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2 ANANTACHAI PADCHAROEN AND PAKEETA SUKPRASERT

1. INTRODUCTION

It is well known that functional analysis is made up of two main methods which are varia-
tional methods and fixed point methods. fixed point theory has been one of the most influential
research topics in various field of engineering and science. The most incredible result in this di-
rection was stated by Banach, known as the Banach contraction principle [1]. Many researcher
studies this topie.q., [4,5,6,7,8].

Khojasteh et al. [2] introduced the notion Bfcontraction by using a new class of auxiliary
functions called simulation functions. This kind of functions have attracted much attention
because they are useful to express a great family of contractivity conditions that were well
known in the field of fixed point theory, which attracted the attention of many researchers to
develop furthee.q., [11,12,13].

In this paper, we introduce the motion GeneralizeddmssibleZ-contraction and establish
various fixed point theorems for such mappings in complete metric spaces. The presented the-
orems extend, generalize and improve many existing results in the literature, in particular the
Banach contraction principle. Moreover, we obtain fixed point result is applied to guarantee the
existence of solution of nonlinear Hammerstein integral equations.

2. PRELIMINARIES

Definition 2.1. [2] Let ¢ : [0,00) x [0,00) — R be a mapping, theq is called a simulation
function if it satisfies the following conditions:

(€1) ¢(0,0) =0;
(€2) ¢(t,s) < s—tforallt, s> 0;
(¢3) if {t,},{s,} are sequences i, co) such thatlim ¢, = lim s, > 0 then

n—oo n—oo

lim sup (¢, s,,) < 0.

n—oo

We denote the set of all simulation functions By
The following functions] : [0, c0) x [0,00) — R belongs taZ.

Definition 2.2. [2] Let (X, d) be a metric space, : X — X amapping and € Z. Thenf is
called aZ-contraction with respect t¢, if the following condition is satisfied

Cld(fx, fy),d(x,y)) >0 forall z,y € X.

Remark 2.1. [2] It is clear from the definition of simulation function thétt, s) < 0 for all
t > s > 0. Therefore iff is a Z-contraction with respect t¢, then

d(fz, fy) < d(z,y)
for all distinctz,y € X.

Lemma 2.1.[2] Let(X, d) be a metric space anfl : X — X be aZ-contraction with respect
to ¢ € Z. Then the fixed point gf in X is unique, provided it exists.

Remark 2.2. [2] Every Z-contraction is contractive and hence Banach contraction.

Theorem 2.2.[1] Let (X, d) be a complete metric space. Then every contraction mapping has
a unique fixed point. It is known as Banach contraction principle.

Let ¥ be the family of functiong) : [0, c0) — [0, o) satisfying the following conditions:
() v is nondecreasing;
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(i) there existky € N anda € (0, 1) and a convergent series of nonnegative teyijs ; vy
such that
PHHH(E) < ag®(t) + v
for k > kg and anyt € R™.
Lemma 2.3. [6] If ¢ € W, then the following hold:

(i) (¥"(t))nen converges td asn — oo forall ¢t € RT;
(i) ¥(t) < t, foranyt € RT;
(iii) « is continuous ao;
(iv) the serie ;" (t) converges for any € R*.

In the literature such functions are called as either Bianchini-Grandolfi gauge functions (see
[3),14,/5]) or (c)-comparison functions (see [6]).
Definition 2.3. [7] Let f : X — X be a self mapping and : X x X — [0, c0) be a function.
Thenf is said to bev-admissible if
a(z,y) > 1 implies o(fzx, fy) > 1.
Definition 2.4. [9] An a-admissible mapping is said to be triangulat-admissible if
alz,z)>1 and a(z,y)>1 imply «a(z,y) > 1.
Definition 2.5. [10] Let f : X — X be a mapping and : X x X — [0, c0) be a function. We
say thatf is ana-orbital admissible if
alz, fr) > 1 implies offz, f*z) > 1.
Moreover,f is called a triangulat-orbital admissible iff is a-orbital admissible and
alz,y) >1 and a(y, fy) > limplies «(z, fy) > 1.

