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2 ANANTACHAI PADCHAROEN AND PAKEETA SUKPRASERT

1. I NTRODUCTION

It is well known that functional analysis is made up of two main methods which are varia-
tional methods and fixed point methods. fixed point theory has been one of the most influential
research topics in various field of engineering and science. The most incredible result in this di-
rection was stated by Banach, known as the Banach contraction principle [1]. Many researcher
studies this topice.g., [4, 5, 6, 7, 8].

Khojasteh et al. [2] introduced the notion ofZ-contraction by using a new class of auxiliary
functions called simulation functions. This kind of functions have attracted much attention
because they are useful to express a great family of contractivity conditions that were well
known in the field of fixed point theory, which attracted the attention of many researchers to
develop furthere.g., [11, 12, 13].

In this paper, we introduce the motion Generalizedα-admssible-Z-contraction and establish
various fixed point theorems for such mappings in complete metric spaces. The presented the-
orems extend, generalize and improve many existing results in the literature, in particular the
Banach contraction principle. Moreover, we obtain fixed point result is applied to guarantee the
existence of solution of nonlinear Hammerstein integral equations.

2. PRELIMINARIES

Definition 2.1. [2] Let ζ : [0,∞) × [0,∞) → R be a mapping, thenζ is called a simulation
function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in(0,∞) such thatlim

n→∞
tn = lim

n→∞
sn > 0 then

lim sup
n→∞

ζ(tn, sn) < 0.

We denote the set of all simulation functions byZ.
The following functionsζ : [0,∞)× [0,∞) → R belongs toZ.

Definition 2.2. [2] Let (X, d) be a metric space,f : X → X a mapping andζ ∈ Z. Thenf is
called aZ-contraction with respect toζ, if the following condition is satisfied

ζ(d(fx, fy), d(x, y)) ≥ 0 for all x, y ∈ X.

Remark 2.1. [2] It is clear from the definition of simulation function thatζ(t, s) < 0 for all
t ≥ s > 0. Therefore iff is aZ-contraction with respect toζ, then

d(fx, fy) < d(x, y)

for all distinctx, y ∈ X.

Lemma 2.1. [2] Let (X, d) be a metric space andF : X → X be aZ-contraction with respect
to ζ ∈ Z. Then the fixed point off in X is unique, provided it exists.

Remark 2.2. [2] EveryZ-contraction is contractive and hence Banach contraction.

Theorem 2.2. [1] Let (X, d) be a complete metric space. Then every contraction mapping has
a unique fixed point. It is known as Banach contraction principle.

Let Ψ be the family of functionsψ : [0,∞) → [0,∞) satisfying the following conditions:

(i) ψ is nondecreasing;
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ON ADMISSIBLE MAPPING VIA SIMULATION FUNCTION 3

(ii) there existk0 ∈ N anda ∈ (0, 1) and a convergent series of nonnegative terms
∑∞

k=1 vk

such that
ψk+1(t) ≤ aψk(t) + vk

for k ≥ k0 and anyt ∈ R+.

Lemma 2.3. [6] If ψ ∈ Ψ, then the following hold:

(i) (ψn(t))n∈N converges to0 asn→∞ for all t ∈ R+;
(ii) ψ(t) < t, for anyt ∈ R+;

(iii) ψ is continuous at0;
(iv) the series

∑∞
k=1 ψ

k(t) converges for anyt ∈ R+.

In the literature such functions are called as either Bianchini-Grandolfi gauge functions (see
[3, 4, 5]) or (c)-comparison functions (see [6]).

Definition 2.3. [7] Let f : X → X be a self mapping andα : X ×X → [0,∞) be a function.
Thenf is said to beα-admissible if

α(x, y) ≥ 1 implies α(fx, fy) ≥ 1.

Definition 2.4. [9] An α-admissible mappingf is said to be triangularα-admissible if

α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1.

