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commonly used in approximating the integral of a functjgr) over an intervala, b] were es-
timated. The error bounds of the second, and third generating functions of the Gauss-Legendre
quadrature rules were also estimated in this paper. It was shown that f¢t)amhose smooth-
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1. INTRODUCTION

This paper deals with quadrature rules for functions having lower order of derivatives than is
usually required. We aim to establish some new error estimates that are sometimes exact and
convenient for the evaluation of the quadrature error using another approach to the numerical
integration. The formula

(1.1) /un(x,t)df(t)—/ F&)dt =" f (k) su,
a a k=0

was obtained in[7] and considered in further detail$ in [4]. Forinula 1.1 appeared in connection
with the trapezoidal rule presentedlin [2]. Several works has been presented in the literature (see
[6,5,[3]). We can write the right-hand-side[of[1.1 as the error functiéhéf) = I(f) — L.(f).

It follows that

b
(1.2) Eu(f) = / (2, D ().

The error of the quadrature rule is

b
(1.3) B < mas 0] | (o0

The theorem containing formufa 1.3 as well as its proof was detailed in [7]. Forfnulas 1.2
and[1.3 are the main notations used in this paper. The method of generating functions was
introduced in([7]. For example, the generating functions

a—t+ 2": Se(t)0F (t — a:k)] ,

k=0

(1.4) un(t) = x(a,b)

wherea = o < 1 < ... < z,_1 < z, = b, were integrated until we obtain nonzero values

at the endpoints. In what follows, we are omittinga, b), implying that everywhere in the
definition of R, this factor is present. The generating functions describes the complete rule for
numerical integration, including the numerical integration formula and the error estimate for the
integrand with arbitrary smoothness. The estimation of error bounds using generating functions
and geometry was introduced in [4]. Both methods will also be applied in this paper to estimate
the error bounds for functions of lower smoothness.

2. ERROR BOUNDS FOR RECTANGULAR RULE

To estimate the error bounds of the rectangular rule, we define the following: a, 1 =
b—a

, £o = b. Now we writeI(f) = (b — a) f(z1) = se0f (1) and we calculate the integral

t
(2.1) Uoi(t,a,b) :/ uo(7)dr.
We define the functions
(0 if t<a, (0 if t<a,
. b b
: ) a—t if t<®F : ) —3(a—1¢)? if 1t<a;r :
Up t,a,b = U01 t,a,b =
bt it Poy —Lp—t)? if ath
L0 if b<t, L0 if b<t.

uo(t,0,1) andUpy (¢, 0, 1) are illustrated in Figure|1
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Figure 1: (a) Graph ofuy(¢,0, 1) (b) Graph ofUq; (¢, 0,1)

Figure] 1 was obtained by replacifg b] with [0, 1]. This was also the case for all the figures in
this paper. We now write the error functional fay(¢t) andUy, (t) as

b
(2.2) Eo(f) = / uo(t)df (), and

(2.3) Ev(f) = / uo(7)f (7).

The error bound foyf(t) € CWa, b] is defined as

Bo(f)| < oty < maxt 0] [ (ot
2.4) max| f'(1 ( 42 o b) it = i(b — @) max| f'(£)].
Therefore
(25) Bo(f)] < (b~ ) max] (1)

The value}l(b — a)? can also be verified by geometry, using FigHre 1(a). For the error bound of
f(t) € CP]a, b], we simplify formulg 2.8 as follows

b b
(2.6) Ei(f) = / uo(r)df (1) = / J'(7)dUnn (7)

and apply integration by parts to obtain

b
(2.7) Eif) =~ [ Un(n)f" ().

The error bound foif (t) € C?]a, b] is calculated using the definition below

B <]~ [ Ut @] < mast @) [ Sjomiar
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b
dT+/
a+b

2

max| f*(t)].

