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1. I NTRODUCTION AND PRELIMINARIES

Bicomplex numbers, just like quaternions, are a generalization of complex numbers. These
two number systems are different from each other in two important ways, quaternions, which
form a division algebra, are non commutative, whereas bicomplex numbers are commutative
but do not form a division algebra.
For the sake of completion and to make the paper self contained, we first summarize some
basic properties of bicomplex numbers and hyperbolic numbers which is used in this paper.
Bicomplex numbers have two imaginary unitsi andj satisfying

i 6= j; ij = ji = k; i2 = j2 = −1.

Now let C(i) be the set of complex numbers with imaginary unitsi and letC(j) be the set of
complex numbers with imaginary unitsj. We define set of bicomplex numbers denoted byBC
as

BC = {z = x1 + x2i + x3j + x4k : x1, x2, x3, x4 ∈ R} = {z = z1 + jz2 : z1, z2 ∈ C(i)} .

We refer to [1], [10] [14] and [16] for detailed introduction to the algebra, geometry and analysis
of the bicomplex numbers. Due to the fact that the setBC has two imaginary units i.e.,i and
j, BC has three conjugations. These conjugations are bar-conjugation,†-conjugation and∗-
conjugation defined asz = z1 + jz2, z† = z1− jz2 andz∗ = z† = z1− jz2, respectively. Where
z1, z2 are the usual conjugations of complex numbersz1, z2 in C(i).
Accordingly three types of moduli arise. These arez · z†, z · z andz · z∗. It is to be noted that
these modulus areC(i), C(j) andD-valued. For details of conjugations on set of bicomplex
numbers see [1], [10] and [14]. However, the†-conjugation defined byz† = z1 − jz2, where
z = z1 + jz2; z1, z2 ∈ C(i) with moduli

z · z† = |z|2i = z2
1 + z2

2 = (|η1|2 − |η2|2) + 2Re(η1η
∗
2)i

is important as it is used to define the invertiblity of a bicomplex number. A bicomplex number
z is said to be invertible ifz · z† 6= 0 and its inverse is given by

z−1 =
z†

z · z†
=

z†

|z|2i
.

Further, ifz 6= 0, butz · z† = |z|2i = 0, thenz is said to be a zero-divisor. We denote the set of
all zero-divisors by

NC =
{
z = z1 + jz2 : z 6= 0, z · z† = z2

1 + z2
2 = 0

}
and is called the null cone of the set of bicomplex numberBC. Let NC0 = NC ∪ {0} be the
null cone along with zero.
Now there are two special zero divisorse1 = 1

2
(1 + k) ande2 = 1

2
(1 − k) and called them

idempotent elements and having the following properties:-

e1 + e2 = 1; e1 − e2 = k

e1 · e2 = 0; e1 · e1 = e1; e2 · e2 = e2.

The setsBCe1 = e1BC andBCe2 = e2BC are (principal) ideals in the ringBC and have the
property that

BCe1 ∩ BCe2 = {0}
and

(1.1) BC = BCe1 + BCe2 .

This equation is called the idempotent decomposition of the ring of bicomplex numbersBC.
Thus eachz ∈ BC can uniquely be expressed asz = z1e1 + z2e2 and also it allows us with
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BICOMPLEX UNIVALENT FUNCTIONS 3

component wise addition, multiplication and taking inverse of elements inBC. The Euclidean

norm | · | of a bicomplex numberz is defined as|z| =
√

x2
1 + x2

2 + x2
3 + x2

4 =
√
|z1|2 + |z2|2

and for anyz andw in BC, we have

|z · w| ≤
√

2|z||w|.

The D-valued norm of the bicomplex numberz = z1e1 + z2e2 denoted by|z|k is defined as
|z|k = |z1|e1 + |z2|e2, where|z1| and|z2| are the usual modulus of complex numbersz1 and
z2. Further|z · w|k = |z|k · |w|k i.e., the hyperbolic modulus of the product is equal to the
product of the corresponding moduli which is not true for the norm inR4 and Euclidean norm
and hyperbolic norm of a bicomplex number is related by||z|k| = |z| . For the above discussion
we refer to [1] and [10].

The hyperbolic numbers denoted byD is a ring of all numbers of the formz = a+ bk, where
a,b∈ R, with k satisfyingk2 = 1.

i.e., D =
{
a + bk : a, b ∈ R, k2 = 1, k /∈ R

}
.

Also the set of hyperbolic numbers have idempotent decomposition as

D = De1 + De2.

