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ABSTRACT. This work is about the remainder in Taylor's formula. Specifically, the RAFU
remainder is studied. Its mathematical expression is given. Some examples are shown. Different
ways to obtain this remainder are developed.
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2 A. C. SANCHEZ

1. INTRODUCTION
The following theorem is well known in the literature as Taylor’s formula or Taylor's theorem.

Theorem 1. f is a functionk times differentiable irfa, b], then for allz € [a, b] we have

f(x) =Th1 (fra,2) + Re (f;0,7)
whereT}._; (f;a,x) is Taylor's polynomial of degrek — 1 of f atx = q, i.e.,

FL @) () (2 — a)
Tk—1(f;a,x)zzf (a) ( )

i1
i—o 72
and Ry, (f; a, x) is the Taylor's remainder of ordek, for somen, betweerw andz, i.e.,

®) (o Nk
Rk(f;a,x):f (z)k(‘x a)

There is a wide range of results on the topic related to the remainder in Taylor's formula
from different perspectives. Some of them about estimates of the remainder as[1] 4, 5, 8],
others about different forms of the remainder [6] and others study the asymptotic behavior of
the remainder term of the formulal [7].

In [2], the called RAFU remainder was defined as a sequence uniformly convergent to the
Taylor’s remainder in any closed interval. But no more was said about it. Moreover, the slow
convergence speed of the sequence to the fundtiofy; a, x) in the intervalla, b] has been
criticized for some authors.

In this work, we will devote Sectidn 2 to improve the speed of convergence of the mentioned
sequence to the functid®y. (f; a, x). The mathematical expressions of the RAFU remainder for
the cases oR; (f; a, z) andRs (f; a, z) and some examples are shown in Sedtion 3. Given that
the sequence uniformly convergent to the functidn(f; a, =) given in [2] depends on some
values of f(¥)(z) at some points belonging fa, b], several remarks have been done related
to this problem in practice. In Sectiph 4 we construct the sequence uniformly convergent to
Ry (f;a,z) from sample means, local averages, linear combinations and approximate values
of the dataf®(z,) which serve to define the RAFU remainder. In Sec@)n 5 we give the
expression of the RAFU remainder of a functigrirom numerical approximations of its first
and the second derivatives. The case of non-uniformly spaced data is studied in Section 6.
Sectior] ¥ is for concluding remarks.

2. MAIN RESULT

Let f be an arbitrary function defined jn, b] and letP = {a = x, ..., x,, = b} be a partition
of [a, b] for each naturab. The RAFU method on approximation is an approximation procedure
to the functionf by a sequencg’),),,of radical continuous functions defined by the formula

(2.1) Co(x) = f(a1) + Z[f(xi) — f(@ia)] - Fop (2i, )

being
WY —a+ R —
1=1,..,n— 1with p > 1 a natural number. For details about RAFU approximation, we refer
the reader ta [2,/3].
With this notation the following result can be established.

Fn,p ({Eia fIf) =
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Theorem 2. Let f be a functiont times continuously differentiable [n, b], then there exists a
sequence¢H,, ), defined ina, b] such that for each =0, ..., k

(2.2) Hf(j) _ Hr(zj)H < [2(]7\?—\/_5771) Tw (f(k), b ; a>} (b— a)k—j

beingn > 2, ||.|| the uniform norm) andm the maximum and the minimum gf) in [a, b]
respectivelyw (f*), ©=¢) its modulus of continuity and

2 (x —a)’
Hy(x) = ) [P (a)=—— + Gu(2)
whereG,,(z) = [* G (t)dt, G, (x) = [ Go(t)dt,...,GYV(x) = [7 C,(t)dt and
(2.3) Cu(z) = f(k) (1) + Z[f(k)(%) - f(k) (i-1)]* Fog2 (zi-1, )

beingx; = a +ih,i =0, ...nandh = =2,

n

Proof 1. Theoreml ( [2], p. 220), establishes that

/9 — HO| < {M\/—ﬁm w <f(k)7b—a)] (b— a)~

n

for the functionsF), ; (z;,x),7 =0, ...nand forallj =0, ...,k ([2], pp. 227 — 228).
On the other hand, by Theored in [3] applied to the continuous functioft*) we can put

that
1% — | < 2M—m) <f<k>, b a)

ny/n n
Given that
£ = 7P| = |lf% = G| = /¥ = Ca

we proceed like in proof of Theoremn [2].