b atb
1 1
We know that/ Ui (7)]dr = / ’ —§(a —7)? _§<b — 7)%| dr. Therefore

a a

(2.8) [EA(f)] <

(b—a)’
24

3. ERROR BOUND FOR TRAPEZOIDAL RULE

b+a. Then

In what fO”OWS, we deﬁnexo =a,r1 = b, S10 = S11 =

Ii(f) = s10f(x0) + s11f(z1),
andu, (t) = —t + s100" (t — ) + 51107 (t — 21). The integral

t
(3.1) Ui(t,a,b) = / wy (T)dT,
will be calculated to obtain the functiofy; (¢, a, b). We now define the functions
0 ) if t<a, 0 if ¢<a,
uy(t,a,b) = —t+a—2i_ if a<t<b, Un(tab)=4—-3(a—t)(b—t) if a<t<b,
0 it b<t, 0 if b<t.
u1(t,0,1) andUy; (¢, 0, 1) are both illustrated in Figufd 2
u(t} 107
034
\ vi (D
0.0 +—+—— ——+—— i
02 04 0 08 10 o-10p
3 \\t 0.08f
054 i
-10 02 04 06 ) 10!
(@) (b)

Figure 2: (a) Graph ofu, (¢,0, 1) (b) Graph ofU;4(¢,0,1)

The error bound forf (t) € CW]a, b] is
B0 | [ woae] <] [ rouod <mxro) [ oo,

/ ’ (b — CL)
wax| (0] [ .

a+b
2

max|f(2)],

—t‘dt:
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The same result can also be obtained from Figure 2(a). Therefore

()] < (6= a)mas] £ (1)

Let us write the error functional fdr,,(¢) as

(3.2)

b
(3.3) &mz/mmmw

We simplify formuld 3.8 as follows

b b
(3.4) Eo(f) = / w(r)df(r) = / F(7)dU (7).

and apply integration by parts to obtain

b
(35) Eg(f) = —/ Ull(T)f”(T)dT.

Therefore

|Ea2(f)] S‘ - /ab U11(7')f”(7')d7" < max|f"(t)| /ab —%7’[7’ — (a+b)]| dr.

(b—a)’

b b
We know that/ \Uri(7)|dT = / . Therefore, the error

bound forf(t) € C?]a,b] is

57l (o) ar =

N3
(3.6) (b 12“)

|Ex(f)] < max| f*(t)].

4. ESTIMATION OF ERROR BOUNDS FOR SIMPSON’S1/3 RULE
We now estimate the error bounds for the Simpsap3srule (which is a quadratic parabola).

. . b .
We define the followingxg = a, z; = %, z9 = b. The three nodes are defined as:

1 4 1
Sog = é(b - CL),821 = E(b - a)7322 = é(b o CL).

Then
I(f) = sa0f(x0) + sa1.f(x1) + s92.f (2),

and the generating functionis (t) = —t + sy0 " (t — 20) + s0107 (t — 1) + 52207 (t — 22).
The integrals

t t t
(41) U21<t, a, b) = / UQ(T)dT, Ugg(t, a, b) = / Ugl(T)dT, Ugg(t, a, b) = / UQQ(T)dT,

are used to obtain functiori$, (¢, a, b), U (t, a,b) andUxs(t, a, b).

(0 if t<a,
b . b
o Ly ot t<a;r ,
us(t,a,b) =
., a+5b i a+b§t’
6 2
0 if b<t,
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The functions are graphically represented in Figure 3.
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Figure 3: (a) Graph ofuy(¢,0, 1) (b) Graph ofUs (¢, 0, 1) (c) Graph ofUsx(t, 0, 1) (d) Graph ofUzs(t,0,1)
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The error functional forf (t) € CW[a, b] is

b b
B = [ wdd® = [ fouba
and the error bound is calculated using
b b
[ 7t < maxlf )] [ Jualo)ie

2
5a;—b‘dt: 5(b—a)

| (f)] <

a+b

Since2/ i

, therefore

—t+
5(b — a)?
36
Integral ff|u2(t)|dt can also be evaluated geometrically, by computing the area of triangles in

Figure[ 3(a).

The error functional forf (t) € C®[a, ] is

4.2) Ey(f) = / us(r)df (r) = / F()us(r)dr,

|Ex ()] < max| f(t)].

b
whereu,y(7)dr = dUs; (7). IntegratingEs( f) by parts returngs, (f) = —/ (7)) Uy (T)dr.
Hence ‘

B <| - [ @] < masis ) [ s

(b—a)’

b atb
1
/!Uzl(t)|dt:2/ i ‘—g(a—t)(Za—i—b—Bt)‘dt: TR

Finally, the error bound is

—a)
*3) B0 < P masd ).

We obtain the Simpson’s third error bound using the definition

@4 By(f) = / un(r)df (r) = - / F () U (7)dr = / F(7)dUs (7).