The BC is not one point Alexendrov compactification but is the union of with three different
types of infinitive elements:

BC = BC ∪ {∞e1 + C(i)e2} ∪ {C(i)e1 +∞e2} ∪ {∞e1 +∞e2}

i.e.,BC contains the elements of the form∞e1 + z2e2 andz1e1 +∞e2 with z1, z2 ∈ C(i) and
unique element∞e1 + ∞e2. Thus infinity inBC have three different type of elements. For
more details we refer to [12].

If Z = Z1e1 + Z2e2 6= 0 /∈ NC0, then it is invertible. Writing

Z = |Z|k|Z|−1
k (Z1e1 + Z2e2) = |Z|k

(
|Z1|−1e1 + |Z2|−1e2

)
(Z1e1 + Z2e2) ,

implies

Z = |Z|k
(

Z1

|Z1|
e1 +

Z2

|Z2|
e2

)
.

As e1 ande2 are the coefficient of complex numbers of modulus one, we takes for real numbers
µ1 andµ2 : Z1

|Z1| = eiµ1 and Z2

|Z2| = eiµ2. Let ΨZ = µ1e1 + µ2e2 be the hyperbolic number. Then
ΨZ is called the hyperbolic argument associated with the bicomplex numberZ, c.f. [13]. It has
trigonometric representation in hyperbolic terms given as:

Z = |Z|k · (cosΨZ + isinΨZ) = |Z|k · (eiµ1e1 + eiµ2e2)

= |Z|k · ei(µ1e1+µ2e2) = |Z|k · eiΨZ .

A set Ω ⊂ BC is said to be product-type set ifΩ can be written asΩ = Ω1e1 + Ω2e2

whereΩ1 = Π1,i(Ω) andΩ2 = Π2,i(Ω) are the projections ofBC on C(i). A setΩ ⊂ BC is
said to be product-type domain inBC if Ω1 andΩ2 are domains in the complex plane. Also
if γ1, γ2 are curves inC then hyperbolic curves inBC are product-type and are denoted as
γ = γ1e1 + γ2e2 and a hyperbolic curve is said to beBC-rectifiable,BC-Jordan andBC-closed
if and only if γ1 andγ2 are rectifiable, Jordan and closed respectively, see [2] and [10]. A
functionF : Ω → BC is said to be product-type if there existsFi : Ωi → C for i = 1, 2 such
thatF (Z1e1 + Z2e2) = F1(Z1)e1 + F2(Z2)e2 for all Z1e1 + Z2e2 ∈ Ω. For more details and
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4 MOHD ARIF, AMJAD ALI, RAJAT SINGH* AND ROMESH KUMAR

examples refer to [10].

Definition 1.1. The bicomplex open ball with centerZo = Z1,0e1 + Z2,0e2 and positive hyper-
bolic radiusr = r1e1 + r2e2, (r1 6= 0 andr2 6= 0) is

B(Zo, r) := {Z : |Z−Z0|k ≺ r} = {Z = Z1e1+Z2e2 : |Z1−Z1,0| < r1 and|Z2−Z2,0| < r2}.

The bicomplex circumference of this bi-disk has the shape of torous, but it is a torus that lives
in the four dimensional world, that is, it is not usual torus that can exist inR3.

BBC(Zo, r) = Be1 × Be2 ⊂ BC,

whereBe1 ⊂ BCe1 is a disk with center inZ1,0 and radiusr1 and similarlyBe2 ⊂ BCe2 is disk
with center inZ2,0 and radiusr2.
Now, we define a bicomplex ball with centre at the origin and hyperbolic radius 1 as

B1 = {Z ∈ BC : |Z|k ≺ 1}
= {Z = Z1e1 + Z2e2 : |Z1| < 1, |Z2| < 1}.

Also, let

(1.2) B1 = B1,1 × B1,2

whereB1,l = {Zl : |Zl| < 1}, l = 1, 2 is a cartesian product of unit ball inC(i).

Definition 1.2. Let Ω ⊂ BC be a product-type domain, then a functionR : Ω ⊂ BC → BC is
BC-rational if ‘R‘ is the quotient of two continuousBC-functions i.e.,

R(Z) =
G(Z)

H(Z)
such that H(Z) /∈ NC0.

Also bicomplex holomorphic rational functions are product-type, i.e., there exist holomorphic
Ri : Ωi → C for i = 1, 2 such thatR(Z1e1 + Z2e2) = R1(Z1)e1 + R2(Z2)e2 for all Z1e1 +
Z2e2 ∈ Ω.

