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1. INTRODUCTION AND PRELIMINARIES

Theory of inequalities is an interesting and active field of mathematics which has many im-
portant applications in other sciences. There are many interesting and useful inequalities and
there are also many books which are devoted to their study, see e.d.|[4], [7]. Among the fa-
mous inequalities there are two of them with huge importance, namely Hélder’s inequality and
Minkowski’s inequality. These two inequalities together with their refinements and general-
izations appear frequently in the existing literature, see e.g. the books|[4], [7], where whole
chapters are devoted to them. They both have a discrete version and a corresponding integral
analogue. In this article we present and prove reverse Holder and Minkowski type integral
inequalities fom functions. To the best of our knowledge these inequalities are new and inter-
estingly their proofs are not involved. Furthermore, we compare our results with other known
results from the relative literature: {[1],/[2],/[6]) in order to test and support their performance.

Before we go on, we need to define a useful notation. In what follows we consider real
functions f defined on a finite intervdl, b] C R, although our results could be applied to
a general measure spac® >, 1) as well. Let us denot&?([a,b]), p > 0 the class of real
functionsf on [a, b] such that

b
(1.1) / |f(z)[Pdx < oo.

We are also using the following notation for a functipon [«, b] and ap > 0:

1.2) Hﬂbz(lﬂﬂ@?mﬁué

We do not claim that the above notatidrj| indicates a norm, since fgr < 1 the triangle
inequality fails. We just use it as an easy way to compactly present the intedrallin (1.2).

Now we can present Holder’s inequality for the functigfig such thatf € £?([a,b]) and
g € L[a,b]), wherel/p+1/q=1andp,q € (1, 00):

(1.3) 1Fglly < 1LF1, gl -

Let us also note that fdr < p < 1 and of course g < 0 since we still need /p + 1/q = 1,
Holder’s inequality [(1.3) is reversed. Note that in this case our compact notation (1.2) is still
valid even ifg < 0.

Likewise, we can present Minkowski’s integral inequality for the functigng such that
f.g€Lx([ab]), p > 1:

(1.4) 1f +gll, < A1, + Nlgll, -
Again forp < 1 Minkowski’s integral inequality(114) is reversed.
Another very interesting integral inequality, which we will need later, was proved by Pdlya
and Szego (se€l[5], page 57). Let the positive bounded funcfions L£3([a, b]) with 0 <
my < f < M;and0 < my < g < M,. Then it holds

AH%@@AZ%mmgi<¢Zﬁf+¢$§ZY(lvmm@mﬁé

By taking square roots of both sides and using the compact notation (1.2), Polya-Szegd inequal-
ity can be written as
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1 M1M2 1Mo
15 < = .
(L5) 1711 lglz < 5 (\/ L2y w/M1M2> I/l

We can easily observe that the Pdlya-Szegd inequality is a reverse Holder type inequality. Pélya-
Szeg0 inequality will be used later in a proof and as a measure to test our results. Before this
section ends, we also present some other inequalities from the literature that we will need to test
the performance of our results.

Another reverse Hdolder type inequality for two positive functions has been proved in [6].
Let two positive functionsf and g such thatf € L£*([a,b]) andg € L9(][a,b]), satisfying
0<m< fP/¢? < Mandl/p+1/q=1,p,q>1,then

m

(1.6) 11l < (57) ™ £l

A reverse Minkowski type inequality was presented and proved in [1]. Specifically, let two
positive functionsf andg such thatf, g € £?([a, b)), p > 0, satisfyingd < m < f/g < M for
all z € [a, b], then

M(m+1)+(M+1)
(m+1)(M +1)
In [2], among other interesting results, a reverse Minkowski type inequality was presented,
where its proof is a direct consequence of|(1.7). Specifically, for two bounded positive functions

f andg such thatf, g € £?([a,b]), p > 0 where0 < m; < f < M;,0 < my < g < M, for all
x € |a, b], we have

(1.7) 171, + llgll, < If+9ll,-

M, (my + M) + My(me + M)
(m1 + Mz)(mg + Ml)

From the above results, it is clear that the conditions we need to get reverse inequalities
are either of the form of bounded functions or are of the form of a bounded fatio This
observation will be our guide when we will generalize the reverse inequalitie$unctions.

In the next two sections, we present and prove our results and we compare them to other reverse
type inequalities in order to test their performance.