After integration by parts, we obtain the error functional as

b

(4.5) Ey(f) = / J (7 U ()
and

b efh —a)?
(4.6) /|U22(7)|dr:2/ 1—12(a—t)2(a+b—2t): (b57g) |
Hence

b b

By(f)] < / F(0)Una(t)dt| < max| (1) / U (8)) .

@.7) B < L= maxg o).

576
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We know that

(4.8) /f’” dT—/f/” )dUs3(T).
After integration by parts
(4.9) / FO () U (7
The Simpson’s fourth error bound is
b b
(4.10) [Ea(f)] s\— / (4)(t)U23(t)dt‘ < max|f ()] / |Uss (t)]dt,
Whl|e/ |Uas(t)|dt = (b—ay Hence
2 2880
b—a)d
(@11) (D) < D x| (9 1),
We defineEs(f) as
(4.12) / (1)U (r)dr = — / O (YU (7),

wherelUsy(t,a,b) = / Uss(T)dr. The graph ol/s(t, a, b) is presented in FiguH 4.

a

Us(f)
0.00035 |

0.00030 -
0.00025
0.00020
0.00015
0.00010 |

0.00005

I I I L
0.2 0.4 0.6 0.8 1.0

Figure 4: Simpson’s rule graph @f.4(¢, a, b)

Itis true that
(4.13) Es(f) = [—fO (1) Us(r /f<5 VUss(T

Clearly [ f©(1)Ua(7)]8 # 0 (from Flgure@). Hence, the accuracy of evaluationfof f)
with increasing smoothness does not increase.

5. ESTIMATION OF ERROR BOUNDS FOR SIMPSON’S 3/8 RULE
The errors of the Simpson®/8 rule (which is a cubic parabola) will be evaluated. The

2a + b a—+2b
3 , Ly =

following definitions are truexry = a,x; = ,x3 = b. The nodes are

1 3 3 1
S30 = g(b — (l),Sgl = g(b — CL),SgQ = g(b — CL),833 = g(b — CL).
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And
I3(f) = ss0f (xo) + s31.f(21) + s32f (w2) + s33f (73),
the generating function is
U3<t) = —t —|— 8300+(t — l’o) —|— 8319+(t — l’l) + 8320+(t — .172) —|— 8330+(t — 1'3).
The integrals

t t t
(51) Ugl(t,a,b):/ 'LL3(T)dT, Ugg(t,a,b):/ Ugl(T)dT,Ugg(t,(l,b):/ U32<T>d7’,

a

will be used to obtaiti/s; (¢, a, b), Usa(t, a,b) andUss(t, a, b).

0 if t<a, 0 if ¢<a,
Ta+b . 2a+b 1 . 2a+b
- a; if a<t< ot , ——(a—t)Ba+b—4t) if a<t< ot ,
b .. 2a+Db 2b . 2a+Db 2b
us(t, a,b) = —t+“; it 20 D gtab) = ——(a+b—20) if ”3* <t<“3 ,
™. 2b . 2b
Cpy 2 if ot <t <y, —g(b—t)(a+3b—4t) if “t <t<b,
0 if b<t, 0 if b<t.
0 if t<a, 0 if t<a,
%(aft)2(5a+3b78t) if a<t< a;b 7£(a7t)3(a+b72t) if a<t< ’”b,

- _) 1 o3 . 2a+0b a+2b - _) 1 L 2a+0b a+2b
Usa(t, a,b) 418(a+b 2t) if +32b<z‘,< 5 Uss(t, a,b) 3456((1 b)* — 384(G+b )t if +2b<t< R
2 S g a 7 _ g @

E(b t)*(3a+ 5b —8t) if 3 <t<b, 48(1) t)°(a+b—2t) if 3 <t<b,
0 if b<t. 0 if b<t.

The functions are graphically represented in Figure 5.
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Figure 5: (a) Graph ofus(t,0,1) (b) Graph ofUs; (¢,0, 1) (c) Graph ofUsz(¢,0, 1) (d) Graph ofUs3(¢,0,1)
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The error functional forf (t) € CV[a, b] is defined

Ei(f) = / us(8)df () = / P (0)us(t)dt,

and the error bound is

b b
B <| [ £ Ouslt)at] < maxi 0] [ Justo)ie

b—a)?

b
. 2
It is true that/ lug(t)|dt = 5(288 , hence

25(b — a)?