Definition 1.3. We say that functionF : Ω ⊂ BC → BC is BC-holomorphic if for everyZ ∈ Ω
there exist derivativeF ′(Z) for which the following limit exist

lim
Y→Z

F (Y )− F (Z)

Y − Z
, where Y ∈ Ω and (Y − Z) /∈ NC0.

A functionF (Z1e1 +Z2e2) = F1(Z1e1 +Z2e2)e1 +F2(Z1e1 +Z2e2)e2 is BC-holomorphic
if and only if F1(Z1e1 + Z2e2) andF2(Z1e1 + Z2e2) are holomorphic functions with respect to
only Z1 andZ2 respectively. For the above discussions we refer to [1], [2], [10] and [14].

In this paper we extend the theory of univalent functions to bicomplex version and analyze its
various properties whether they hold in bicomplex number framework, particularly in bicom-
plex unit disk. In section 2, we define bicomplex univalent function and also analyze the prop-
erties of specific class of bicomplex univalent functions which we denote byF in bicomplex.
Here we investigate the bicomplex version of Koebe function which is an important example in
classF . Section 3, deals with a brief discussion ofBC-Mobius invariant properties of classF .
For a study of the univalent functions, we refer to [4],[5],[15] and reference therein.

AJMAA, Vol. 20 (2023), No. 1, Art. 3, 15 pp. AJMAA

https://ajmaa.org


BICOMPLEX UNIVALENT FUNCTIONS 5

2. BC-UNIVALENT FUNCTIONS

In this section, we introduce the classF of BC-univalent functions. The property of uni-
valence is much stronger in complex case than in real which led to the development of theory
of univalent function. This theory was born around the past century and is still active field of
research. Now we defineBC-univalent function.

Definition 2.1. A BC-holomorphic functionF : Ω ⊆ BC → BC is said to be aBC-univalent
function onΩ if F (Z1) 6= F (Z2), ∀ Z1, Z2 ∈ Ω with Z1 6= Z2.

Definition 2.2. The upper half plane in bicomplex is denoted by
∏+

BC and is define by:

(2.1)
+∏
BC

=

{
Z = Z1e1 + Z2e2 : (Z1, Z2) ∈

+∏
1

×
+∏
2

}
,

where
∏+

i = {Zi ∈ C : Im(Zi) > 0}, i = 1, 2.

Example 2.1. Let Z = Z1e1 + Z2e2 ∈ BC andS = S1 × S2 ⊂ B1,1 × B1,2 be a Cartesian
domain inBC such that

(2.2) S =
{

Z ∈ BC : 0 ≺ |Z|k ≺ 1, 0 < argC(i)Z <
π

2

}
.

ThenS is a part of bicomplex unit disk in the first quadrant and

BBC ∩
+∏
BC

=

{
Z = Z1e1 + Z2e2 : (Z1, Z2) ∈

(
B1,1 ∩

+∏
1

)
×

(
B1,2 ∩

+∏
2

)}
.

Then the functionF : S → BBC ∩
∏+

BC such thatF (Z) = Z2 is BC-conformal mapping. When
we separate the idempotent parts of the above system, we get two different systems, one with
the complex variableZ1 in the planeBCe1 and other with the complex variableZ2 in the plane
BCe2. Taking only the first idempotent component from (1.2),(2.1) and (2.2) we get:

Se1 = e1S1 =
{

Z1e1 ∈ C(i)e1 : 0 < |Z1| < 1, 0 < argC(i)(Z1) <
π

2

}
,

Be1 = e1B1,1 = {Z1e1 : |Z1| < 1} and
+∏
e1

= e1

+∏
1

= {Z1e1 ∈ C(i)e1 : Im(Z1) ≥ 0}, then

Be1 ∩
+∏
e1

= {Z1e1 ∈ C(i)e1 : 0 < |Z1| < 1, Im(Z1) > 0}.

From this, we find a real two-dimensional surface inR4 and Fig.1 shows its idempotent
projection onBCe1. Then, clearly the mappingF1 : Se1 → Be1 ∩

∏+
e1

such thatF1(Z1) = Z2
1

is conformal mapping. Its projection onBCe2 is quite similar.
The mapping ofF (Z) = Z2 in BC ∼= D2 is shown in Fig 2, where planesD andiD are seen as
lines, although they are real two dimensional planes, as shown in[13, Fig 3].

