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2 SEZGIN AKBULUT

1. INTRODUCTION

Let the functionsf(z) andg(z) be analytic in the open unit disk

U={z:zeCand|z| < 1}.
It is called thatf (=) is majorized byy(z) in U and write

f(z) < g(2) (z€U)
if there exists a functiop(z), analytic inU, such that

[p(2)] <Tandf(z) = ¢(2)g(z) (z€U).
Let A(p) be the class of functionf(z) of the form

f2)=2"+ ) a2 (peN=1{1,2,3,.13),
Jj=p+1
which are analytic ang-valent the unit disl/. Note thatd = A(1).
Salagear [8] has introduced the following operator called the Salagean operator:

D°f(z) = f(2),
D'f(z) = 2f'(2)

and

D"f(z) = D(D""f()) (n € N).
Note that iff(2) € A(p) then

D"f(z) =p"2" + Z j”ajzj.
Jj=p+1
A function f(z) € A(p) is said to be in the clasS} (v) of p-valently analytic functions of
complex ordery # 0 in U if and only if

1 [ (zD"f@(2)) = D@ (2)
Re{1+;<( Dn+1)f(q)(z) —p+q+n+1>}>0

(z€U, pEN, n,ge Ng=NU{0}, 7€ C—{0},[2y—p+qg+n/<p—qg—n)
where (@ (z) denotes the derivative of(z) with respect to: of orderq € N,. We have the
following relationship:

CYo(7) =C(y) (y e C—A{0})
and

C’f}o(l —a)=C(l—-a)=K(a) (0<a<l),
whereC'(vy) denotes the class of convex functions of complex ordef 0 in U which were
considered by Nasr and Aouf|[6] and Wiatrowski [9], aRida) denote the class of convex
functions of ordery in U which were introduced by Robertsan [7].
A function f(z) € A(p) is said to be in the class] () of p-valently analytic functions of
complex ordery # 0 in U if and only if
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1 Dn+1f(q)(z)
Re{l—l—;(—an(q)(z) —p+q+n>}>0

(zeU, peN, njge No=NU{0}, ye C—{0},[2y—p+qg+n|<p—q—n)

wheref(9(z) denotes the derivative gf(z) with respect to z of ordey € N,. Clearly, we have
the following relationship:

So() =S(y) (yeC—A{0})
and

Stol—a) =81 —a)=S5a) (0<a<1),

where S(~) denotes the class of starlike functions of complex ordef 0 in U which were
considered by Nasr and Aoufl[6] and Wiatrowski [9], afitl«) denote the class of starlike
functions of orderv in U which were introduced by Robertsan [7].

A majorization problem for the classé§~) andC(~) have been investigated by Altintas,
Ozkan and Srivastaval[1], p. 211, Theorem 1, p. 214, Theorem 2. Also, a majorization problem
for the classes™ = S*(0) and K(0) = K have been investigated by MacGredor [5], p. 96,
Theorem 1B, p. 96 Theorem 1C. Altintas and Srivastava [2], p. 177, Theorem1 worked an
majorization problem for the classé§, () = S,4(v) andC) (v) = Cpq(7) (v € C — {0}).

Then, Kadiglu [4], Theorem 1 worked a majorization problem for the clags(vy) (v €

C—{0}).

2. MAJORIZATION PROBLEMS FOR THE CLASS C' ()

The results for the class) (v) is based on following theorem.
1 .
Theorem 2.1.1f f € C () (y € C—{0}), thenf € qu(éy), that is,

1

Proof. Altintag and Srivastava[1], p. 180, Lemma shows thaf, & C, (v),

Zf(Q+2)<Z> Zf(q+1)(2) 1
Re{l—l—f(ﬁ—l)(z)—p—l—q—i-l > 0= Re 1+W—p+q >§.
We can write
Df(q+1)(z) Df(Q)(z) 1
1+ — — 1 14+ ——— — —
Re{ +D0f(q+1)(z) p+q+ }>O:>Re{ +D0f(q)(z) p~|—q}>2
or
D lpf(q)(z)
z Df@(z) 1
Re< 1+ 1 —p+qg+1)>0= Re 1+W—p+q >§
o (7o)
z

by using the operatab. We have
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1
D (—Dn+1f(q)(2)>
Red 1+ i —ptqgintly >0
DO (_Dn+1f(q)(z)>
z
:R,1+JWHﬂm” fqanb st
e _ — n =
Drf@(z) T 2

or

Re {1 , GD9E) = D)

D1 f(@)(2) —p+q+n+1}>0

DL f(z) !
:>Re{1+W—p+Q+”} -5
for f(@(z) — D" f@(z). This yields
(D41 £0(2) = D™Ly0(z) _1-uw(z)
1+ D F@)(2) —p+q+n+1—1+w(2)
=1+ —Dn+1f(q)(z) —ptgtn= L
Drfaiz) T )
Using these equalities we obtain
(D) — D) _at (= 2ul)
“?( D (2) TP )
92 Dn+1f(fJ)(Z) v+ (v — 2)w(z)
1+ 2 et — = :
=14 (g o) = )

Thus we can write

1

=7).

Cra(1) € Sl

Theorem 2.2. Let the functionf(z) be in theA(p) and suppose that € C7 (). If D" f(9(z)
is majorized byD"¢(@ (z) in U for ¢ € N, then

D" D (2)] < |DMH D (2)] (|2 <),
where

k=K —4p—q—n)ly —p+q+n
21y —p+q+n|
(k=2+p—q—n+|y—p+qg+nl;peN, n,gec Ny, v€C—{0})

r=r(p,qny) =

Proof. Replacingy in Theorem 1, proved by Kadyu [4] , by %7, if we apply the above
Theorenj 2.]1, the proof is completegl.

If we setn = 0 in Theoreni Z.2, we obtain
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Corollary 2.3. (Altintas and Srivastava [2], p. 181, Theorem ¢t the functionf(z) be in the
classA(p) and suppose that € C, (7). If f@(z) is majorized by)'? (z) in U for ¢ € N, then

[fVE)] < g )] (1o <),

where

k— k2 —4(p—q)ly —p+d
2ly —p+ ¢
(k=2+p—q+|y—p+4q|, p€N; g€ Ny; ve C—{0}).

A special case of Theoregm 2.2 when= 0, p =1 andq = 0 yields.

r=r(p,q¢vy) =

)

Corollary 2.4. (Altintas et al. [1], p. 214, Theorem 2).et the functionf(z) be analytic inU
and suppose that € C(v). If f(z) is majorized by(z) in U, then

1@< 1g'(2)] (2] <),

where

B+ v =1 —V9+2y —1[+ |y — 1]
r=r= o1 '

If we setn =0, p =1, ¢ = 0andinits limit case when — 1 in Theorenj 2.2, we obtain

Corollary 2.5. (MacGregor[[5], p. 96, Theorem 1Q)et the functionf(z) be analytic inU
and suppose that € K = K(0). If f(z) is majorized by(z) in U, then

1
@< 1g G (2 < 3)-
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