B < 20

The error functional forf (t) € C®|[a, b] is

max| f(t)].

(5.2) Ey(f) = / us(r)df (r) = / F(7)dU (7).

We integratefs, () by parts and write the second error bound
b
B(7)| < maxl"(0)] [ U (o)t
b bh— 3
/ Ut = L=

192
Finally
(5.3) B < L= naxi ).
- 192

The third error bound for Simpson38 rule is calculated as follows

(5.4)  By(f) - / us(7)df (7) = — / £ U (7)dr = / /() AU (7).

Integrating by parts, we obtain

b
(5.5) Bs(f) = / §"(7)Uig()dr,
and
b bh— 4
(5.6) / Usn(r)far = L2
Therefore
b b
B <| [ 10Ut < maxl )] [ Uaolar
(5.7) B < L= maxg o).

- 1728
The same approach is used to calculate the fourth error bound

(5.8) Eu(f) = / 1 (7 Una(7)dr = / £"(r)dUss (7).
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Integration by parts returns

(5.9 / FO ()l
The Simpson’s}/8 fourth error bound is
b b
(5.10) B <] = [ F0Us0d] < maxl o) [ V(o)
b bh— 5
and/a |Uss(t)|dt = (64—8?))' Hence
(b—a)

(5.11) |Ea(f)] < max| £ (t)].

6480
Es(f) is defined below

(5.12) /f<> VUss(T)dr = — /f 7)dUs4(7),

whereUs,(t, a,b) = / Uss(7)dr. Usy(t,a,b) is presented in FlguH 6.

a

Ug(t)

0.00015
0.00010

0.00005

T L L L T
0.2 04 0.6 0.8 1.0

Figure 6: Simpson’s rule graph d@fs4(t, a, b)

Clearly

(5.13) Es(f) = [ O () Usa(r /f e

[~ O (r)Usa(1)]2 # 0 from Figurel 6. As was the case for Simpson/$ rule, the evaluation
of E,(f) with increasing smoothness does not increase for the Simpsthisile.

5.1. Remark about Simpson’s rule forn = 4 and n = 8. The generating functions for

uy(t, a, b) andug(t, a, b) are presented on pagé?2 in [4]. Using the approach explained in this
paper, the estimation of the error boundsior 4 can be conveniently calculated. However,

it was observed that far = 8, the right-hand-side of the first integral was not equal to zero
(i.e. Us;(b) # 0). It was necessary to consider this particular Simpson’s rule because it is the
first case where the generating function has both positive and negative jumps (see Figure 4(c)
on page’42 in [4]).
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6. GAUSSIAN QUADRATURE

This is an opened quadrature rule
1 n
(6.1) / f(z)dz ~ Zsjf(xj),
-1 =1
wheres;, z; are unknown. To findn unknowns we need at least equations. These equations
can be obtained if we require the exactness of the[rule 6.1 on all polynomials of degree

2n — 1. In particular, Equatiop 6|1 must be true fét) = 1,¢,¢%,...,¢*"~1. Let us write these
eguations using a tabular system

Table 6.1: Error for different: values

f(@) Eq
1 n n
N S s =2
-1 j=1 j=1
1 n n
t / tdt = Z 55T Z sjx; =0
-1 j=1 j=1
' 2 - 2 - 5 2
2 _ _
t /_tdt—Zsja:j Zijj—g

! j=1 j=1

n 1
$2n—1 Z 5j2§n71 _ / £2n=1 gt
Jj=1 _

1

Carl Gauss has shown that the exactness for polynomials of degree not exczedirigcan
be attained if and only if the values, x,, . . . , z,, are then-zeros of the Legendre polynomials,
P,(x). The Legendre polynomials can be computed through the formulae

1 d

2 Pu(z) = —[(z* = 1)"].

(62) W(@) = gol(@® = 1))

It is known that Legendre polynomials can be obtained as solutions of the Legendre equation
(6.3) (1 —2)y" — 2zy' +n(n+ 1)y = 0.