Definition 2.6. [11] Let f be a self mapping defined on a metric spa&ed). If there exist
(e Zanda: X x X — [0,00) such that

Clalz,y)d(fo, fy).d(z,y) >0 forall z,y€ X,
then we say thaf is ana-admissibleZ-contraction with respect to.

Theorem 2.4.Let (X, d) be a complete metric space and fet X — X be ana-admissible
Z-contraction with respect tg. Suppose that

(i) fis triangular a-orbital admissible;
(i) there existsy € X such thatw(z, fxo) > 1;
(iif) f is continuous.
Then there exists € X such thatfu = u.

3. MAIN RESULT

Definition 3.1. Let (X, d) be a metric spacef, : X — X be a self mapping, there existc Z
anda : X x X — [0,00). Thenf is called generalized-admissibleZ-contraction with respect
to ( if the following condition is satisfied

(3.1) C(alz, fx)aly, fy)d(fz, fy), M(z,y)) > 0 for all distinctz, y € X,
where
(3.2) M (z,y) = max {d(x, y),d(z, fx),d(y, fy), d(z, fy) 1‘ d(y, fx) }
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Remark 3.1. It is clear from the definition of simulation function thaft, s) < 0 for all ¢ >
s > 0. Thereforef is a generalized-Z-contraction with respect t¢, then
a(z, fr)aly, fy)d(fz, fy) < M(z,y)
for all distinctz,y € X.
Theorem 3.1. Let (X, d) be a complete metric spac¢, is a generalizedv-admissibleZ-
contraction with respect to. Assume that
(i) fis admissible;
(i) there existsy € X such thatw(z, fzo) > 1;
(iii) for every sequencgr,} in X such thatv(x,,, fz,,) > 1 forall n € NU {0} and{z,}
converges ta, thena(z, fr) > 1;
(iv) a(z, fx) > 1, forall = € Fix(f).
Then f has a unique fixed point in X.
Proof. By (i), let o € X such thata(xg, fzo) > 1. There existz, € X such thatr, =
fx,_1 forall n € N. Sincef is a-admissible, we obtain
afro, fr1) = a(rr,72) > 1 implies  a(fry, fro) = a(z, z3) > 1.
By induction, we get
(3.3) Ty, Tpy1) > 1 forall n € NU{0}.

If z,, = x,,, for somen € NU {0}, thenz,, = z,,,1 = fz, and hence,, is a fixed point off.
Therefore, we can assume that # =, for all n € N. Then we geti(z,,, z,.1) > 0, So by

@.1)
0 < ((a(wn, frn)a(Tn-1, fTn1)d(fTn, frn_1), M(Tn, Trn_1))
(3.4) = ((a(n, Try1)a(Tn—1, Tn)d(Tpy1, Tn) s M (T, Tpo1))
< M(xp,xn1) — (T, Tp1)(Tp_1, Tp)d(Tpi1, T0),

where
M($n7 xn—l)

= max {d(l‘n, xn—l)a d(fn, xn—i—l)a d<xn—1a ZL‘n),

d(xnflu anrl)

d(mna mn) + d(xnfla xn+1) }
4

= max {d(xn_l, Tn), (T, Ty1),

The triangle inequality yields

d(xnfh mn«H)

1 < max{d(x,_1,%,),d(Tp, Tni1)}

Therefore,

M(zp, xp—1) = max{d(x,_1,z,),d(zn, Tni1)},
from (3.4), we get that
(3.5) 0 < max{d(zn-1,n), d(Tn, Tni1)} — (Tn, Tpi1)(Tp_1, Tp)d(Xp, Tpi1)
The inequality[(3.5) shows that

M(zp, xp-1) = d(xy_1,2,) foralln € N.

