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2 A. C. SÁNCHEZ

1. I NTRODUCTION

The following theorem is well known in the literature as Taylor’s formula or Taylor’s theorem.

Theorem 1. f is a functionk times differentiable in[a, b], then for allx ∈ [a, b] we have

f(x) = Tk−1 (f ; a, x) + Rk (f ; a, x)

whereTk−1 (f ; a, x) is Taylor’s polynomial of degreek − 1 of f at x = a, i.e.,

Tk−1 (f ; a, x) =
k−1∑
i=0

f (i)(a) (x− a)i

i!

andRk (f ; a, x) is the Taylor’s remainder of orderk, for someαx betweena andx, i.e.,

Rk (f ; a, x) =
f (k)(αx) (x− a)k

k!

There is a wide range of results on the topic related to the remainder in Taylor’s formula
from different perspectives. Some of them about estimates of the remainder as [1, 4, 5, 8],
others about different forms of the remainder [6] and others study the asymptotic behavior of
the remainder term of the formula [7].

In [2], the called RAFU remainder was defined as a sequence uniformly convergent to the
Taylor’s remainder in any closed interval. But no more was said about it. Moreover, the slow
convergence speed of the sequence to the functionRk (f ; a, x) in the interval[a, b] has been
criticized for some authors.

In this work, we will devote Section 2 to improve the speed of convergence of the mentioned
sequence to the functionRk (f ; a, x). The mathematical expressions of the RAFU remainder for
the cases ofR2 (f ; a, x) andR3 (f ; a, x) and some examples are shown in Section 3. Given that
the sequence uniformly convergent to the functionRk (f ; a, x) given in [2] depends on some
values off (k)(x) at some points belonging to[a, b], several remarks have been done related
to this problem in practice. In Section 4 we construct the sequence uniformly convergent to
Rk (f ; a, x) from sample means, local averages, linear combinations and approximate values
of the dataf (k)(xp) which serve to define the RAFU remainder. In Section 5 we give the
expression of the RAFU remainder of a functionf from numerical approximations of its first
and the second derivatives. The case of non-uniformly spaced data is studied in Section 6.
Section 7 is for concluding remarks.

2. M AIN RESULT

Let f be an arbitrary function defined in[a, b] and letP = {a = x0, ..., xn = b} be a partition
of [a, b] for each naturaln. The RAFU method on approximation is an approximation procedure
to the functionf by a sequence(Cn)nof radical continuous functions defined by the formula

(2.1) Cn(x) = f(x1) +
n∑

i=2

[f(xi)− f(xi−1)] · Fn,p (xi−1, x)

being

Fn,p (xi, x) =
2np+1

√
xi − a + 2np+1

√
x− xi

2np+1
√

b− xi + 2np+1
√

xi − a

i = 1, ...,n− 1 with p ≥ 1 a natural number. For details about RAFU approximation, we refer
the reader to [2, 3].

With this notation the following result can be established.
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THE RAFU REMAINDER IN TAYLOR ’ S FORMULA 3

Theorem 2. Letf be a functionk times continuously differentiable in[a, b], then there exists a
sequence(Hn)n defined in[a, b] such that for eachj = 0, ..., k

(2.2)
∥∥f (j) −H(j)

n

∥∥ ≤
[
2 (M −m)

n
√

n
+ ω

(
f (k),

b− a

n

)]
(b− a)k−j

beingn ≥ 2, ‖.‖ the uniform norm,M andm the maximum and the minimum off (k) in [a, b]
respectively,ω

(
f (k), b−a

n

)
its modulus of continuity and

Hn(x) =
k−1∑
i=0

f (i)(a)
(x− a)i

i!
+ Gn(x)

whereGn(x) =
∫ x

a
G

′
n(t)dt, G

′
n(x) =

∫ x

a
G

′′
n(t)dt,...,G(k−1)

n (x) =
∫ x

a
Cn(t)dt and

(2.3) Cn(x) = f (k)(x1) +
n∑

i=2

[f (k)(xi)− f (k)(xi−1)] · Fn,2 (xi−1, x)

beingxi = a + ih, i = 0, ...,n andh = b−a
n

.