Definition 2.5. [10] Let f : X → X be a mapping andα : X ×X → [0,∞) be a function. We
say thatf is anα-orbital admissible if

α(x, fx) ≥ 1 implies α(fx, f2x) ≥ 1.

Moreover,f is called a triangularα-orbital admissible iff is α-orbital admissible and

α(x, y) ≥ 1 and α(y, fy) ≥ 1implies α(x, fy) ≥ 1.

Definition 2.6. [11] Let f be a self mapping defined on a metric space(X, d). If there exist
ζ ∈ Z andα : X ×X → [0,∞) such that

ζ(α(x, y)d(fx, fy), d(x, y)) ≥ 0 for all x, y ∈ X,
then we say thatf is anα-admissibleZ-contraction with respect toζ.

Theorem 2.4. Let (X, d) be a complete metric space and letf : X → X be anα-admissible
Z-contraction with respect toζ. Suppose that

(i) f is triangularα-orbital admissible;
(ii) there existsx0 ∈ X such thatα(x0, fx0) ≥ 1;

(iii) f is continuous.

Then there existsu ∈ X such thatfu = u.

3. M AIN RESULT

Definition 3.1. Let (X, d) be a metric space,f : X → X be a self mapping, there existζ ∈ Z
andα : X×X → [0,∞). Thenf is called generalizedα-admissible-Z-contraction with respect
to ζ if the following condition is satisfied

(3.1) ζ(α(x, fx)α(y, fy)d(fx, fy),M(x, y)) ≥ 0 for all distinctx, y ∈ X,
where

(3.2) M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

4

}
.
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4 ANANTACHAI PADCHAROEN AND PAKEETA SUKPRASERT

Remark 3.1. It is clear from the definition of simulation function thatζ(t, s) < 0 for all t ≥
s > 0. Thereforef is a generalizedα-Z-contraction with respect toζ, then

α(x, fx)α(y, fy)d(fx, fy) < M(x, y)

for all distinctx, y ∈ X.
Theorem 3.1. Let (X, d) be a complete metric space,f is a generalizedα-admissible-Z-
contraction with respect toζ. Assume that

(i) f is admissible;
(ii) there existsx0 ∈ X such thatα(x0, fx0) ≥ 1;

(iii) for every sequence{xn} in X such thatα(xn, fxn) ≥ 1 for all n ∈ N ∪ {0} and{xn}
converges tox, thenα(x, fx) ≥ 1;

(iv) α(x, fx) ≥ 1, for all x ∈ Fix(f).

Then f has a unique fixed pointx∗ in X.

Proof. By (ii), let x0 ∈ X such thatα(x0, fx0) ≥ 1. There existxn ∈ X such thatxn =
fxn−1 for all n ∈ N. Sincef is α-admissible, we obtain

α(fx0, fx1) = α(x1, x2) ≥ 1 implies α(fx1, fx2) = α(x2, x3) ≥ 1.

By induction, we get

α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}.(3.3)

If xn = xn+1 for somen ∈ N ∪ {0}, thenxn = xn+1 = fxn and hencexn is a fixed point off.
Therefore, we can assume thatxn 6= xn+1 for all n ∈ N. Then we getd(xn, xn+1) > 0, so by
(3.1)

(3.4)

0 ≤ ζ(α(xn, fxn)α(xn−1, fxn−1)d(fxn, fxn−1),M(xn, xn−1))

= ζ(α(xn, xn+1)α(xn−1, xn)d(xn+1, xn),M(xn, xn−1))

< M(xn, xn−1)− α(xn, xn+1)α(xn−1, xn)d(xn+1, xn),

where
M(xn, xn−1)

= max

{
d(xn, xn−1), d(xn, xn+1), d(xn−1, xn),

d(xn, xn) + d(xn−1, xn+1)

4

}

= max

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1)

4

}
.

The triangle inequality yields

d(xn−1, xn+1)

4
≤ max{d(xn−1, xn), d(xn, xn+1)}.