From bicomplex Riemann mapping theorem [10, Theorem 8.6.2 page-190], for any product-
type simply connected domainΩ in BC, there exists a bijectiveD-conformal mappingF : Ω →
B1. Furthermore, for any fixedZo ∈ Ω, we can find anF such thatF (Zo) = 0 andF

′
(Zo) is

strictly positive hyperbolic numbers with such a specificationF is unique.
As a result, a statement aboutBC-univalent function on arbitrary product-type simply connected
domain can be translated to statement aboutBC-univalent function on the unit ball. We shall
examine the following class ofBC-univalent functions.
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6 MOHD ARIF, AMJAD ALI, RAJAT SINGH* AND ROMESH KUMAR

Figure 1: The projection ofF1(Z1) = Z2
1 in BCe1

Figure 2: The mapping ofF (Z) = Z2 in BC ∼= D2

Definition 2.3. Let F denote the set ofBC-holomorphic,BC-univalent functions on the unit
diskBBC normalized by the conditionF (0) = 0 andF

′
(0) = 1. That is,

F = {F : BBC → BC : F isBC-holomorphic andBC-univalent onBBC, F (0) = 0, F
′
(0) = 1}.

Then it follows from [10, Theorem 10.5.2, page 208], that for everyF ∈ F has a bicomplex
Taylor series expansion of the form

F (Z) = Z + A2Z
2 + ..., |Z|k ≺ 1,

whereAn ∈ BC, n ∈ N.
Now, we introduce the bicomplex Koebe function which is one of the most important member

of F . The Koebe function in complex plane is defined as:

K(z) =
z

(1− z)2

=
1

4

(
1 + z

1− z

)2

− 1

4

wherez ∈ C.
Then the bicomplex Koebe function is given as
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Figure 3: The projection ofK1(Z1) in BCe1

K(Z) =
1

4

(
1 + Z

1− Z

)2

− 1

4
,

=
Z

(1− Z)2

whereZ ∈ BC. Now,

K(Z1e1 + Z2e2) =
1

4

(
1 + (Z1e1 + Z2e2)

1− (Z1e1 + Z2e2)

)2

− 1

4

=
1

4

(
1 + Z1

1− Z1

)2

e1 −
1

4
e1 +

1

4

(
1 + Z2

1− Z2

)2

e2 −
1

4
e2

=

(
1

4

(
1 + Z1

1− Z1

)2

− 1

4

)
e1 +

(
1

4

(
1 + Z1

1− Z1

)2

− 1

4

)
e2(2.3)

= K1(Z1)e1 + K2(Z2)e2.(2.4)
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Figure 4: The mapping ofBC-Koebe functionK(Z) in BC ∼= D2

When we separate the idempotent parts of the above system, we get the two different systems,
one with the complex variableZ1 in the planeC(i)e1 and other with the complex variableZ2 in
the planeC(i)e2. Taking only the first idempotent components from (2.3) and (2.4), we obtain:

K1(Z1)e1 =

(
1

4

(
1 + Z1

1− Z1

)2

− 1

4

)
e1.

From this, we find a real two-dimensional surface inR4 and Fig.3 shows its idempotent
projection onBCe1. Its projection onBCe1 is quite similar.

The mapping ofK(Z) = 1
4

(
1+Z
1−Z

)2 − 1
4

in BC ∼= D2 is shown in Fig.4. As in [13, Fig 3],
planeD andiD are seen as lines, although they are real two dimensional planes.
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3. BC-M OBIUS I NVARIANT CLASS F

In this section, we will studyBC-Mobius invariant function of classF .

If F, G : Ω = Ω1e1 + Ω2e2 ⊆ BC → BC be BC-holomorphic function. Then, for every
Z ∈ Ω, there existZ1 ∈ Ω1 andZ2 ∈ Ω2 such that

F (Z) = F1(Z1)e1 + F2(Z2)e2

G(Z) = G1(Z1)e1 + G2(Z2)e2

and so
(F ◦G)(Z) = (F1 ◦G1)(Z1)e1 + (F2 ◦G2)(Z2)e2,

whereF1 ◦G1 : Ω1 → C andF2 ◦G2 : Ω2 → C are holomorphic functions.

Remark 3.1. F is not closed under addition. Here is the example:

Example 3.1. Let F (Z) = Z andG(Z) = Z
1−Z

so thatF, G ∈ F . However,F
′
(Z) = 1 and

G
′
(Z) = 1

(1−Z)2
. Then

F
′
(Z) + G

′
(Z) = 1 +

1

(1− Z)2

=
Z2 − 2Z + 2

(1− Z)2
,

from which we conclude thatF
′
(Z) + G

′
(Z) = 0, if Z = 1 + i, 1− i, 1 + j, 1− j. It follows

thatF + G is not one-to-one inBBC, henceF + G /∈ F .