Proof 1. Theorem1 ( [2], p. 220), establishes that∥∥f (j) −H(j)
n

∥∥ ≤
[
M −m√

n
+ ω

(
f (k),

b− a

n

)]
(b− a)k−j

for the functionsFn,1 (xi, x), i = 0, ...,n and for all j = 0, ..., k ( [2], pp.227− 228).
On the other hand, by Theorem2.6 in [3] applied to the continuous functionf (k) we can put

that ∥∥f (k) − Cn

∥∥ ≤ 2 (M −m)

n
√

n
+ ω

(
f (k),

b− a

n

)
Given that ∥∥f (k) −H(k)

n

∥∥ =
∥∥f (k) −G(k)

n

∥∥ =
∥∥f (k) − Cn

∥∥
we proceed like in proof of Theorem1 in [2].

Although the main statement of Theorem 2 is the assertion of the existence of a sequence
of functionsHn defined in[a, b] such thatH(j)

n converges uniformly to its respectivef (j) in
[a, b] for all j = 0,..., k, another important consequence can be obtained. More precisely, the
following Corollary holds.

Corollary 1. With the hypothesis of Theorem 2, we have

‖Rk (f ; a, x)−Gn(x)‖ ≤
[
2 (M −m)

n
√

n
+ ω

(
f (k),

b− a

n

)]
(b− a)k

whereRk (f ; a, x) is Taylor’s remainder off of orderk.

Proof 2. Given that
‖Rk (f ; a, x)−Gn(x)‖ = ‖f(x)−Hn(x)‖

and Theorem 2 establishes that

‖f(x)−Hn(x)‖ ≤
[
2 (M −m)

n
√

n
+ ω

(
f (k),

b− a

n

)]
(b− a)k

the proof is complete.
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4 A. C. SÁNCHEZ

Definition 2.1. Let f be a functionk times continuously differentiable in[a, b] and let(Gn)n

be the sequence uniformly convergent to

Rk (f ; a, x) =
f (k)(αx) (x− a)k

k!

in [a, b] defined in Theorem 2. We will say that the functionGn is the RAFU remainder of
degreen of the functionf .

Remarks.

(1) Note that whenf ∈ C∞ [a, b], there exists oneRk (f ; a, x) for eachk. In this case we
will denote(Gn,k)n to the corresponding sequence uniformly convergent to the function
Rk (f ; a, x).

(2) In this paper we are concern about the improvement of the uniform rate of convergence
of the sequence(Gn)n to the functionRk (f ; a, x) in [a, b]. In this sense, the valuesM ,
m or ω

(
f (k), b−a

n

)
which appear in (2.2) are only useful to ensure the uniform speed of

convergence. From Theorem 2 one deduces thatGn is completely defined from some
values off (k)at some points of the interval[a, b]. In case we do not know the values of
f (k)(xp) that appear in the expression ofGn we will approach them in different ways as
it will be shown below.

3. TWO CASES AS EXAMPLES

The functionsGn, n ∈ N, of Theorem 2 are defined by the formulasGn(x) =
∫ x

a
G

′
n(t)dt,

G
′
n(x) =

∫ x

a
G

′′
n(t)dt,...,G(k−1)

n (x) =
∫ x

a
Cn(t)dt.

Next, for casesk = 2 and3, we obtain the mathematical expression ofGn(x)

3.1. The caseR2 (f ; a, x) .

G
′′

n(x) = Cn(x) = f
′′
(x1) +

n∑
i=2

[
f
′′
(xi)− f

′′
(xi−1)

]
· Fn,2 (xi−1, x)

G
′

n(x) =

∫ x

a

Cn(t)dt

=

[
f
′′
(x1) +

n∑
i=2

[
f
′′
(xi)− f

′′
(xi−1)

]
· 2n2+1

√
xi−1 − a

2n2+1
√

b− xi−1 + 2n2+1
√

xi−1 − a

]
(x− a)

−

 n∑
i=2

[
f
′′
(xi)− f

′′
(xi−1)

]
· 2n2+1

√
(a− xi−1)

2n2+2

2n2+1
√

b− xi−1 + 2n2+1
√

xi−1 − a

 · 2n2 + 1

2n2 + 2

+

 n∑
i=2

[
f
′′
(xi)− f

′′
(xi−1)

]
· 2n2+1

√
(x− xi−1)

2n2+2

2n2+1
√

b− xi−1 + 2n2+1
√

xi−1 − a

 · 2n2 + 1

2n2 + 2

Gn(x) =

∫ x

a

G
′

n(t)dt =

∫ x

a

∫ x

a

Cn(t)dt

=

[
f
′′
(x1) +

n∑
i=2

[
f
′′
(xi)− f

′′
(xi−1)