(1.8) /1], + g, < 1f +4ll,-

2. REVERSE HOLDER TYPE INEQUALITIES

We will first prove a simple reverse Hoélder type inequality figpositive bounded functions.
This simple proof is a first stable step in order to consider later other interesting results. Thus,
our first result is the next Theorem:

Theorem 2.1. Letn positive functionsfy, ..., f, suchthatd < m; < f;, < M;,i =1,...,n
forall x € [a,b] and letf; € L7 ([a,b]) fori=1,...,nandp, > 1,i=1,...,n,then

(115

1

ol

7

(2.1) pi)W < Mw | fie. fally,

n
1=

1

n Pi—
whereM = %
IIie, m;
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Proof. The proof is easy if one observes that:

Dk pr—1 pr—1
k _ k Mk

= <
H:’Lzl Ji H%% Ji — HZL:I m;’

or equivalently,
Mpkfl n
it < m— H fis
[Tz mi 5

for k = 1,...,n. Next, we integrate the above inequalities frarto b, we multiply them and
raise both sides to the power bfn to straightforwardly gef (2|18
Theoren| 2.1 is a reverse Holder type inequality fopositive bounded functions. An in-

teresting version of this Theorem is available if we get= n for k = 1,...,n, then [2.1)
becomes

" 1
(2.2) LT, <M qif . fally -

=1

Let us see what we get if we consider the case 2. In this case inequality (2.2) becomes

MMy 2
Ila1all < (502 ) el
We can easily observe that the above inequality is not optimal since the Pdlya-Szeg6 inequality
(1.5) has a better upper bound. Nevertheless, Theorgm 2.1 is a first result which gives a reverse
Holder type inequality for, > 3 functions.
A last comment for Theorefn 2.1 is to examine its conclusion if we considep; < 1. So,
let0 < p; < 1fori=1,...,nthen we easily get the following inequality:

(2.3) H (”fi pi>n1 < (W)n [freo fally -

i=1 i=1 1Y

We will now use another condition for thefunctions besides boundedness. This will be our
second Theorem and is given bellow:
Theorem 2.2. Let n positive functionsfy, ..., f, on [a, b] such that) < H{f—kf < Ag, k=
1,...,nwherep, >0,k =1,...,nandA; > 0for k = 1, ...,n. Moreover, letf; € £?([a, b])
fori =1,...,n,then

n

(2.4) IT(170,)" < (HAz-) fr- fally -
1=1 =1
Proof. The proof is similar to the proof of Theordm R.1, where we use the assumption:

Pk
E— < Ay,

H?:1 fz

fork =1,...,n. We can now integrate

< Alls k=1
=1
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from a to b, multiply the resulting inequalities and raise both sides to the powefrafto easily
get(2.4).m

Although Theorer 2|2 does not seem a big improvement of Thgorgém 2.1, as we will see it has
its own importance. To support its importance let us examine thercase andp, = p; = 2.
We then get from the assumptions of Theo@]] 2.2 that

fi
—<—<A,
f2 '

and we have

1f1llz If2lly < (ArA2)> [ f1fal; -

This is exactly inequality[ (1]6) that was proved|in [6] (Theorem 2.1pfer ¢ = 2. This fact
gives us a solid indication that Theorém|2.2 has its own importance.

Now, as we have seen by examining the case 2 andp, = p, = 2, Theorenj 21 is not
optimal. So, it would be nice to find another Theorem which is valid«for 3 functions and
at the same time Pdlya-Szeg0 inequality |(1.5) holdsafee 2. In fact we can prove such a
Theorem. We need the following inequality which can be easily proved by using the integral
analogue of the discrete power mean inequality (5ée [7], pp. 127-128). So, for a positive
function f € £2([a, b]) we have

(2.5) Iflly < Vo —allfll,-

Let us also note thaf (4.5) is a special case of a known Theorem which states that in a finite
measure spaces, ¥, u) where0 < u(S) < cc andl < p < ¢ < oo we have| f||, <
w(S)/r1/a |]f||q (see[3], page 240). Likewise, in our case and using the Lebesgue measure

p([a,b]) = b— a, @8) can be written asf||, < u([a, b)"* || f]],.
Now we are ready to prove the following:

Theorem 2.3.Letn > 2 positive functiond, ..., f, suchthal <m; < f; < M;,i=1,...,n
forall = € [a,b] and let[ [}, f; € £?([a,b]), then

(2.6) Hlllelz_ ”2“ (HBk) I fally

whereB;, = \/Hl | o +\/H1 4 fork > 2.

Proof. First let us observe that we u$¢’ | f; € £?([a,b]) as an integrability condition,
since this condition implies that all the functiofis £ = 1, ..., n and their products are also in
L?([a,b]). This fact can be easily seen by usipg]2.5) (1.5). To see it, observe thdi frbm (2.5)
we get[]", fi € £'([a,b]). Then by using Pélya-Szeg6 inequalify {1.5) we have that for any
factorizationGH = [];_, f; where the two factors are of the forth= [] f; andH = [] f, it
holds||G||, ||H]|, < oo and soG, H € L?([a, b]) as we wanted.

Now for the proof we use induction:

Forn = 2 we get the Pdlya-Szeg6 inequality (1.5).