Although the main statement of Theorgn 2 is the assertion of the existence of a sequence

of functions H,, defined in[a, b] such thatH converges uniformly to its respectiyé? in
la,b] for all j = 0,..., k, another important consequence can be obtained. More precisely, the
following Corollary holds.

Corollary 1. With the hypothesis of Theoré¢mn 2, we have

HRMﬁaﬁﬁ—Gmwug{zg%%@l+w<ﬂqb;a)}w_af

whereRy. (f;a, x) is Taylor's remainder off of orderk.

Proof 2. Given that
| Rx (f;0,2) — Gu(2)|| = [|f(2) — Hu()|
and Theorerhl2 establishes that

150~ ol < [P (50,220 -0y

the proof is complete.
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Definition 2.1. Let f be a functionk times continuously differentiable i, b] and let(G,,),,
be the sequence uniformly convergent to

®) (a) (x — a)*
Re(fra,z) = L0020

in [a,b] defined in Theorerh|2. We will say that the functih is the RAFU remainder of
degreen of the functionf.

Remarks.

(1) Note that whery € C* [a, ], there exists on&,, (f; a, x) for eachk. In this case we
will denote(G,, 1), to the corresponding sequence uniformly convergent to the function
Ry, (f;a, ).

(2) In this paper we are concern about the improvement of the uniform rate of convergence
of the sequencgs,,),, to the functionR;, (f; a, ) in [a, b]. In this sense, the valuéd,
morw (f*®,2=2) which appear i2) are only useful to ensure the uniform speed of
convergence. From Theorgm 2 one deduces@has completely defined from some
values off®)at some points of the intervéd, b]. In case we do not know the values of
f®(z,) that appear in the expression@f, we will approach them in different ways as
it will be shown below.

3. TWO CASES AS EXAMPLES

The functlonan, n € N, of Theorenﬂz are defined by the formulds(x f G

= [TGo(t)dt,..., GE V(@) = [ Cu(
Next, for case$c = 2 and3 we obtain the mathematical expressiorQf(x)

3.1. The caseR; (f;a,x) .

3

1" 17

Go(x) =Cp(x) = f (21) + ‘ [f (zi) — f (%’—1)} cFop (w51, 1)

G, (z) = / ' Ch, (t)dt

” i I:f”(l'z) - f//<xi71):| . 2n2+\l/m
i=2 Wb — 3+ 2 R/E —a

” " n2 n2 T
zn: [f (zi) — f (l’z‘—l)] L T/(a - Ii—l)Q 2 2n% 41
i=2 2n2+\1/ b—xi1+ /T —a 2n? +2

](fv—a)

v [ ) = )] T @ =)™ ] an2
i—2 2"2+\1/ b— Ti1+ 2"2+\1/m 2n2 + 2

Gn(x):/j@;(t)dt:/j/jc ()t

a4 30 ) )] m A e a)?
S R~ + T —a 2
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(A) Functionf (8) Functiong

FIGURE 1. Remainder in Taylor’s formula and RAFU remainder

i [f//(l‘l) - f// ({Ei_l)} o2 +\1/(a . $i_1)2n +2 27],2 11
— w41/ Tiq + 2n2+1/—xi_1 —a N2+ 2

[f// (i) — fl/(mi—l)] : [ 2n2+i/(95 — i)' 2n2+i/(a - xi—1)4n2+3}

(z —a)

_l’_
(2n2 +1)°

(2n2 +2) - (4n2 + 3)
Example 1. (1) Let f(z) = 1 + x + z* be defined in0, 4], we can put

F(@) =T (f;0,2) + B (£;0,2) =1+$+“a+'x2

with R, (f;0,z) = £ (C;f)'xz = 22, Suppose known the valugs(xz;) with z; = a + ih,
i =0,..nandh = 2. Forn = 10 in Figure 1a) we can check thak, (f;0,z) =
Glo(l‘) in [0,4]