]
· 2n2+1

√
xi−1 − a

2n2+1
√

b− xi−1 + 2n2+1
√

xi−1 − a

]
(x− a)2

2
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FIGURE 1. Remainder in Taylor’s formula and RAFU remainder

−

 n∑
i=2

[
f
′′
(xi)− f

′′
(xi−1)

]
· 2n2+1

√
(a− xi−1)

2n2+2

2n2+1
√

b− xi−1 + 2n2+1
√

xi−1 − a

 · 2n2 + 1

2n2 + 2
· (x− a)

+

 n∑
i=2

[
f
′′
(xi)− f

′′
(xi−1)

]
·
[

2n2+1

√
(x− xi−1)

4n2+3 − 2n2+1

√
(a− xi−1)

4n2+3

]
2n2+1

√
b− xi−1 + 2n2+1

√
xi−1 − a


· (2n2 + 1)

2

(2n2 + 2) · (4n2 + 3)

Example 1. (1) Letf(x) = 1 + x + x2 be defined in[0, 4], we can put

f(x) = T1 (f ; 0, x) + R2 (f ; 0, x) = 1 + x +
f
′′
(αx) · x2

2!

with R2 (f ; 0, x) = f
′′
(αx)·x2

2!
= x2. Suppose known the valuesf

′′
(xi) with xi = a + ih,

i = 0, ...,n and h = 4
n
. For n = 10 in Figure 1a) we can check thatR2 (f ; 0, x) =

G10(x) in [0, 4]
(2) Letg(x) = sin x be defined in[0, 4], we can put

g(x) = T1 (g; 0, x) + R2 (g; 0, x) = 0 + x +
g
′′
(αx) · x2

2!

with R2 (g; 0, x) = g
′′
(αx)·x2

2!
= sin x − x. Suppose known the valuesg

′′
(xi) with

xi = a + ih, i = 0, ...,n andh = 4
n
. For n = 30, in Figure 1b) we showR2 (g; 0, x)

(solid line) andG30(x) (dashed line) in[0, 4]

3.2. The caseR3 (f ; a, x) .

G(3)
n (x) = Cn(x) = f (3)(x1) +

n∑
i=2

[
f (3)(xi)− f (3)(xi−1)

]
· Fn,2 (xi−1, x)

Gn(x) =

∫ x

a

∫ x

a

∫ x

a

Cn(t)dt

=

[
f (3)(x1) +

n∑
i=2

[
f (3)(xi)− f (3)(xi−1)

]
· 2n2+1

√
xi−1 − a

2n2+1
√

b− xi−1 + 2n2+1
√

xi−1 − a

]
(x− a)3

3!
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FIGURE 2. Remainder in Taylor’s formula and RAFU remainder

−

 n∑
i=2

[
f (3)(xi)− f (3)(xi−1)

]
· 2n2+1

√
(a− xi−1)

2n2+2

2n2+1
√

b− xi−1 + 2n2+1
√

xi−1 − a

 · 2n2 + 1

2n2 + 2
· (x− a)2

2

−

 n∑
i=2

[
f (3)(xi)− f (3)(xi−1)

]
· 2n2+1

√
(a− xi−1)

4n2+3

2n2+1
√

b− xi−1 + 2n2+1
√

xi−1 − a

 ·
(
2n2 + 1

)2 · (x− a)
(2n2 + 2) · (4n2 + 3)

+

 n∑
i=2

[
f (3)(xi)− f (3)(xi−1)

]
·
[

2n2+1

√
(x− xi−1)

6n2+4 − 2n2+1

√
(a− xi−1)

6n2+4

]
2n2+1

√
b− xi−1 + 2n2+1

√
xi−1 − a


· (2n2 + 1)

3

(2n2 + 2) · (4n2 + 3) · (6n2 + 4)

Example 2. (1) Letf(x) = 1 + x + x2 + x3 be defined in[0, 4], we can put

f(x) = T2 (f ; 0, x) + R3 (f ; 0, x) = 1 + x +
x2

2
+

f (3)(αx) · x3

3!

