

The Australian Journal of Mathematical Analysis and Applications

AJMAA

MONOTONICITY PROPERTIES FOR GENERALIZED LOGARITHMIC MEANS

CHAO-PING CHEN AND FENG QI

Received 25 June, 2004; accepted 23 August, 2004; published 6 October, 2004.

DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS, RESEARCH INSTITUTE OF APPLIED MATHEMATICS, HENAN POLYTECHNIC UNIVERSITY, JIAOZUO CITY, HENAN 454000, CHINA chenchaoping@hpu.edu.cn

DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS, RESEARCH INSTITUTE OF APPLIED MATHEMATICS, HENAN POLYTECHNIC UNIVERSITY, JIAOZUO CITY, HENAN 454000, CHINA qifeng@hpu.edu.cn, fengqi618@member.ams.org

URL: http://rgmia.vu.edu.au/qi.html, http://dami.hpu.edu.cn/qifeng.html

ABSTRACT. In this paper, we consider the monotonicity properties for ratio of two generalized logarithmic means, and then use it to extend and complement a recently published result of F. Qi and B.-N. Guo.

Key words and phrases: Monotonicity, inequality, generalized logarithmic mean, one-parameter mean.

2000 Mathematics Subject Classification. Primary 26A48; Secondary 26D07.

ISSN (electronic): 1449-5910

^{© 2004} Austral Internet Publishing. All rights reserved.

The authors were supported in part by NSF (#10001016) of China, SF for the Prominent Youth of Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Henan Polytechnic University, China.

The generalized logarithmic mean $L_r(a, b)$ of two positive numbers a and b is introduced in [2, 5, 6] for a = b by $L_r(a, b) = a$ and for $a \neq b$ by

(1.1)
$$L_r(a,b) = \left(\frac{b^{r+1} - a^{r+1}}{(r+1)(b-a)}\right)^{1/r}, \quad r \neq -1, 0;$$

(1.2)
$$L_{-1}(a,b) = \frac{b-a}{\ln b - \ln a} = L(a,b);$$

(1.3)
$$L_0(a,b) = \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{1/(b-a)} = I(a,b),$$

where L(a,b) and I(a,b) are respectively called the logarithmic or exponential mean of two positive numbers a and b. When $a \neq b$, $L_r(a,b)$ is a strictly increasing function of r. In particular,

$$\lim_{r \to -\infty} L_r(a, b) = \min\{a, b\}, \quad \lim_{r \to \infty} L_r(a, b) = \max\{a, b\}.$$

The logarithmic mean L(a, b) can be generalized to the one-parameter mean [1, 7] for a = b by $J_r(a, b) = a$ and for $a \neq b$ by

(1.4)
$$J_r(a,b) = \frac{r(b^{r+1} - a^{r+1})}{(r+1)(b^r - a^r)}, \quad r \neq 0, -1;$$

(1.5)
$$J_0(a,b) = L(a,b);$$

(1.6)
$$J_{-1}(a,b) = \frac{[G(a,b)]^2}{L(a,b)}.$$

When $a \neq b$, $J_r(a, b)$ is a strictly increasing function of r. In particular,

$$\lim_{r \to -\infty} J_r(a, b) = \min\{a, b\}, \quad \lim_{r \to \infty} J_r(a, b) = \max\{a, b\}.$$

This work is motivated by two papers of F. Qi and B.-N. Guo [3, 4], who proved that let b > a > 0 and $\delta > 0$, then for r > 0,

(1.7)
$$\frac{b}{b+\delta} < \left(\frac{\frac{1}{b-a} \int_a^b x^r \, \mathrm{d}x}{\frac{1}{b+\delta-a} \int_a^{b+\delta} x^r \, \mathrm{d}x}\right)^{1/r} < \frac{[b^b/a^a]^{1/(b-a)}}{[(b+\delta)^{b+\delta}/a^a]^{1/(b+\delta-a)}}.$$

Both bounds in (1.7) are the best possible because of

(1.8)
$$\lim_{r \to \infty} \left(\frac{\frac{1}{b-a} \int_a^b x^r \, \mathrm{d}x}{\frac{1}{b+\delta} \int_a^{b+\delta} x^r \, \mathrm{d}x} \right)^{1/r} = \frac{b}{b+\delta},$$

(1.9)
$$\lim_{r \to 0+} \left(\frac{\frac{1}{b-a} \int_a^b x^r \, \mathrm{d}x}{\frac{1}{b+\delta-a} \int_a^{b+\delta} x^r \, \mathrm{d}x} \right)^{1/r} = \frac{[b^b/a^a]^{1/(b-a)}}{[(b+\delta)^{b+\delta}/a^a]^{1/(b+\delta-a)}}.$$

It is easy to see that the inequality (1.7) can be written for r > 0 as

(1.10)
$$\frac{b}{b+\delta} < \frac{L_r(a,b)}{L_r(a,b+\delta)} < \frac{I(a,b)}{I(a,b+\delta)}.$$

The following theorem can conclude that $g(r) = L_r(a, b)/L_r(a, b + \delta)$ is a strictly decreasing function of $r \in (-\infty, \infty)$, and then, (1.7) can be obtained as a consequence.