Theorem 3.1.The classF is preserved under the followingBC-transformation:
(I) Rotation: IfF ∈ F , Θ ∈ BC andG(Z) = e−iΘF (eiΘ), thenG ∈ F .
(II) Dilation: If F ∈ F , 0 ≺ r ≺ 1 andG(Z) = 1

r
F (rZ), thenG ∈ F .

Proof. (I): Let F = F1e1 + F2e2 ∈ F and also letS(Z) = eiΘ1Z1e1 + eiΘ2Z2e2 andT (Z) =
e−iΘ1Z1e1 + e−iΘ2Z2e2. First, we have to show thatS : BC → BC is one-to-one. For this, let
Z = Z1e1 + Z2e2, Y = Y1e1 + Y2e2 ∈ BC and suppose that

S(Z) = S(Y ).

Then
eiΘ1Z1e1 + eiΘ2Z2e2 = eiΘ1Y1e1 + eiΘ2Y2e2

⇐⇒ (eiΘ1e1 + eiΘ2e2)(Z1e1 + Z2e2) = (eiΘ1e1 + eiΘ2e2)(Y1e1 + Y2e2)
⇐⇒ Z1e1 + Z2e2 = Y1e1 + Y2e2

⇐⇒ Z = Y.
Therefore,S is one-to-one. Similarly,T : BC → BC is one-to-one. Now,

G(Z) = e−iΘF (eiΘZ)

= e−iΘ1F1(e
iΘ1Z1)e1 + e−iΘ2F2(e

iΘ2Z2)e2

= (T1 ◦ F1 ◦ S1)(Z1)e1 + (T2 ◦ F2 ◦ S2)(Z2)e2.

Since,(T1 ◦ F1 ◦ S1)(Z1) and(T2 ◦ F2 ◦ S2)(Z2) are one-to-one mapping, see [7, Theorem 5,
page-6]. So,G(Z) is one-to-one mapping. Thus we conclude thatG is BC-univalent inBBC.
Now,

G
′
(Z) = e−iΘ1 · eiΘ1 · F ′

1(e
iΘ1Z1)e1 + e−iΘ2 · eiΘ2 · F ′

1(e
iΘ2Z2)e2

= F
′

1(e
iΘ1Z1)e1 + F

′

1(e
iΘ2Z2)e2.
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Since,F
′
1(e

iΘ1Z1) andF
′
2(e

iΘ2Z2) are holomorphic, see [7, Theorem 5, page-6]. We conclude
that,G is alsoBC-holomorphic inBBC. Also, G(0) = e−iΘ1F1(0)e1 + e−iΘ2F2(0)e2 = 0 and
G

′
(0) = F

′
1(0)e1 + F

′
2(0)e2 = e1 + e2 = 1. ThenG ∈ F .

(II): Let F ∈ F and 0 < r1, r2 < 1. SupposeS(Z) = r1Z1e1 + r2Z2e2 and T (Z) =
Z1

r1
e1 + Z2

r2
e2. Then clearlyS, T : BC → BC are one-to-one. Now,

G(Z) =
1

r
F (rZ)

=
1

r1

F1(r1Z1)e1 +
1

r2

F2(r2Z2)e2

= (T1 ◦ F1 ◦ S1)Z1e1 + (T1 ◦ F2 ◦ S2)Z2e2.

Clearly,G(Z) is a composition of one-to-one mappings, we conclude thatG is BC-univalent
onBBC.
Now,

G
′
(Z) =

1

r1

· r1 · F
′

1(r1Z1)e1 +
1

r2

· r2 · F
′

2(r2Z2)e2

= F
′

1(r1Z1)e1 + F
′

2(r2Z2)e2.

Since,F
′
1(r1Z1)e1 andF

′
2(r2Z2)e2 are holomorphic. So,G is BC-holomorphic onBBC. Also,

G(0) = 1
r1

F1(0)e1 + 1
r2

F2(0)e2 = 0 andG
′
(0) = F

′
1(0)e1 + F

′
2(0)e2 = e1 + e2 = 1. Then

G ∈ F .

We have three types of conjugations in bicomplex,bar-conjugation,†-conjugation and∗-
conjugation. By the combination of these three conjugations we get nine different conjugation.
From those nine combination of conjugations, classF is preserved under three conjugations and
is not preserved under six conjugations. This concept is explored in the following theorems:

Theorem 3.2. Let H(F) = {F (Z), (F (Z)∗)∗, (F (Z)†)†} be a class of different combinations
of conjugations. IfF ∈ F andG(Z) ∈ H(F), thenG ∈ F .