with R3 (f ; 0, x) = f (3)(αx)·x3

3!
= x2

2
+ x3. Suppose known the valuesf

′′
(xi) with xi =

a+ih, i = 0, ...,n andh = 4
n
. For n = 10 in Figure2a) we can check thatR3 (f ; 0, x) =

G10(x) in [0, 4]
(2) Letg(x) = ex be defined in[0, 4], we can put

g(x) = T2 (g; 0, x) + R3 (g; 0, x) = 1 + x +
x2

2
+

g(3)(αx) (x− 0)3

3!

with R3 (g; 0, x) = g(3)(αx)(x−0)3

3!
= ex −

(
1 + x + x2

2

)
. Suppose known the values

g
′′
(xi) with xi = a + ih, i = 0, ...,n andh = 4

n
. For n = 30, in Figure 2b) we show

R3 (g; 0, x) (solid line) andG30(x) (dashed line) in[0, 4]

4. Gn USING APPROXIMATIONS OF f (k)(xp)

4.1. Case of sample means .The functionsGn can be defined from sample means of the data
f (k)(xp), p = 1, ...,n used in Theorem 2. In fact, the following Proposition is satisfied,

Proposition 1. If the dataf (k)(xp), p = 1, ...,n in (2.3) are substituted bykp = f (k)(xp1)n1+...+f (k)(xps)ns

n1+...+ns
,

x1q ∈ [a, x1] or xpq ∈ (xp−1, xp], p = 2,...,n, q = 1,...,s, n1 + ... + ns 6= 0, then Corollary 1
holds.
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Proof 3. The functionf (k) is continuous in[a, b]. For the values ofkp, p = 1, ..., n we know
(see[3]) that ∥∥f (k) − Cn

∥∥ ≤ 2 (M −m)

n
√

n
+ ω

(
f (k),

b− a

n

)
On the other hand, if we proceed like in proof of Theorem1 in [2],

‖f −Hn‖ ≤
[
M −m√

n
+ ω

(
f (k),

b− a

n

)]
(b− a)k

Thus, we complete the proof because

‖f(x)−Hn(x)‖ = ‖Rk (f ; a, x)−Gn(x)‖
4.2. Case of local averages .When the available data in practice are local averages near a
certainx, the functionsGn can also be obtained. Here we consider the special case in which
we know data as

(
χ[−h,h] ? f (k)

)
(x) =

∫ +∞
−∞ χ[−h,h](y)f (k)(x − y)dy =

∫ x+h

x−h
f (k)(z)dz where

? denotes the convolution of the functionsχ[−h,h] and f (k). From these data, an analogous
assertion to Theorem 2 can be established.

Proposition 2. If the dataf (k)(xp), p = 1, ..., n in (2.3) of Theorem 2 are defined bykp =R x̃p+h

x̃p−h f (k)(z)dz

2h
, with [x̃1 − h, x̃1 + h] ⊆ [a, x1] or [x̃p − h, x̃p + h] ⊆ (xp−1, xp], p = 2,..., n,

then Corollary 1 holds.

Proof 4. The same proof as Proposition 1.

4.3. Case of linear combinations .The functionsGn can also be obtained from linear combi-
nations of the valuesf (k)(xp), p = 1, ...,n given in Theorem 2. More exactly,

Proposition 3. If the valuesf (k)(xp), p = 1, ...,n in (2.3) are changed bykp = f (k)(x̃p)−f (k)(x̃p−1)

x̃p−x̃p−1
·(

x′p − x̃p−1

)
+ f (k)(x̃p−1) with x′1 ∈ [x̃0, x̃1] ⊆ [a, x1] or x′p ∈ [x̃p−1, x̃p] ⊆ (xp−1, xp], p = 2,...,

n, then Corollary 1 holds.

Proof 5. The same proof as Proposition 1.

4.4. Case of approximate values .If what we know in practical applications are approximate
values off (k)(xp), p = 1, ...,n, the functionGn can be found in accordance with to the follow-
ing result.