Theorem 1. Let a > 0, $r, s \in \mathbb{R}$ and $r \neq s$, define for x > 0,

(1.11)
$$f(x) = \begin{cases} \frac{L_r(a, x)}{L_s(a, x)}, & x \neq a; \\ 1, & x = a. \end{cases}$$

- (1) If r > s, then the function f is strictly decreasing on (0, a) and strictly increasing on (a, ∞) ;
- (2) If r < s, then the function f is strictly increasing on (0, a) and strictly decreasing on (a, ∞) .

Proof. Taking logarithm and differentiating yields

$$\frac{f'(x)}{f(x)} = \frac{1}{x-a} \left(\frac{rx^{r+1} - (r+1)ax^r + a^{r+1}}{r(x^{r+1} - a^{r+1})} - \frac{sx^{s+1} - (s+1)ax^s + a^{s+1}}{s(x^{s+1} - a^{s+1})} \right) \\
= \frac{1}{x-a} \left(\frac{rx^{r+1} - (r+1)ax^r + a^{r+1}}{r(x^{r+1} - a^{r+1})} - 1 \right) \\
- \frac{1}{x-a} \left(\frac{sx^{s+1} - (s+1)ax^s + a^{s+1}}{s(x^{s+1} - a^{s+1})} - 1 \right) \\
= \frac{a}{x-a} \left(-\frac{(r+1)(x^r - a^r)}{r(x^{r+1} - a^{r+1})} + \frac{(s+1)(x^s - a^s)}{s(x^{s+1} - a^{s+1})} \right) \\
= \frac{a}{x-a} \left(-\frac{1}{J_r(a,x)} + \frac{1}{J_s(a,x)} \right) \\
= \frac{a(J_r(a,x) - J_s(a,x))}{(x-a)J_r(a,x)J_s(a,x)}.$$

Since $J_r(a, b)$ is a strictly increasing function of r when $a \neq b$, it is easy to see that

- (1) If r > s, then f'(x) < 0 for 0 < x < a and f'(x) > 0 for x > a;
- (2) If r < s, then f'(x) > 0 for 0 < x < a and f'(x) < 0 for x > a.

The proof is complete.

Remark 1. If r > s, then, for c > b > a > 0,

$$\frac{L_r(a,b)}{L_s(a,b)} < \frac{L_r(a,c)}{L_s(a,c)}.$$

This shows that for any fixed c > b > a > 0, the function $g(r) = L_r(a, b)/L_r(a, c)$ is strictly decreasing on $(-\infty, \infty)$.

REFERENCES

- [1] H. ALZER, On Stolarsky's mean value family, *Int. J. Math. Educat. Sci. Tech.*, **20** (1987), no. 1, 186–189.
- [2] L. GALVANI, Dei limiti a cui tendono alcune media, Boll. Un. Mat. Ital. 6 (1927), 173-179.
- [3] F. QI, An algebraic inequality, *J. Inequal. Pure Appl. Math.*, **2** (2001), no. 1, Art. 13. Available online at http://jipam.vu.edu.au/article.php?sid=129. *RGMIA Res. Rep. Coll.*, **2** (1999), no. 1, Art. 8, 81–83. Available online at http://rgmia.vu.edu.au/v2n1.html.
- [4] F. QI and B.-N. GUO, An inequality between ratio of the extended logarithmic means and ratio of the exponential means, *Taiwanese J. Math.*, **7** (2003), no. 2, 229–237. *RGMIA Res. Rep. Coll.*, **4** (2001), no. 1, Art. 8, 55–61. Available online at http://rgmia.vu.edu.au/v4n1.html.
- [5] K. B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87–92.

- [6] K. B. STOLARSKY, The power and generalized logarithmic means, *Amer. Math. Monthly*, **87** (1980), 545–548.
- [7] REN-ER YANG and DONG-JI CAO, Generalizations of the logarithmic mean, *J. Ningbo Univ.* **2** (1989), no. 2, 105–108.