operatorname{sp}_{\mathfrak{B} / M}\left(\pi(x)^{n-1}\right)$ and so $\rho_{\mathfrak{B} / M}(\pi(x)) \leq \rho_{\mathfrak{A}}(x)$. If $e_{\mathfrak{B} / M} \in$ $\mathfrak{S}(\pi)$ then there exists a net $\left\{x_{k}\right\}$ in \mathfrak{A} such that $x_{k} \rightarrow 0$ in \mathfrak{A} and $\pi\left(x_{k}\right) \rightarrow e_{\mathfrak{B} / M}$ in \mathfrak{B}.
Moreover,

$$
\begin{aligned}
1 & =\rho_{\mathfrak{B} / M}\left(e_{\mathfrak{B} / M}\right) \leq \rho_{\mathfrak{B} / M}\left(\pi\left(x_{k}\right)\right)+\rho_{\mathfrak{B} / M}\left(e_{\mathfrak{B} / M}-\pi\left(x_{k}\right)\right) \\
& \leq \rho_{\mathfrak{A}}\left(x_{k}\right)+\rho_{\mathfrak{B} / M}\left(e_{\mathfrak{B} / M}-\pi\left(x_{k}\right)\right)
\end{aligned}
$$

or $\rho_{\mathfrak{A}}$ and $\rho_{\mathfrak{B} / M}$ are continuous at zero and so

$$
\rho_{\mathfrak{A}}\left(x_{k}\right)+\rho_{\mathfrak{B} / M}\left(e_{\mathfrak{B} / M}-\pi\left(x_{k}\right)\right) \rightarrow 0
$$

which is a contradiction. Hence $e_{\mathfrak{B} / M} \notin \mathfrak{S}(\pi)$. Since \mathfrak{B} / M is simple, it follows that $\mathfrak{S}(\pi)=$ M, that is, π is continuous and hence $\pi\left(x_{k}\right) \rightarrow 0$, which implies that $y \in M$. Since M is an arbitrary maximal ideal, we conclude that $y \in \Re(\mathfrak{B})$. Since \mathfrak{B} is strongly semisimple, we have $y=0$.
-
Theorem 3.3. Let ψ be a surjective n-homomorphism from a complete p-normed algebra \mathfrak{A}

Proof. Since \mathfrak{B} is a *-simple algebra, there exists a unitary simple subalgebra J of \mathfrak{B} such that: $\mathfrak{B}=J \oplus J^{\star}$; of the following algebraic isomorphism: $J \simeq \mathfrak{B} / J^{\star}$.
We deduce that \mathbf{J} is a maximal ideal of \mathfrak{B}. Hence $J\left(\right.$ resp. J^{\star}) is closed in \mathfrak{B}. Hence, \mathbf{J} (resp. J^{\star}) is a complete p -normed subalgebra.
Let $: \operatorname{Pr}_{1}: \mathfrak{B} \longrightarrow J$ (resp. $\operatorname{Pr}_{2}: \mathfrak{B} \longrightarrow J^{*}$) the canonical projection of \mathfrak{B} on \mathbf{J} (resp. of \mathfrak{B} on J^{\star}).
Since $P r_{1}$ (resp. $P r_{2}$) is a continuous epimorphism, $P r_{1} \circ \psi\left(\right.$ resp. $\left.P r_{2} \circ \psi\right)$ is continuous. As a result, $\psi=\left(P r_{1}+P r_{2}\right) \circ \psi=P r_{1} \circ \psi+P r_{2} \circ \psi$ is continuous.

Theorem 3.4. Let ψ be a surjective n-homomorphism from a complete p-normed algebra \mathfrak{A} onto a complete $*$-p-normed algebra \mathfrak{B}. If \mathfrak{B} is $*$-semi-simple then ψ is continuous.

Proof. Let M un ideal *-maximum of \mathfrak{B} and $\pi: \mathfrak{B} \longrightarrow \mathfrak{B} / M$ the canonical surjection. As π is surjective and continuous, it, therefore, follows that $\pi \circ \psi$ is a surjective homomorphism in the quotient algebra \mathfrak{B} / M which is *-simple. Since M is a closed ideal of $\mathfrak{B}, \mathfrak{B} / M$ is a complete p-normed algebra. So, by Theorem 3.2, $\pi \circ \psi$ is continuous. as a result, $\mathfrak{S}(\pi \circ \psi)=(\overline{0})$, or $\overline{0}$
is the class of 0 .
Or $\mathfrak{S}(\pi \circ \psi)=\overline{\pi(\mathfrak{S}(\psi))}$ whence $\pi(\mathfrak{S}(\psi))=\{0\}$,
which implies $\mathfrak{S}(\psi) \subseteq M$
Since \mathbf{M} is arbitrary, then $\mathfrak{S}(\psi) \subseteq \cap M$ or $\cap M=\operatorname{Rad}_{*}(\mathfrak{A})=\{0\}$ whence ψ is continuous.

References

[1] M. E. GORDJI and A. JABBARI and E. KARAPINAR, Automatic continuity of surjective nhomomorphisms on Banach algebras, Bulletin of the Iranian Mathematical Society, 41 (2015), pp. 1207-1211.
[2] H. G. DALES, Banach Algebras and Automatic Continuity, Clarendon Press. (2000).
[3] G. T. HONARY and H. SHAYANPOUR, Automatic continuity of n-homomorphisms between Banach algebra, Quaestiones Mathematicae., 33 (2010), pp. 189-196.
[4] J. BRACIC and M. S. MOSLEHIAN, On automatic continuity of 3-homomorphisms on Banach algebras, arXiv preprint math/0611287 (2006).
[5] T. J. RANSFORD, A short proof of Johnson’s uniqueness-of-norm theorem, Bull. Lon. Math. Soc., 21 (1989), pp. 487-488.
[6] A. M. SINCLAIR, Automatic Continuity of Linear Operators, Cambridge University Press, 21 (1976).
[7] Y. TIDLI and L. OUKHTITE and A. TAJMOUATI, On the Automatic continuity of the epimorphisms in*-algebras of Banach, IJMMS., 22 (2004), pp. 1183-1187.
[8] M. BELAM and Y. TIDLI,On automatic continuity of derivations for Banach algebras with involution, Eur. J. Math. Compu. Scien., 4 (2017).
[9] B. AUPETIT, A Primer on Spectral Theory, Springer, 1990.