Thus, the nodal points of the Gauss method are the roots of the Legendre polynBnigls
The weightss; can be found from the following formula

2
(1 —a3) (P (x;))*
Example 1: The roots aPs(z) arex; = 0.775; x5 = 0; x5 = 0.775, using the formula presented
in Equatior] 6.4, we obtain

(64) Sj =

2
(1—(0.775)2) (L2 x (0.775)2 — 2)

2
Sg = = 0.889; s3 = 0.556.

7"

S1 —

> = 0.556

AJMAA Vol. 18(2021), No. 2, Art. 19, 21 pp. AIMAA
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For the comprehensive table of roots and weights, [see [1]. It is possible to prove that for the
smooth enough functiory,(x), the Gaussian quadrature formula can be written as

n

/_1 f(z)dx = Zsjf(a:j) + R,

j=1

where

B < (2n2+1)! {222(2;32}2

We can compute that the factor in the erégr =

for differentn

g [ ]

Table 6.2: Error for different: values

Cr
0.333
741 x 1073
6.35 x 107>
2.88 x 1077
8.08 x 1071°

[ BRSO NC R

7. ESTIMATION OF ERROR BOUNDS FOR SECOND GENERATING FUNCTION OF
GAUSS-L EGENDRE QUADRATURE RULE

The two nodal generating function for Gauss-Legendre rule is given as the function

(7.1) Up(t) = -t —1+0% (t+%)+9+ (t—%).

0.6
0.4

0.2

\ ‘ ‘
-1 -0.5 0.5 1.0
-0.21
—04f

-0.6

Figure 7: Second generating function for Gauss-Legendre rule

The error functional for the Gauss-Legendre quadrature rules are the same as previously defined
in Equatior] 1.p, we only replade, b] by -1, 1]

(7.2) Eu(f) = / un(t)dF ().

1
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7.1. Error bound for Gauss-Legendre rule, second generating functiory (¢) € CW[—1,1].
The first error bound for the second generating functig) is defined as

(7.3) En(f) = / ua(t)if(t) = / F(ruar)dr

The first subscript “2” inEy; (f) indicates that we are dealing with 2 nodal points, the 2nd
subscript indicates that the integrand belongs to the sp4te This applies throughout the
paper. Then

a4 a1 [ fuanir| < [ |Feu@]dr <mairol [ 11|u2<7>|dr.

1
1
/ |ug(7)|dT = 0.512 was calculated from Equati.l. Finally
-1

(7.5) | Ean (f)] < 0.512 [Ifllaﬁlf'(t)l < 0.512]|f]].

7.2. Gauss-Legendre quadrature rule in case of two nodal points forf(t) € C®?[—1,1].
As before

(7.6) En(f) = / us(r)df (7) = / F(rur)dr

Let us denoteuy (7)dT = dUx(7), this means

1
7.7 E = "(1)dU.
1.7) o) = [ P = [ 1o

whereUs(t) :/ o(7)dr. Therefore
-1

(

1 2 - 1
_52(t+1) , if —1§t<—7§,
211 ,
(78) U22<t): —5—54—%, if v <t< 73
t2 1 L
\—5 +1t— 5, | 7 < 1.

The graph of Equation 7.8 is shown in Figife 8(a). We know that

(7.9) Enl(f / F/(7)dUss (7 / F(r)Usa(7
Then
(7.10) | Ena(f)] g‘ —/11 f”(r)UQQ(T)dT( §max|f”(t)|/11|U22(T)|dT.

1
/ |Usa(7)|dT = 0.0812, therefore
-1

(7.11) | Exo(f)] < 0.0812max|f"(t)] < 0.0812 | f]|, .
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7.3. Gauss-Legendre quadrature rule in case of two nodal points forf (t) € C®)[—1,1].
The third error functional is

(7.12) Eas(f) = / up (7)df (7).

1

Ux(t) was obtained in Equatidn 7.8. The following definitions apply

() = / @ = [ feur= [ s

(713) f//( )UQQ( dT— / f” dU23 / f”/

The graph oflUs3(t) is |Ilustrated in Figuré[8(b).