Consequently, we have that
(3.6)d(xn, Tnt1) < Xy, 1) (Tp—1, Tn)d(Tpn, Tpi1) < d(Tp, 2,—1) forall n € N.
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Thus, we conclude that the sequeRdér,,_1, x,)} is a monotonically decreasing sequence of
non-negative reals and bounded from below by zero. So there isGome such that

lim d(z,_1,2,) = C.

n—o0

We will show that

(3.7) lim d(x,,x,-1) = 0.

If C' > 0 then sincef is a generalizedv-admissibleZ-contraction with respect t¢ € Z
therefore by (3), we have

0 < limsup ((a(xy, Tpi1)(Tp_1, Tp)d(Ty, Tpit), d(Tp_1, 2,)) < 0.

This is a contradiction. Then we conclude that= 0, that is, lim d(z,_1,x,) = 0.

Now, we will show that sequencgr,,} is a Cauchy sequence. Assume that} is not a
Cauchy sequence. Thus, for alt> 0, and sequence§e,,, }, {zn, }, mx > ny > k such that
andd(zp,,, tn,) > € andd(zp,, —1,%,,) < € for all m,n,k € N. Therefore,by the triangle
inequality, we have that
€ < d(Tmy, Tny) < d(Tnys Ting—1) + A(Tiy—1, Tny)

< d(Xpy, s Tmy—1) + €

Letting k — oo, using [3.7) and (3]8), we get
(3.9) lim d(z,, Tn,) = €.

n—oo

(3.8)

By f is a generalized-admissibleZ-contraction with respect t¢, we have

0 S C(Q(Imk—la l‘mk)a(xnk—la $nk)d($mk, Ink)a M(xmk—la xnk—l))-
It follows from condition (2), we get

d(xmm xnk) = d(fxmk—la fxnk—l) < M(:Emk—lv xnk—l)

= max {d<xmk—la xnk—l)a d(xmk—la xmk)a d(mnk—la wnk)a

d(xmk—h xnk) + d(]?mk, x”k—1> }
4

S max {d(l'mkl, .fnk,l), d(xmkfla xmk)y d(xnk717 :an>7

A Ty—15 Tmy,) + ATy, Tny) + d(@iny s Ty ) + ATy, Ty —1)
1 .
Letting k — oo, using [3.7) and (3]9), we get

(3.10) lim M (2, —1,%n,—1) = €.

k—o00

By (3.9),(3.10) and the conditioq ), we get

0 < limsup (e Tmy—1, Tmy ) (Tpy -1, Ty )A( Ty s Ty )y M (T —1, Tiy—1)) < 0.
k—oo

AJMAA Vol. 18(2021), No. 1, Art. 14, 10 pp. AIMAA


https://ajmaa.org

6 ANANTACHAI PADCHAROEN AND PAKEETA SUKPRASERT

This is a contradiction. Hencéz,, } is a Cauchy sequence. ThuBm d(z,, x,,) exists and is

equal to0. Since(X, d) is complete, there exists € X such th:';r{"[rHOO

(3.11) nlg{)l@ d(zp,2") =0

then

(3.12) 0= mlyizllloo d(zpm, x,) = 7}1_)11;10 d(zp,2*) =d(z*, 2") anda(z*, fz*) > 1 (by (iii)).
Moreover,

0 < ((a(wp, fon)a(z”, fa*)d(fay, fz*), M(zn, x7)
(3.13) = ((a(Tn, Tpi1)a(z”, f2*)d(Tpia, f2°), M (25, 27))
< M(xp, 2%) — a(2n, Toyr)a(z”, fo*)d(vn, f27),

where
M (z,,x*) = max {d(a:n, o), d(z*, f2*), d(zn, f1,), d(z*, fr,) l— d(x,, fx*) }
< max {d(a:n, 2l ), ), DTt LA T }
(3.14)

< max {d(wn,x*),d(a:*, fa*), d(xy, pi),

d(z*, xn) + d(Tn, Tpgr1) + d(xp, %) + d(a*, fo*) }
4
= d(z*, fx*) for largen.
Consequently, we have
(3.15) d(wys1, ) = d(fan, f17) < alan, foa)ola®, f2*)d(fa, f2*) < d(z*, fz*)
By (3.13), [3.1b) and the conditiogg), we get
0 < limsup (((zy, fr,)a(z, fe*)d(fz,, fx*), M(z,,2")) <O.