(2) Letg(z) = sin = be defined ino, 4], we can put

3

g(r) =Ty (g;0,2) + R (g;0,7) =0+ z +

"

with Ry (g;0,z) = 2 (0;;)“2 - sm x — x. Suppose known the valugs(z;) with

r; =a+ih,i=0,..pnandh = 2. Forn = 30, in Figure 16) we showR; (g; 0, x)
(solid line) andGso(x ) (dashed Ilne) ifo0, 4]

3.2. The caseRs (f;a,z) .

G (w) = Culz) = fO (1) + Z[f(?’( )= [ @i1)] - Fuz (@io1,2)

o= [ [ [ e

_ | ® 5 [fO@) - )] - o —al| (¢ —a)®
f (1'1) + zz:; 2n +\l/m_|_ 2n +\1/m 3
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(A) Functionf (8) Functiong

FIGURE 2. Remainder in Taylor’s formula and RAFU remainder

n2 n?
" [0~ fOn)] @ w7 a1 oo
= 27L2+m+ 2n2+\1/m 2n2 +2 2

n O @) — [P )] - Y @ - w)™ ] (2024 1) (@ — )
rar 2P b m + N —a (202 +2) - (4n? + 3)

[ (@) = O (wio1)] - [ 2n%r\l/(ﬂf — i) - 2)"2+\1/(a - xi_1)6”2+4}

3

= PR~ w4 /T —a
(2n2 +1)°

(2n2 +2) - (4n2+3) - (6n2 +4)
Example 2. (1) Let f(z) = 1+ z + z* + 2* be defined if0, 4], we can put

f(”):T2(f50»$)+33(f;0,x)=1+x+x—2+M

2 3!
with Rs (f;0,z) = W = = + 2% Suppose known the valug$(z;) with z; =
a+ih,i =0, ..nandh = 1. Forn = 10 in Figure2a) we can check thak; (f;0,z) =

Glo(I) in [0,4]
(2) Letg(z) = e* be defined ino, 4], we can put
2> ¢9(ay) (x —0)°

9($)=T2(g;0,x)+R3(g;07x):1+$+?+ a5

with R3(g;0,2) = w =¥ — (1 +z+ %) Suppose known the values

g (z;)witha; = a+ih, i =0, ..pnandh = 2. Forn = 30, in Figure 2b) we show
Rs (g;0,z) (solid line) andG3y(z) (dashed line) irf0, 4]

4. (3, USING APPROXIMATIONS OF f(#)(z,)

4.1. Case of sample means The functions7,, can be defined from sample means of the data
f®(z,),p=1,..,nusedin Theore@ 2. In fact, the following Proposition is satisfied,

Proposition 1. If the dataf®(z,,),p = 1, ...,nin ) are substituted by, = 10 @)t W (ps)ns

ni+...+ns
T1g € [a,21] OF Zpg € (Tp1,2p], P = 2,00y ¢ = 1,08, ny + ... + 0y # 0, then Corollany| 1
holds.
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Proof 3. The functionf®) is continuous ira, b]. For the values of,, p = 1, ..., n we know

(see[3]) that : )
k) _ 2(M —m) w b—a
I - 0o < o (50,222 )

On the other hand, if we proceed like in proof of Theoreim [2],
M —m b—a
—H,| < (k) b—a)
I/ n||_[ NG +w<f — )]( a)
Thus, we complete the proof because

1f(z) = Hy(z)|| = [|Be (f; 0, 2) — G(2)]]
4.2. Case of local averages When the available data in practice are local averages near a
certainz, the functions7,, can also be obtained. Here we consider the special case in which
00 z+h
we know data agy; , , ~ f*) (z) = = X W) P (z = y)dy = [0 f®)(2)dz where
= denotes the convolution of the functions , ,, and f®. From these data, an analogous
assertion to Theoref 2 can be established.

Proposition 2. If the dataf®(x,), p = 1, ..., n in (2.3) of Theorem|2 are defined by =

J250 10 (2)dz

S , With [Z; — h, %1 + h| C [a,z1] OF [T, — h,Zp + h] C (2p_1,2,], p = 2,..., 1,
then Corollary ] holds.