Proposition 4. With the hypothesis of Theorem 2, if the valuesf (k)(xp), p = 1, ..., n in (2.3)
are unknown but we knowf (k)(xp) + ηp, with

∣∣ηp

∣∣ < η , p = 1,...,n then

‖Rk (f ; a, x)−Gn(x)‖ ≤
[
2 (M −m + η)

n
√

n
+ ω

(
f (k),

b− a

n

)
+ η

]
(b− a)k

Proof 6. The functionf (k) is continuous in[a, b]. For the valuesf (k)(xp) + ηp, with
∣∣ηp

∣∣ < η ,
p = 1,...,n we know (see[3]) that∥∥f (k) − Cn

∥∥ ≤ 2 (M −m + η)

n
√

n
+ ω

(
f (k),

b− a

n

)
+ η

On the other hand, if we proceed like in proof of Theorem1 in [2],

‖f −Hn‖ ≤
[
2 (M −m + η)

n
√

n
+ ω

(
f (k),

b− a

n

)
+ η

]
(b− a)k

Thus, we complete the proof because

‖f(x)−Hn(x)‖ = ‖Rk (f ; a, x)−Gn(x)‖
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5. CASE OF NUMERICAL APPROXIMATION OF THE FIRST AND THE SECOND

DERIVATIVES

To define the functionsHn in Theorem 2, the valuesf (j)(a), j = 0, 1, ...,k− 1 andf (k)(xp),
p = 1, ...,n are used. Sometimes, this could be difficult or even impossible. For these cases we
show two solutions using numerical approximations of the first and second derivatives. IfM1,
m1 andM2, m2 are the maximum and the minimum off (4) andf

′′
in [a, b] respectively, for all

n ≥ 2, it verifies the following results.

Proposition 5. If a functionf has four continuous derivatives in[a, b] and thef (k)(xp), p = 1,

...,n in (2.3) are changed bykp =
f(xp)−2f

�
xp+xp−1

2

�
+f(xp−1)

(h
2 )

2 , p = 1, ...,n respectively, then

‖Rk (f ; a, x)−Gn(x)‖ ≤ Vn (b− a)2 +
h

2
M2 (b− a)

where

Vn =
2 (M2 −m2) + (M1−m1)(b−a)2

24n2

n
√

n
+ ω

(
f
′′
,
b− a

2n

)
+

(b− a)2 M1

48n2

Proof 7. Theorem2 ( [2], p. 222), established that∥∥∥f
′′ −H

′′

n

∥∥∥ ≤
M2 −m2 + (M1−m1)(b−a)2

48n2√
n

+ ω

(
f
′′
,
b− a

2n

)
+

(b− a)2 M1

48n2

for the functionsFn,1 (xi, x), i = 0, ...,n.
If we apply Theorem2.6 in [3] to the continuous functionf

′′
and we consider the valueskp

of the hypothesis of this Proposition, we obtain∥∥∥f
′′ − Cn

∥∥∥ ≤ Vn

Given that ∥∥∥f
′′ −H

′′

n

∥∥∥ =
∥∥∥f

′′ −G
′′

n

∥∥∥ =
∥∥∥f

′′ − Cn

∥∥∥
we proceed as in proof of Theorem2 in [2] and we take into account that

‖f(x)−Hn(x)‖ = ‖Rk (f ; a, x)−Gn(x)‖

to complete the proof.

Proposition 6. If a functionf has four continuous derivatives in[a, b] and thef (k)(xp), p = 1,
...,n in (2.3) are changed bykp = f(xp+1)−2f(xp)+f(xp−1)

h2 , p = 1, ...,n− 1 andkn = kn−1, then

‖Rk (f ; a, x)−Gn(x)‖ ≤ Wn (b− a)2 +
h

2
M2 (b− a)

where

Wn =
2 (M2 −m2) + (M1−m1)(b−a)2

6n2

n
√

n
+ ω

(
f
′′
,
b− a

n

)
+

(b− a)2 M1

12n2

Proof 8. Corollary 6 ( [2], p. 222), established that∥∥∥f
′′ −H

′′

n

∥∥∥ ≤
M2 −m2 + (M1−m1)(b−a)2

12n2√
n

+ ω

(
f
′′
,
b− a

n

)
+

(b− a)2 M1

12n2

for the functionsFn,1 (xi, x), i = 0, ...,n.
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If we apply Theorem2.6 in [3] to the continuous functionf
′′

and we consider the valueskp

of the hypothesis of this Proposition, we obtain∥∥∥f
′′ − Cn

∥∥∥ ≤ Wn

Given that ∥∥∥f
′′ −H

′′

n

∥∥∥ =
∥∥∥f

′′ −G
′′

n

∥∥∥ =
∥∥∥f

′′ − Cn

∥∥∥
we proceed as in proof of Theorem2 in [2] and we take into account that

‖f(x)−Hn(x)‖ = ‖Rk (f ; a, x)−Gn(x)‖
to complete the proof.