k—oo
This is a contradiction. Hence, Therefareis a fixed point off.
Suppose that* andu* be two fixed point points of and hence:*, u* € Fix(f) which is a
generalizedv-admissibleZ-contraction self-mappings of a metric spdce d). By (3.1), we
have that

(3.16) 0 < ((afa”, fa7)a(u’, fu)d(fa", fu"), M (", u")),

where

(3.17)

M(z*,u") = max {d(aj*, u*), d(z*, fx), d(u”, fu*), d(@, fu) Z dw, f2) } =d(z",u").

This together with[(3.24) shows that
(3.18)
0 < {(a(z”, fo")a(u®, fu)d(fz*, fu*), M(z*,u")) = ((a(z™, 2")a(u", u")d(z", u*), d(z*, u")).

This is a contradiction. Thus, we havé = u*. Hencef has a unique fixed poing
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Theorem 3.2. Let (X, d) be a complete metric spacé, is a generalizedv-admissibleZ-
contraction with respect tQ. Assume that

(i) fis admissible;
(i) there existsy € X such thatw(z, fxo) > 1;
(ili) X is «a regular and for every sequenée,, } in X such thaix(z,,, z,.1) > 1 forall n €
NuU {0} and we have(x,,, z,) > 1 for all m,n € Nwithm < n;
(iv) a(z,y) > 1, forall z,y € Fix(f).

Then f has a unique fixed point in X.

Proof. By (i), let xy € X such thata(xg, fzo) > 1. There existz, € X such thatr, =
fx,_q forall n € N. We have by Theorem 3.1z, } is a Cauchy sequence such thah d(x,,, z,1) =

n—oo

0. Thus lim d(z,,z,) exists and is equal t@. Since(X, d) is complete, there exists € X

suchthat

(3.19) 71113)10 d(zp,2*) =0

then

(3.20) 0= lim d(zp,,x,) = lim d(z,,z") =d(z", z).

m,n—0o0 n—oo

SinceX is regular, therefore there exists a subsequénge} of {z,,} such thaix(z,, ,z*) >
1 for all £ € N. Therefore

0 < ((elwn,, fon,)ale”, fo7)d(fen,, f27), M(2n,, L")
(321) - C(Oé(l’nk, xnk+1)a(x*, f‘r*)d(xnk-ﬂv fLL’*), M(‘r”k7 .Z‘*))
< M(ap,, 27) — altn,, Tnr)a(e”, fo7)d(en, 1, f27),

where
(3.22)

M(xnkv I*> = max {d(l’nk,l’*), d(ZL‘*, fl’*), d([Enk, fxnk)a

d(*, f,,) + d(2,,, f27) }
4

S max {d(‘rnmx*),d(ﬂc*,fx*),d(xnk,xnk+1), d(l' 7xnk+1) + d(-Tnka fLL' )}

4

< max {d(xnk,f‘), d(z*, fo*), d(zp,, Tn4+1),

d(z*, xn,) + d(@n,, Tnpt1) + d(@n,, o°) + d(z*, fz*) }
4
= d(z*, fx*) for largek.
Consequently, we have
(8.23) d(wny+1, f2") = d(fan,, f27) < a(n,, fon,)a(z”, fa")d(fon,, fz") < d(z", fz7)
for all £ € N. By (3.13), [3.2B) and the conditiogJ), we get

0 < limsup (((zy, fr,)a(z, fe*)d(fz,, fx*), M(z,,2")) <O.

k—oo
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This is a contradiction. Hence, Therefaréis a fixed point off. Suppose that* andu* be
two fixed point points off and hence:*, v* € Fix(f) which is a generalized-admissibleZ-
contraction self-mappings of a metric spdc¢é d). By (3.1), we have that

(3.24) 0 < ((a(z”, fo*)alu®, fu™)d(fz*, fu®), M (2", u")),

where

(3.25)

M(x",u") = max {d(w*, u"),d(z”, fa*), d(u", fu"), dia”, Ju') Zd(x*’ fo) } = d(z*,u*).