U2 (9 U3 (9
0.02
0.05
0.01
» ~ t JI— L L
t
1.0 05 0.5 00 50 o5 05 o
-0.05 o1
-0.02
(a) (b)
U4 (f) Uzs ()
t . . Loy
-1.0 = 0.5 1.0
0.002
-0.004
-0.006
(©) (d)

Figure 8: (a) Graph ofUsz(t) (b) Graph ofUss(t) (c) Graph ofUs4(t) (d) Graph ofUss(t)

The following is valid

(7.14) | Eas(f |<‘/ " (r 7)dr| < max|f" (t) \/ |Uas(7)|dT,

1
since/ |Uas(7)|dT = 0.0192. If f(t) € C®[~1,1], Equatior) 7.14 becomes
-1

(7.15) | Eas(f)] < 0.0192max| " (t)| < 0.0192 || f| -
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7.4. Gauss-Legendre quadrature rule in case of two nodal points forf (t) € C®[—1,1].
We definels(f)

1
(7.16)  Eu(f / " (m)Uxs(m)dr = | f"(7)dUsa(T / SO U7
-1
The obtained functiori/,4(t), is graphically illustrated in Figuig 8(c). The relations are valid

(7.17) | Ena(f)] g\ 3 f<4>(T)U24<r)dT) < max| f(t)| / Uzl

1
1 :
/;1’U24<T>’d7' = ﬁ Flna”y

7.1 E.
(7.18) Ba(1)] < g3z maxl /()] < = 1
. _ 2 [4-4\* 1
Remark: Using the Table 6.2, far= 2 we obtainc, = gl ) = 1o From the graph

of Us4(t), the integration ot/y, from —1 to ¢ will give a point att = 1, whose value is different
from zero (see Figuld 8(d)). Thereforefift) € C®)[—1, 1], the substitution for the integration

by parts will contain a terng2 0. This means that the formula associated with the error for
f(t) € C® cannot be improved. This is the reason why in the literature, a formula related to an
error is obtained foff € C?")[—1,1] (in our casef (t) € C[—1,1]) and not forf(t) € C®).

7.5. Gauss-Legendre quadrature rule in case of two nodal points forf (t) € C®)[—1,1].
In what follows, we validate the preceding remark

1
(7.19) E25 / f U24 dT—/ f(4)<7->dU25(7-)7
-1

After integration by parts
(7.20) / FOT)AUs(7) = [fH () Uss(7 / FOT)Uss (7

From Figure{?(d),[f(“) (7)Uss(7)] 1_1 # 0. Therefore, the remark is validated.

8. THIRD GENERATING FUNCTION OF GAUSS-LEGENDRE RULE

Three nodal generating function for Gauss-Legendre rule is
_ 5) 3 8 ) 3
8.1 us(t) = —t—1+-0% | ¢ \/j 0t + 0T [ t—4/=].
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0.4F

NN

Figure 9: Third generating function for Gauss-Legendre rule

8.1. Gauss-Legendre quadrature rule in case of three nodal points fof (t) € CM[—1, 1].
The first error boundvs; (f) is

8.2) Bu(f) = / () - / P (rua(rye

From formuld 8.2, we obtain

83)  |En(f) g‘/_ll (7)) < ’T)ug,(T)‘dTgmaxyf'(m/_11|u3(7)|d7.

1
/ |ug(T)|dT = 0.357, finally
-1

(8.4) | Es1(f)| < 0.357 [Igaﬁlf’(t)l < 0.357 |1l

8.2. Gauss-Legendre quadrature rule in case of three nodal points fof (t) € C?[-1, 1].

(8.5) Ewlf) = [ fusnir = [ F(7)dUs (7)

Integration by parts is applied

(©.6) [ r@avse) =@l - [ £ @

We integrateu;(7) to obtainUsy(7) i.e. Usay (T f L us(T)dr. Hence
(—%(t—kl)Q, if —1<t<—/%

9
279 T3y Vo
t

Usy(t) is graphically plotted in Figure 10(a).
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U3z (f)
006
0.0p4
. 4
0.5 1.0 0.00%
— t
-1.0 5 5 1.0
-0.002
-0.004
-0.006
(a) (b)
Us4 () Uss(f)
0.0002f
0.0001
. . R
-05 0.5 1.0
-0.0001
—4.0002
Us7(f)
. ! =t
-1.0 0.5 1.0

-0.00002 -

-0.00004 |-

-0.00005 [

-0.00006 |-

()

Figure 10: (a) Graph ofUs,(t) (b) Graph ofUss(t) (c) Graph ofUs,(t) (d) Graph ofUss(t) (€) Graph ofUsg(t)

(f) Graph ofUsy (t)

Itis true that

(8.8)

1
/ |U32(7‘)|d’7’ = 0.0374, thus
1

(8.9)
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8.3. Gauss-Legendre quadrature rule in case of three nodal points fof (t) € C®[-1,1].

