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ABSTRACT. The main purpose of this paper is to investigate a majorization problem for the
classCn
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1. I NTRODUCTION

Let the functionsf(z) andg(z) be analytic in the open unit disk

U = {z : z ∈ C and|z| < 1}.
It is called thatf(z) is majorized byg(z) in U and write

f(z) � g(z) (z ∈ U)

if there exists a functionϕ(z), analytic inU , such that

|ϕ(z)| ≤ 1 andf(z) = ϕ(z)g(z) (z ∈ U).

Let A(p) be the class of functionsf(z) of the form

f(z) = zp +
∞∑

j=p+1

ajz
j (p ∈ N = {1, 2, 3, . . .}),

which are analytic andp-valent the unit diskU . Note thatA = A(1).
Salagean [8] has introduced the following operator called the Salagean operator:

D0f(z) = f(z),

D1f(z) = zf ′(z)

and

Dnf(z) = D(Dn−1f(z)) (n ∈ N).

Note that iff(z) ∈ A(p) then

Dnf(z) = pnzp +
∞∑

j=p+1

jnajz
j.

A function f(z) ∈ A(p) is said to be in the classCn
p,q(γ) of p-valently analytic functions of

complex orderγ 6= 0 in U if and only if

Re

{
1 +

1

γ

((
zDn+1f (q)(z)

)′ −Dn+1f (q)(z)

Dn+1f (q)(z)
− p + q + n + 1

)}
> 0

(z ∈ U, p ∈ N, n, q ∈ N0 = N ∪ {0} , γ ∈ C− {0}, |2γ − p + q + n| ≤ p− q − n)

wheref (q)(z) denotes the derivative off(z) with respect toz of orderq ∈ N0. We have the
following relationship:

C0
1,0(γ) = C(γ) (γ ∈ C− {0})

and

C0
1,0(1− α) = C(1− α) = K(α) (0 ≤ α < 1),

whereC(γ) denotes the class of convex functions of complex orderγ 6= 0 in U which were
considered by Nasr and Aouf [6] and Wiatrowski [9], andK(α) denote the class of convex
functions of orderα in U which were introduced by Robertson [7].

A function f(z) ∈ A(p) is said to be in the classSn
p,q(γ) of p-valently analytic functions of

complex orderγ 6= 0 in U if and only if
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Re

{
1 +

1

γ

(
Dn+1f (q)(z)

Dnf (q)(z)
− p + q + n

)}
> 0

(z ∈ U, p ∈ N, n, q ∈ N0 = N ∪ {0} , γ ∈ C− {0}, |2γ − p + q + n| ≤ p− q − n)

wheref (q)(z) denotes the derivative off(z) with respect to z of orderq ∈ N0. Clearly, we have
the following relationship:

S0
1,0(γ) = S(γ) (γ ∈ C− {0})

and

S0
1,0(1− α) = S(1− α) = S∗(α) (0 ≤ α < 1),

whereS(γ) denotes the class of starlike functions of complex orderγ 6= 0 in U which were
considered by Nasr and Aouf [6] and Wiatrowski [9], andS∗(α) denote the class of starlike
functions of orderα in U which were introduced by Robertson [7].

A majorization problem for the classesS(γ) andC(γ) have been investigated by Altintaş,
Özkan and Srivastava [1], p. 211, Theorem 1, p. 214, Theorem 2. Also, a majorization problem
for the classesS∗ = S∗(0) andK(0) = K have been investigated by MacGregor [5], p. 96,
Theorem 1B, p. 96 Theorem 1C. Altintaş and Srivastava [2], p. 177, Theorem1 worked an
majorization problem for the classesS0

p,q(γ) = Sp,q(γ) andC0
p,q(γ) = Cp,q(γ) (γ ∈ C − {0}).

Then, Kadıŏglu [4], Theorem 1 worked a majorization problem for the classSn
p,q(γ) (γ ∈

C− {0}).

2. M AJORIZATION PROBLEMS FOR THE CLASS Cn
p,q(γ)

The results for the classCn
p,q(γ) is based on following theorem.

Theorem 2.1. If f ∈ Cn
p,q(γ) (γ ∈ C− {0}), thenf ∈ Sn

p,q(
1

2
γ), that is,

Cn
p,q(γ) ⊂ Sn

p,q(
1

2
γ).

Proof. Altintaş and Srivastava [1], p. 180, Lemma shows that, iff ∈ Cp,q(γ),

Re

{
1 +

zf (q+2)(z)

f (q+1)(z)
− p + q + 1

}
> 0 ⇒ Re

{
1 +

zf (q+1)(z)

f (q)(z)
− p + q

}
>

1

2
.