Proof 4. The same proof as Propositiph 1.

4.3. Case of linear combinations . The functiong,, can also be obtained from linear combi-
nations of the valueg®(z,), p = 1, ...,n given in Theorem[2. More exactly,

*) (jp)_f(m(jp—l) .

Tp—Lp—1

Proposition 3. If the valuesf ®) (z,,), p = 1, ...,nin ) are changed by, = A

(.:1:;, — a?p_l) + f(k)(:%p_l) with 'y € [Zo,71] C [a, 1] OF 2}, € [Tp_1, 7] C (Tp—1,Tp)s p = 2,01,
n, then Corollary 1 holds.

Proof 5. The same proof as Propositiph 1.

4.4. Case of approximate values .If what we know in practical applications are approximate
values off®(z,), p = 1, ...,n, the functionG,, can be found in accordance with to the follow-
ing result.

Proposition 4. With the hypothesis of Theorém 2, if the valyéd(z,), p = 1, ...,n in (2.9)
are unknown but we knoy#*)(z,,) +n,, with |n,| <n,p =1,...nthen

IRe (i) = Gl < [FEE o (50,228 ) 0= 0

Proof 6. The functionf*) is continuous ir{a, b]. For the valuesf(z,) + n,,, with |n,| <7,
p = 1,...n we know (se3]) that

2 (M — —
Hf(k)—CnHS ( m+77)+w<f(k)’b a)+n
ny/n n
On the other hand, if we proceed like in proof of Theodem [2],
2(M —m+n) ) b—a k
_ < -~ _
If -l < [P (10,220 ] -0

Thus, we complete the proof because

1/ () = Hu(2)|| = [|Bi (f; 0, 2) = Gu()]|
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5. CASE OF NUMERICAL APPROXIMATION OF THE FIRST AND THE SECOND
DERIVATIVES

To define the function#/,, in Theoren R, the valuet?(a), j = 0,1, ...,k — 1 and f#)(z,,),
p =1, ...,n are used. Sometimes, this could be difficult or even impossible. For these cases we
show two solutions using numerical approximations of the first and second derivativids, If
m, andM,, m, are the maximum and the minimum ¢ and f"in [a, b] respectively, for all
n > 2, it verifies the following results.

Proposition 5. If a function f has four continuous derivatives ja, ] and thef®(z,), p = 1,

2.)—2 eptep—1 Tp .
RRL in ) are Changed byp = [ f( (:)2 )Jrf( ) D= 1,...,n reSpeCtIVe|y, then
2

1R (f50,2) = Gala)]| < Vi (b= )? + 5 M5 (b~ a)

where

Vi =

2(M2—m2)+w+ pboa), (b=
w
ny/n " 2n 48n?2

Proof 7. Theoren® ( [2], p. 222), established that

2
’ Mz—m2+%+ g boa (b—a)* M,
w
NG T2 48n?
for the functionsF), ; (z;,x),i =0, ...;n.

If we apply Theorer.6 in [3] to the continuous functiofi’ and we consider the valugs
of the hypothesis of this Proposition, we obtain

1"

f//_H

n

fll - On

<V,
Given that

‘ f// . Hn _ Hf// . G;/L _ ’ f// . Cn
we proceed as in proof of Theorehin [2] and we take into account that

1 (x) = Ha(z)[| = [ B (f; 0, ) — Gu(z)]]

to complete the proof.

Proposition 6. If a function f has four continuous derivatives ja, ] and thef®(z,), p = 1,
...,nin ) are changed byp — f(:vp+1)f2f}(L§p)+f(:vp71) ,p=1,...,n—1andk, = k,_;, then

h
| B (f50,0) = Gu(@)| < W (b= a)* + 2 M (b= a)
where

W, =

2
2(]\42—7712)er+ o boa +(b—a)2M1
w —_—
ny/n ’ 12n2

Proof 8. Corollary 6 ([2], p. 222), established that
‘ MQ—m2+%+ f//b—a +(b—a)2M1
Jn Y\ 1212

n
for the functionsF), ; (z;,x),7 =0, ...;n.