Proof. If F ∈ F , G(Z) = F (Z), andW (Z) = Z = Z1e2 + Z2e1, thenW : BC → BC is
clearly one-to-one.
Now,

G(Z) = F (Z)

= F1(Z1)e2 + F2(Z2)e1

= F1(Z1)e1 + F2(Z2)e2

= (W1 ◦ F1 ◦W1)(Z1)e1 + (W2 ◦ F2 ◦W2)(Z2)e2.

Since(W1 ◦ F1 ◦W1)(Z1) and(W2 ◦ F2 ◦W2)(Z2) are one-to-one from using [7, Theorem 5,
page-6], we conclude thatG(Z) is a composition of one-to-one mapping, soG is BC-univalent
on BBC. SinceW (Z) is notBC-holomorphic onBBC, so we cannot simply use the assumption
that a composition ofBC-holomorphic functions isBC-holomorphic. Instead, we observe that
theBC-Taylor series ofF , namely

(3.1) Z +
∞∑

n=2

AnZ
n

AJMAA, Vol. 20 (2023), No. 1, Art. 3, 15 pp. AJMAA

https://ajmaa.org


BICOMPLEX UNIVALENT FUNCTIONS 11

has a radius of convergence 1, see [10, Theorem 10.5.2, page-208]. With the uniform conver-
gence on every closed disk|Z|k � r ≺ 1, theBC-Taylor series (3.1) converges toF (Z), ∀ |Z|k ≺
1. It follows that theBC-Taylor series

(3.2) Z +
∞∑

n=2

AnZ
n

has radius of convergence 1 and thus (3.2) defines anBC-holomorphic function onBBC. Hence,
we conclude that

G(Z) = F (Z) = Z + A2Z
2
+ A3Z

3
+ ... = Z + A2Z

2 + A3Z
3 + ...

is BC-holomorphic onBBC with G(0) = 0 andG
′
(0) = 1. Thus,G ∈ F .

Similarly, we can show that forG(Z) = (F (Z∗))∗, G(Z) = (F (Z†))†, G ∈ F .

Theorem 3.3.SupposeI(F) = {F (Z∗), (F (Z†)), (F (Z))∗, (F (Z†))∗, (F (Z̄))† and(F (Z∗))†}
be a class of conjugations inBC. If F ∈ F andG(Z) ∈ I(F), thenG /∈ F .

Proof. SupposeF ∈ F andG(Z) = F (Z∗) andW (Z) = Z∗ = Z∗
1e1 +Z∗

2e2 andS(Z) = Z =
Z1e2 + Z2e1. ThenW, S : BC → BC are clearly one-to-one.
Now,

G(Z) = F (Z∗)

= F1(Z∗
1)e1 + F2(Z∗

2)e2

= F1(Z∗
1)e2 + F2(Z∗

2)e1

= (S1 ◦ F1 ◦W1)(Z1)e2 + (S2 ◦ F2 ◦W2)(Z2)e1.

Since(S1 ◦ F1 ◦W1)(Z1) and(S2 ◦ F2 ◦W2)(Z2) are one to one mappings. Thus, we conclude
thatG is BC-univalent onBBC.
SinceW (Z) is not BC-holomorphic inBBC, so we cannot simply use the assumption that a
composition ofBC-holomorphic functions isBC-holomorphic. Now,

G(Z) = F (Z∗) = Z∗ + A2(Z∗)2 + A3(Z∗)3 + ... = Z† + Ā2(Z
†)2 + Ā3(Z

†)3 + ...

is notBC-holomorphic inBBC. So,G /∈ F .
Similarly, we can show that forG(Z) = (F (Z†)), G(Z) = (F (Z))∗, G(Z) = (F (Z†))∗, G(Z) =
(F (Z̄))† andG(Z) = (F (Z∗))†, G /∈ F . Therefore, these six conjugation is not preserved the
classF .

Theorem 3.4.The classF is preserved under the followingBC-transformation:

(I) Disk automorphism: IfF ∈ F and G(Z) =
F
�

Z+Zo
(1−Z∗

o Z)

�
−F (Zo)

(1−|Zo|2k)F ′ (Zo)
for any |Zo|k ≺ 1, then

G ∈ F .
(II) Range transformation: IfF ∈ F , Φ : F (BBC) → BC is BC-holomorphic andBC-
univalent onF (BBC) and

G(Z) =
(Φ ◦ f)(Z)− Φ(0)

Φ′(0)
,

thenG ∈ F .
(III) Omitted value transformation: IfF ∈ F with W − F (Z) /∈ NCo,

G(Z) =
WF (Z)