Let us assume that the inequality holds#for 1 functionsfi, ..., f,._1, i.€.

(2.7) H 1filly < (H Bk) 1f1- - faally-

We want to prove mequahtys true for functions, i.e to provg (216). From the Polya-Szego
inequality we have
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1
=Bn Hfl an1

oo faallo [[fally < 5

Now by using[(2.b) we have
1f1 faaally S VO —allfi. . faalls-

Using the above two inequalities we get

vb—a
e il [ alls < VO =allfiee faally 1 fally < —5—Ballfi--- fally-
Finally, we multiply both sides of (2. 7) byf.,||, and use the above inequality to easily §et|(2.6).
This completes the prool
Theoren] 2.3 gives another reverse Holder type inequality: fpositive bounded functions
and forn = 2 it gives the Pdlya-Szeg6 inequality. We end this section with the following
remark.

Remark 2.1. Using the assumptions of Theorém]|2.3 and inequdlity (2.5) we can also get the
following reverse Holder type inequality:

(2.8) H 1filly < (H Bk> 11 fally

3. REVERSE MINKOWSKI TYPE INEQUALITIES

In this section we will present and prove two reverse Minkowski type integral inequalities for
n functions. As we saw in Introduction a reverse Minkowski inequality can be obtained from
(I.4) forp < 1. Itis already known and easy to see that/ddunctionsfi, ..., f, and ap < 1
(1.4) becomes

(3.1) 1+ 4 ol 1l < W40+ Fall,
and by repeating the above argument, we finally get
(3.2) Ifull, + -+ Ml < W fi+---+ fall, -

Thus, for ap < 1 we have already available a reverse Minkowski type inequéality (3.2). In
what follows, we consider a > 0, but we should also remember that our results have a value
for p > 1 since forp < 1 (3.2) holds. Let us now state and prove our first result of this section.

Theorem 3.1. Letn positive functionsfy, ..., f, on [a,b] such that0 < m; < f; < M, for
i =1,...,nandforallz € [a,b]. Moreover, letf; € LP(]a,b]) fori =1,...,nandp > 0,
then

(3:3) 1l + -+l fall, < Z&: 1+M It Sall,
z;ﬁk

Proof. For ak € {1,...,n}, we have that

I3 ?7 m; ;ﬂ: m; + M
D LGS - LR - ki
Jr Tk - M My, 7

and so,
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Ir < M,
fid oot fo T X i+ My
itk
or
D
My,
P < - 4+ np_
fk— Zizlmi+Mk (fl f)

ik
Integrating the above inequality fromto b and then raising both sides to the powen gf
we get

My,
Z?:l m; + My
itk
Lastly, by summing fornk = 1 ton we get[[3.3) 1l
We can test our inequality for = 2 by using the reverse Minkowski type inequalify (1.8)
that was proved ir [2]. Theorem 3.1 for= 2 gives

1l < i+ 4 fall,

M,y M,
<
i+ 15l < (2t + = I+ fl),

and one sees that the bounds are identical. So, Theorém 3.1 is a generalizgtioh of (1.8) for
n > 2 functions.
If we considern positive functions with the same bountisc m < f, < M, then Theorem

3.7 gives

nM
[full, + -+ fall, < M [fit- o+ fall,

Observe that the above inequality does not provide a better bound thian (3.2);5%@@9 > 1
for M > m. But, as we have already se¢n {3.2) holds onlyfer 1 and so Theorefn 3.1 has a
value forp > 1.

By observing Theoreifn 3.1 and its proof, we see that we can replace the bounding conditions
to prove another result which has its own importance.

Theorem 3.2. Letn positive functiond, .. ., f, on|a, b] such that) < fl+f—+fn < A; < 1for
i=1,...,nandfor allz € [a,b]. Moreover, letf; € £?([a,b]) fori =1,...,nandp > 0,
then
(3.4) Ifull, + -+ fall, < (Z Ak) [fit-+ fall,-
k=1
Proof. Forak € {1,...,n}, we have

fP<A(fit++ fo)P

Integrating the above inequality fromto b and then raising both sides to the powen g
we get

1fell, < Aellfr 4o+ full,-

Lastly, by summing fornk = 1 to n we directly get[(3.4)H
Forn = 2 Theorenj 3 gives
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(3.5) LA1ll, + 1f2ll, < (Av+ A) LA + Fall, -

In fact this is exactly inequality] (1.7) from[[1]. To see this let us rewrite the conditions of

Theorem 3.2 fon = 2 as
1— A f1 Ay

4 S hSIC - Ay
By settingm = =22 and M = AL
the quantity (’”“ ) of (I.7) is equal tod; + A,. So, [I.7) and[(3]5) are equivalent.
Consequently, Theoreb 2 can be regarded as a generalization of (In7) f@functions.
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