Remark.

• In this work we are concerned about the improvement of the uniform convergence speed
of the sequence(Gn)n to the functionRk (f ; a, x) in [a, b]. In this sense the valuesM1,
m1 andM2, m2, ω

(
f
′′
, b−a

n

)
andω

(
f
′′
, b−a

2n

)
which appear in these Propositions are

only useful for us. For the definition ofGnwe only need to know the valueskp.

6. CASE OF A NON-UNIFORMLY SPACED DATA

For the case of non-uniformly spaced data the following statement can be established.

Theorem 3.LetPn = {a = x0, x1, ..., xsn = b} be a partition of[a, b] with δ (sn) = min
1≤j≤sn

|xj − xj−1|

and∆ (sn) = max
1≤j≤sn

|xj − xj−1| such that3(b−a)
nK ≤ δ (sn) ≤ ∆ (sn) ≤ h beingh = b−a

n
and

K ≥ 2 a positive integer. Letf be a functionk times continuously differentiable in[a, b], then
there exists a sequence(Hn)n defined in[a, b] such that for eachj = 0, ..., k∥∥f (j) −H(j)

n

∥∥ ≤
[
2K (M −m)

n
√

n
+ ω

(
f (k), ∆ (sn)

)]
(b− a)k−j

being n ≥ 2, M and m the maximum and the minimum off (k) in [a, b] respectively and
ω

(
f (k), ∆ (sn)

)
its modulus of continuity,Hn as usual andCn as in (2.3).

Proof 9. Theorem3 ( [2], pp.222− 223), established that∥∥f (j) −H(j)
n

∥∥ ≤
[
6K

5

M −m√
n

+ ω
(
f (k), ∆ (sn)

)]
(b− a)k−j

for the functionsFn,1 (xi, x), i = 0, ...,n and for all j = 0, ..., k.
On the other hand, Theorem5.5 in [3] applied to the continuous functionf (k) established

that ∥∥f (k) − Cn

∥∥ ≤ 2K (M −m)

n
√

n
+ ω

(
f (k), ∆ (sn)

)
Given that ∥∥f (k) −H(k)

n

∥∥ =
∥∥f (k) −G(k)

n

∥∥ =
∥∥f (k) − Cn

∥∥
we proceed as in proof of Theorem3 in [2].

Corollary 2. With the hypothesis of Theorem 3, we have

‖Rk (f ; a, x)−Gn(x)‖ ≤
[
2K (M −m)

n
√

n
+ ω

(
f (k), ∆ (sn)

)]
(b− a)k

whereRk (f ; a, x) is Taylor’s remainder off of orderk.
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Proof 10. Given that

‖Rk (f ; a, x)−Gn(x)‖ = ‖f(x)−Hn(x)‖
and Theorem 3 establishes that

‖f(x)−Hn(x)‖ ≤
[
2K (M −m)

n
√

n
+ ω

(
f (k), ∆ (sn)

)]
(b− a)k

the proof is complete.

Remark.
• As we have said before, we are concerned about the improvement of the uniform con-

vergence speed of the sequence(Gn)n to the functionRk (f ; a, x) in [a, b]. Only in this
sense the valuesM , m, ω

(
f (k), ∆ (sn)

)
andK which appear in this Proposition are

useful for us. For the definition ofGnwe only need to know the valuesf (k)(xp).

7. CONCLUDING REMARKS

It is well known that the approximation of the Taylor’ polynomial to a functionf is a local
approximation. We also know that the remainder in Taylor’s formula depends on an unknown
parameter. In this sense, there is a wide range of results on this topic from different perspectives.
As we said at the beginning, some of them about estimates of the remainder [1, 4, 5, 8], others
about different forms of the remainder [6] or about the study of the asymptotic behavior of the
remainder term of the formula [7].

The RAFU remainder in Taylor’s formula published in [2] as a sequence uniformly conver-
gent to the Taylor’s remainder in any closed interval was only defined. In this work the speed
of convergence has been improved and the mathematical expression of this sequence has been
shown. The sequence can be defined from some values off (k)(x), sample means, local av-
erages, linear combinations or approximate values of them. But also, it can be obtained from
numerical approximations of its first and the second derivatives off and even in case of non-
uniformly spaced data.
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