This together with[(3.24) shows that
(3.26)

0 < {(afz”, fo")a(u®, fur)d(fz*, fu™), M(z*,u")) = ((a(z", z")a(u™, u")d(z", u"), d(z", u")).
This is a contradiction. Thus, we havé = u*. Hencef has a unique fixed poing

Corollary 3.3. f : X — X be a self mapping, there existc Z anda : X x X — [0, 00) be
a function witha(z,y) = 1 for all z,y € X such that

C(d(fx, fy), M(x,y)) > 0 for all distinctz,y € X,
where

M (z,y) = max {d(x,y),d(ﬂf, fr),d(y, fy), 1

Thenf has a unique fixed point* in X.

d(z, fy) + d(y, ) }

4. APPLICATION

In this section, we present an application of Theorem to guarantee the existence and unique-
ness problem of solutions for some kind of nonlinear Hammerstein integral equations.
We consider nonlinear Hammerstein integral equation as follows.

(4.1) z(t) = g(t) + /OtK(t, s)h(s, z(s))ds,

where the unknown function(t) takes real values.
Let X = C([0, 1]) be the space of all real continuous functions definedoon|. It is well
known thatC'([0, 1]) endowed with the metric

(4.2) d(z,y) = ||z — y|| = max |z(t) — y(?)]

te(0,1]
is a complete metric space. Define a mapgihgX — X by

(4.3) G(z)(t) =g(t) + /OtK(t,s)h(s,x(s))ds, forall ¢t € (0,1).

Assumption 4.1
(1) g € C([0,1] X (—00,+)), g € X andK € C([0,1]) x ([0,1]) such thatK (¢, s) > 0;
(2) h(t,-) : (—o0,+00) — (—00,+00) is increasing for alt € (0, 1) such that
|h(t,z) — h(t,y)| < M(x,y) foralldistinct z,y € X,t € (0,1),

|a:—Gy\+\y—Ga:|}

I

whereM (z, y) :max{|x—y|,|x—Gx|,|y—Gy|, 1

(3) max |K(t,s)] < 1.

t,s€[0,1]
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Theorem 4.1.Let X = C([0,1]), (X, d), G, h, K(t, s) are satisfied in Assumption 4.1, then the
nonlinear Hammerstein integral equati@d.) has a unique solution* € C([0, 1]) and for
eachz € C([0, 1)) the iterative sequender,, = G™x} converges to the unique solutieh € X

of equation(4.7)).

Proof. First, we show that the mapping : X — X define by [[4.R) is a Suzuki typ&-
contraction. From conditio(2) and(3), for all distinctz, y € C([0,1]), t € (0,1), we have

|G(t) — Gy(1)]

~| / K (t, ) (h(s, 2(s)) — h(s,y(s)))ds]
< / K (1, 9)| (s, 2(5)) — h(s, y(s))|ds
< / Ih(s,2(s)) — h(s. y(s))|ds

— /0 max {|x(s) —y(s)],|z(s) — Gz(s)|, ly(s) — Gy(s)]. lz(s) — Gy(s)| 1‘ ly(s) — Gz(s)| }ds

VAN
O\:._
=
jav)
>
—N—

d(z,y),d(z,Gx),d(y, Gy), d(z, Gy) ;: Ay, Gx) }ds

t
= M(x,y)/ ds
0
= tM(z,y)
< M(z,y).
Hence, the mapping is a generalized-admissibleZ-contraction with(z, Gz)a(y, Gy) = 1
and hence Theorem 3.1 applies@o which has a unique fixed point" € X, i.e.,z* is the

unique solution of the nonlinear Hammerstein integral equation$ (4.1). Foreaclx, the
sequencdz, = G"x} converges ta*. g
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