1 1
(810) E33(f) = —/ f”(T)ng(T)dT = — f”<7')dU33(7'),
-1 -1
We apply integration by parts
(8.11)

[ @ = o+ [ e = [

Uss(t) is plotted in Figur¢ 1j0(b). The following is valid

®12)  |Pa(f) <] [ 7Var)dr| < maxl )] [ Va(lar

1
/ |Uss(7)|dT = 0.00548, finally
—1

(8.13) |Es3(f)] < 0.00548 max| f”(¢)] < 0.00548 || f]] -
8.4. Gauss-Legendre quadrature rule in case of three nodal points fof (t) € C™®[-1,1].
1 1
(8.14) E3(f) :/ fm(T)UzS(T)dT :/ f”l(T)dU?A(T)
-1 —1
We integrate as follows
(8.15)
1
P = sl - [ o= [ e
-1
See Figuré 10(c) for the graph &f,. The following holds
©816)  |Eu(f) <[~ / I (7)Usa(7)dr| < max| 7@ y/ |Usa(7)dr

1
/ |Us(7)|dr = 0.000909 and
—1

(8.17) | Esa(f)] < 0.000909 max| f®(£)| < 0.000909 || £, -

8.5. Gauss-Legendre quadrature rule in case of three nodal points fof (t) € C®[-1,1].

1
(8.18) Ess(f / FO@Usa(r)dr = = [ fO(7)dUss(7),
—1

We integrate Equatidn 8.]L8
(8.19)

/f 7)dUs5(7) = — [ (7)Uss (7 /f() VUss (T dr—/f TVUss (T

Uss(T) is graphically |Ilustrated in Flgu@O(d) Now, the following is true

(8.20) | Ess(f |<\ f<5>< )Uss (T dr)<max|f<5> )l / |Uss(7)dr.

1
/ Uss () dr = 0.000196 and
—1

(8.21) | Bs5(f)| < 0.000196 max| f®(¢)| < 0.000196 || £ -
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8.6. Gauss-Legendre quadrature rule in case of three nodal points fof (t) € C(9[—1,1].

1
(8.22) Esg(f / FOUTUss (1)dr = / FO(7)dUss(7),
-1

We integrate Equatign 8.p2
(8. 23) X X
/ f dU36 ) |:f<5) (T)U36(T)] 1_1 - / f(6) (T)UgG(T)dT = — f(6) (T)Ugﬁ(T)dT.
-1 -1

Use(T / Uss(T), the result of which is plotted in Flgun(e) Then

(824) ‘ESG ’ <‘ / f U36 dT‘ < max\f |/ ’U36 |d7'

1
|
: dr = and
/JUSG(TH T~ 15750

1
2 E - (6)
(8.25) ‘ 36( )| = 15750 max ‘f ( )| > 15750 HfHﬁ
Remark: Using the Tab 2, far = 3 we obtainc; = z w 2 = ; From the
- osing 4 Tor= 5=\ 6l ) T 1ams0°

graph ofUsg(t), it is clear that the integration @fss from —1 to 1, will result in a pointt = 1,
whose value is different from zero (see Fig 10(f)). Thereforg(if €¢ CM[-1,1], the
substitution for the integration by parts will contain a teg). This means that the formula
associated with the error fgi(t) € C7) cannot be improved.

8.7. Gauss-Legendre quadrature rule in case of three nodal points fof (t) € C(M[-1,1].

1
(8.26) Eun(f / O () U (r O () dUse(7),
~1

The integration of Equatidn 8.26 is
(8.27) /f 7)dUs7 (1) = [f ) (7)Usz (T /f T)Usz (T

From Figur(f),[f<6) (T)U37(7)]1_1 # 0. Hence, the error bound cannot be improved. The
approach applied under Sectigns 7 ghd 8 can be used to estimate the error bounds for the fourth
and fifth generating functions of the Gauss-Legendre quadrature rules.

9. SUMMARY

The error bounds of selected Newton-Cotes formulas for lower order derivatives were esti-
mated in this paper. We found that the accuracy of the fourth error bound for the Simpson’s
1/3 and3/8 rule cannot be improved. The error bounds for the second, and third generating
function of the Gauss-Legendre quadrature rules were also evaluated. The findings in this pa-
per agrees with results in the literature and are particularly useful for undergraduate courses on
numerical analysis.
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