W − F (Z)
,

thenG ∈ F .
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Proof. (I): Let F ∈ F andW (Z) = Z+Zo

1−Z∗
o Z

be theBC-Mobius transformation which maps the
unit diskBBC BC-conformally onto itself withW (0) = Z0 = Zo,1e1 + Zo,2e2. SinceZo ∈ BC,
we conclude that

G(Z) =
F1(W1(Z1))− F1(Zo,1)

(1− |Zo,1|)F ′(Zo,1)
e1 +

F2(W2(Z2))− F2(Zo,2)

(1− |Zo,2|)F ′(Zo,2)
e2

is BC-univalent onB1,1 × B1,2 with G(0) = 0.
Furthermore,

G
′
(Z) =

W
′
1(Z1)F

′
1(W1(Z1))

(1− |Zo,1|)F
′
1(Zo,1)

e1 +
W

′
2(Z2)F

′
2(W2(Z2))

(1− |Zo,2|)F
′
2(Zo,2)

e2

=
F

′
1(W1(Z1))

(1− Zo,1Z1)2F
′
1(Zo,1)

e1 +
F

′
2(W2(Z2))

(1− Zo,2Z2)2F
′
2(Zo,2)

e2,

so thatG is BC-holomorphic onBBC = B1,1 × B1,2 with G
′
(0) = 1. Thus,G ∈ F .

(II): SupposeF ∈ F and letΦ : F (BBC) → BC beBC-holomorphic andBC-univalent on
F (BBC).
If

G(Z) =
(Φ ◦ F )(Z)− Φ(0)

Φ′(0)

=
(Φ1 ◦ F1)(Z1)− Φ1(0)

Φ
′
1(0)

e1 +
(Φ2 ◦ F2)(Z2)− Φ2(0)

Φ
′
2(0)

e2,

thenG is clearlyBC-univalent onBBC with G(0) = 0.
Furthermore,

G
′
(Z) =

F
′
1(Z1)Φ

′
1(F1(Z1))

Φ
′
1(0)

e1 +
F

′
2(Z2)Φ

′
2(F2(Z2))

Φ
′
2(0)

e2,

so thatG is BC-holomorphic onB1,1 × B1,2 with G
′
(0) = 1. Thus,G ∈ F .

(III): Suppose thatF ∈ F with W − F (Z) /∈ NCo and let

G(Z) =
W1F1(Z1)

W1 − F1(Z1)
e1 +

W2F2(Z2)

W2 − F2(Z2)
e2.

Clearly,T (Γ) = W1Γ1

W1−Γ1
e1 + W2Γ2

W2−Γ2
e2 is one-to-one ifΓ1 6= W1 andΓ2 6= W2. Then it follows

thatG(Z) = (T1 ◦ F1)(X1)e1 + (T2 ◦ F2)(X2)e2 is BC-univalent onB1,1 × B1,2.
Furthermore,

G
′
(Z) =

W 2
1 F

′
1(Z1)

(W1 − F1(Z1))2
e1 +

W 2
2 F

′
2(Z2)

(W2 − F2(Z2))2
e2,

and sinceW − F (Z) /∈ NCo, it follows thatG is BC-holomorphic onBBC with G
′
(0) = 1.

ThusG ∈ F .

Lemma 3.5. If F be BC-holomorphic onBBC with NCo /∈ F (BBC), then there exist anBC-
holomorphic functionH onBC with H2 = F.

Proof. Let G(0) be any bicomplex number withexp{G(0)} = F (0). For any otherW ∈ BBC,

let G(W ) = G(0) +
∫

γ
F
′
(Z)

F (Z)
dZ, whereγ : [0, 1]D → BC is any curve from0 to W . From the

fundamental theorem of integral calculus inBC [14, Theorem 33.1, page 222], it follows that

(3.3) G
′
(W ) =

F
′
(W )

F (W )
.
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Note thatF (Z) /∈ NCo for Z ∈ BBC so thatG
′
(Z) is well defined for allZ ∈ BBC showing that

G is BC-holomorphic onBBC, it follows from (3.3) that

[Fe−G]
′
(W ) =

[
F1(W1)e

−G1(W1)
]′

e1 +
[
F2(W2)e

−G2(W2)
]′

e2

=
[
F

′

1(W1)e
−G1(W1) −G

′

1(W1)e
−G1(W1)F1(W1)

]
e1

+
[
F

′

2(W2)e
−G2(W2) −G

′

2(W2)e
−G2(W2)F2(W2)

]
e2

= e−G1(W1)
[
F

′

1(W1)−G
′

1(W1)F1(W1)
]
e1

+e−G2(W2)
[
F

′

2(W2)− F
′

2(W2)F2(W2)
]
e2

= 0 + 0 = 0.