We can write

Re

{
1 +

Df (q+1)(z)

D0f (q+1)(z)
− p + q + 1

}
> 0 ⇒ Re

{
1 +

Df (q)(z)

D0f (q)(z)
− p + q

}
>

1

2

or

Re

1 +

D

(
1

z
Df (q)(z)

)
D0

(
1

z
Df (q)(z)

) − p + q + 1

 > 0 ⇒ Re

{
1 +

Df (q)(z)

D0f (q)(z)
− p + q

}
>

1

2

by using the operatorD. We have
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Re

1 +

D

(
1

z
Dn+1f (q)(z)

)
D0

(
1

z
Dn+1f (q)(z)

) − p + q + n + 1

 > 0

⇒ Re

{
1 +

Dn+1f (q)(z)

Dnf (q)(z)
− p + q + n

}
>

1

2
or

Re

{
1 +

(
zDn+1f (q)(z)

)′ −Dn+1f (q)(z)

Dn+1f (q)(z)
− p + q + n + 1

}
> 0

⇒ Re

{
1 +

Dn+1f (q)(z)

Dnf (q)(z)
− p + q + n

}
>

1

2

for f (q)(z) → Dnf (q)(z). This yields

1 +

(
zDn+1f (q)(z)

)′ −Dn+1f (q)(z)

Dn+1f (q)(z)
− p + q + n + 1 =

1− w(z)

1 + w(z)

⇒ 1 +
Dn+1f (q)(z)

Dnf (q)(z)
− p + q + n =

1

1 + w(z)
.

Using these equalities we obtain

1 +
1

γ

((
zDn+1f (q)(z)

)′ −Dn+1f (q)(z)

Dn+1f (q)(z)
− p + q + n + 1

)
=

γ + (γ − 2)w(z)

γ(1 + w(z))

⇒ 1 +
2

γ

(
Dn+1f (q)(z)

Dnf (q)(z)
− p + q + n

)
=

γ + (γ − 2)w(z)

γ(1 + w(z))
.

Thus we can write

Cn
p,q(γ) ⊂ Sn

p,q(
1

2
γ).

Theorem 2.2.Let the functionf(z) be in theA(p) and suppose thatg ∈ Cn
p,q(γ). If Dnf (q)(z)

is majorized byDng(q)(z) in U for q ∈ N0 then

|Dn+1f (q)(z)| ≤ |Dn+1g(q)(z)| (|z| ≤ r),

where

r = r(p, q, n; γ) =
k −

√
k2 − 4(p− q − n)|γ − p + q + n|

2|γ − p + q + n|
(k = 2 + p− q − n + |γ − p + q + n|; p ∈ N, n, q ∈ N0, γ ∈ C− {0}).

Proof. Replacingγ in Theorem 1, proved by Kadıoğlu [4] , by
1

2
γ, if we apply the above

Theorem 2.1, the proof is completed.

If we setn = 0 in Theorem 2.2, we obtain

AJMAA, Vol. 1, No. 2, Art. 3, pp. 1-5, 2004 AJMAA

http://ajmaa.org


A M AJORIZATION PROBLEM 5

Corollary 2.3. (Altintas and Srivastava [2], p. 181, Theorem 2).Let the functionf(z) be in the
classA(p) and suppose thatg ∈ Cp,q(γ). If f (q)(z) is majorized byg(q)(z) in U for q ∈ N0 then∣∣f (q+1)(z)

∣∣ ≤ ∣∣g(q+1)(z)
∣∣ (|z| ≤ r),

where

r = r(p, q; γ) =
k −

√
k2 − 4(p− q)|γ − p + q|

2|γ − p + q|
,

(k = 2 + p− q + |γ − p + q|, p ∈ N ; q ∈ N0; γ ∈ C− {0}).

A special case of Theorem 2.2 whenn = 0, p = 1 andq = 0 yields.

Corollary 2.4. (Altintas et al. [1], p. 214, Theorem 2).Let the functionf(z) be analytic inU
and suppose thatg ∈ C(γ). If f(z) is majorized byg(z) in U , then

|f ′(z)| ≤ |g′(z)| (|z| ≤ r),

where

r = r(γ) =
3 + |γ − 1| −

√
9 + 2|γ − 1|+ |γ − 1|2
2|γ − 1|

.

If we setn = 0, p = 1, q = 0 and in its limit case whenγ → 1 in Theorem 2.2, we obtain

Corollary 2.5. (MacGregor [5], p. 96, Theorem 1C).Let the functionf(z) be analytic inU
and suppose thatg ∈ K = K(0). If f(z) is majorized byg(z) in U , then

|f ′(z)| ≤ |g′(z)| (|z| ≤ 1

3
).
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