1"

f//_H

n
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If we apply Theorem.6 in [3] to the continuous functiofi” and we consider the valuds
of the hypothesis of this Proposition, we obtain

| -cn

<Ww,
Given that

‘ f// . Hn _ Hfll . G;; _ ‘ f// . Cn
we proceed as in proof of Theorehin [2] and we take into account that
1f(z) = Hy(2)|| = [|Be (f; 0, 2) — Gu(2)]]

to complete the proof.

Remark.

¢ In this work we are concerned about the improvement of the uniform convergence speed
of the sequencéG,,),, to the functionRy, (f;a, x) in [a, b]. In this sense the valuel;,
my and Ma, mo, w (f,%2) andw (f”, =2) which appear in these Propositions are

> 2n

only useful for us. For the definition @f,,we only need to know the valués.

6. CASE OF A NON-UNIFORMLY SPACED DATA
For the case of non-uniformly spaced data the following statement can be established.
Theorem 3.LetP, = {a = x¢, 21, ..., x5, = b} be a partition ofla, b] with§ (s,,) = 12}2} |z; — xj_1]
andA (s,) = maz |z; — x;_1| such that!® < §(s,) < A(s,) < h beingh = ©-2 and
K > 2 a positive integer. Lef be a functionk times continuously differentiable [n, b], then
there exists a sequenc#,,),, defined ina, b] such that for each = 0, ..., k

28 (M —m) (k) k—j

Sl il 74 A _ J

i +w (f¥, (sn))} (b—a)

beingn > 2, M and m the maximum and the minimum 6 in [a,b] respectively and
w (f®, A (s,)) its modulus of continuityi,, as usual and’, as in [2.3).

Proof 9. TheorenB ( [2], pp. 222 — 223), established that

6K M —m .
- ) A )k
o TITLNE|
for the functions’), ; (z;,x),i =0, ..nandforallj =0, ..., k.
On the other hand, Theorem5 in [3] applied to the continuous functioff*) established
that

1F9 — HO)|| < [

159 — HO)|| < [

2K (M —m)
(k) _ S S 7
I Call = ny/n

1F® = =] = |59 = @GP = |19 = G
we proceed as in proof of Theorehin [2].

+ w (f(k), A (sn))
Given that

Corollary 2. With the hypothesis of Theoréin 3, we have
2K (M —m)
nyn

whereRy, (f;a,z) is Taylor's remainder off of orderk.

[1Ri (f; 0, 2) = Gu()]| < +w (fM A )| (0—a)
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Proof 10. Given that

R (f;0,2) — Gu(2)|| = || f(x) — Hu(2)||
and Theorerhl3 establishes that

If () = Ha(2)]| <

the proof is complete.

2K (M —m)

i +w (P A (s,)] (b—a)"

Remark.

e As we have said before, we are concerned about the improvement of the uniform con-
vergence speed of the sequeii6g ), to the functionRy, (f;a,x) in [a, b]. Only in this
sense the values/, m, w (f®, A (s,)) and K which appear in this Proposition are
useful for us. For the definition af,,we only need to know the valugé® (x,).

7. CONCLUDING REMARKS

It is well known that the approximation of the Taylor’ polynomial to a functjbrs a local
approximation. We also know that the remainder in Taylor’s formula depends on an unknown
parameter. In this sense, there is a wide range of results on this topic from different perspectives.
As we said at the beginning, some of them about estimates of the remainder|[1, 4, 5, 8], others
about different forms of the remaindér [6] or about the study of the asymptotic behavior of the
remainder term of the formulal[7].

The RAFU remainder in Taylor’s formula published in [2] as a sequence uniformly conver-
gent to the Taylor’'s remainder in any closed interval was only defined. In this work the speed
of convergence has been improved and the mathematical expression of this sequence has been
shown. The sequence can be defined from some valug&€gf;), sample means, local av-
erages, linear combinations or approximate values of them. But also, it can be obtained from
numerical approximations of its first and the second derivativeSarid even in case of non-
uniformly spaced data.
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