The equation
[
Fe−G

]′
(W ) = 0 implies thatF (W ) = e−G(W ).

Hence, the proof is complete if we takeH(Z) = exp{G(Z)
Z
} so thatH is BC-holomorphic on

BBC with H2(Z) = F (Z), ∀ Z ∈ BBC.

Lemma 3.6. SupposeF ∈ F . Then for everyZ ∈ BBC, there exist an odd functionH ∈ F
with H2(Z) = F (Z2).

Proof. If F ∈ F , sinceF is BC-holomorphic function, we can write

F (Z) = F1(Z1)e1 + F2(Z2)e2.

ThenBC-Taylor series ofF can be written as

F (Z) = F1(Z1)e1 + F2(Z2)e2

=

(
Z1 +

∞∑
n=2

A1,nZ
n
1

)
e1 +

(
Z2 +

∞∑
n=2

A2,nZ
n
2

)
e2

= (Z1e1 + Z2e2)

((
1 +

∞∑
n=2

A1,nZ
n
1

)
e1 +

(
1 +

∞∑
n=2

A2,nZ
n
2

)
e2

)
.

Therefore,

F (Z)

Z
=

(
1 +

∞∑
n=2

A1,nZ
n
1

)
e1 +

(
1 +

∞∑
n=2

A2,nZ
n
2

)
e2

is non-zero, non-null-cone,BC-holomorphic function onBBC. Then by Lemma 3.5, there
exist anBC-holomorphic functionG onBBC such that

G2(Z) =
F (Z)

Z
,

so their idempotent decomposition form is

Z1G
2(Z1)e1 + Z2G

2(Z2)e2 = F1(Z1)e1 + F2(Z2)e2.

If we defineH(Z) = Z1G1(Z
2
1)e1 + Z2G2(Z

2
2)e2, then clearlyH is odd function and

H2(Z) = Z2
1G

2
1(Z

2
1)e1 + Z2

2G
2
2(Z

2
2)e2

= F1(Z
2
1)e1 + F2(Z

2
2)e2.

Also, H(0) = 0 andH ′(0) = G(0) = 1.
Now, suppose thatY, Z ∈ BBC and letH(Y ) = H(Z). Then from theBC-univalence ofF
implies thatY 2 = Z2. So, there are two case arise that eitherY = Z or Y = −Z. If Y = −Z,
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thenH(Y ) = −H(−Z). But we know thatH is odd function, it contradicts the assumption
thatH(Y ) = H(Z). So we conclude thatY = Z. HenceH ∈ F .

Theorem 3.7. The classF is preserved under the square rootBC-transformation that is, if
F ∈ F andG(Z) =

√
F (Z2), thenG ∈ F .

Proof. Suppose thatF ∈ F and

G(Z) =
√

F (Z2)

=
(
F1(Z

2
1)
) 1

2 e1 +
(
F2(Z

2
2)
) 1

2 e2.

In order to defineG, we must care some point. SinceF (Z) = 0 if and only if Z = 0, so it is
possible to choose a single-valued branch of the square root by writing

G(Z) =
(
F1(Z

2
1)
) 1

2 e1 +
(
F2(Z

2
2)
) 1

2 e2

=

(
Z2

1 +
∞∑

n=2

A1,nZ
2n
1

) 1
2

e1 +

(
Z2

2 +
∞∑

n=2

A2,nZ
2n
2

) 1
2

e2

=

(
Z1 +

∞∑
n=2

B1,nZ
2n−1
1

)
e1 +

(
Z2 +

∞∑
n=2

B2,nZ
2n−1
2

)
e2

for |Z1|, |Z2| < 1 for some coefficientsB1,n, B2,n ∈ C. Then by Lemma 3.6,G(Z) is BC-
univalent onBBC = B1,1 × B1,2 and thatG(Z) is alsoBC-holomorphic onBBC with G(0) = 0
andG

′
(0) = 1. That is,G ∈ F and the proof is complete.

4. CONCLUSION

In BC unlike inC, there are three types of conjugations. We see that in the bicomplex univa-
lent function theory, there is a contrast in the closure of conjugations ofBC-univalent functions.
In this paper, we study the behavior and geometric structure ofBC-univalent functions. We are
also able to explore an aspect of2D real surface, which is the cartesian product of lines that are
playing role in the process of construction of Koebe function. We conclude that this theory will
form a base for geometric function theory and bicomplex dynamics.
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