Therefore,
M(xn, xn−1) = max{d(xn−1, xn), d(xn, xn+1)},

from (3.4), we get that

(3.5) 0 < max{d(xn−1, xn), d(xn, xn+1)} − α(xn, xn+1)α(xn−1, xn)d(xn, xn+1) .

The inequality (3.5) shows that

M(xn, xn−1) = d(xn−1, xn) for alln ∈ N.
Consequently, we have that

d(xn, xn+1) ≤ α(xn, xn+1)α(xn−1, xn)d(xn, xn+1) < d(xn, xn−1) for all n ∈ N.(3.6)
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Thus, we conclude that the sequence{d(xn−1, xn)} is a monotonically decreasing sequence of
non-negative reals and bounded from below by zero. So there is someC ≥ 0 such that

lim
n→∞

d(xn−1, xn) = C.

We will show that

(3.7) lim
n→∞

d(xn, xn−1) = 0.

If C > 0 then sincef is a generalizedα-admissible-Z-contraction with respect toζ ∈ Z
therefore by (ζ3), we have

0 ≤ lim sup
n→∞

ζ(α(xn, xn+1)α(xn−1, xn)d(xn, xn+1), d(xn−1, xn)) < 0.

This is a contradiction. Then we conclude thatC = 0, that is, lim
n→∞

d(xn−1, xn) = 0.

Now, we will show that sequence{xn} is a Cauchy sequence. Assume that{xn} is not a
Cauchy sequence. Thus, for allε > 0, and sequences{xmk

}, {xnk
},mk > nk > k such that

andd(xmk
, xnk

) > ε andd(xmk−1, xnk
) ≤ ε for all m,n, k ∈ N. Therefore,by the triangle

inequality, we have that

(3.8)
ε < d(xmk

, xnk
) ≤ d(xmk

, xmk−1) + d(xmk−1, xnk
)

≤ d(xmk
, xmk−1) + ε.

Lettingk →∞, using (3.7) and (3.8), we get

(3.9) lim
n→∞

d(xmk
, xnk

) = ε.

By f is a generalizedα-admissible-Z-contraction with respect toζ, we have

0 ≤ ζ(α(xmk−1, xmk
)α(xnk−1, xnk

)d(xmk
, xnk

),M(xmk−1, xnk−1)).

It follows from condition (ζ2), we get

d(xmk
, xnk

) = d(fxmk−1, fxnk−1) < M(xmk−1, xnk−1)

= max

{
d(xmk−1, xnk−1), d(xmk−1, xmk

), d(xnk−1, xnk
),

d(xmk−1, xnk
) + d(xmk

, xnk−1)

4

}

≤ max

{
d(xmk−1, xnk−1), d(xmk−1, xmk

), d(xnk−1, xnk
),

d(xmk−1, xmk
) + d(xmk

, xnk
) + d(xmk

, xnk
) + d(xnk

, xnk−1)

4

}
.

Lettingk →∞, using (3.7) and (3.9), we get

(3.10) lim
k→∞

M(xmk−1, xnk−1) = ε.

By (3.9),(3.10) and the condition (ζ3), we get

0 ≤ lim sup
k→∞

ζ(α(xmk−1, xmk
)α(xnk−1, xnk

)d(xmk
, xnk

),M(xmk−1, xnk−1)) < 0.
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This is a contradiction. Hence,{xn} is a Cauchy sequence. Thuslim
m,n→∞

d(xn, xm) exists and is

equal to0. Since(X, d) is complete, there existsx∗ ∈ X such that

(3.11) lim
n→∞

d(xn, x
∗) = 0

then

(3.12) 0 = lim
m,n→∞

d(xm, xn) = lim
n→∞

d(xn, x
∗) = d(x∗, x∗) andα(x∗, fx∗) ≥ 1 (by (iii)) .

Moreover,

(3.13)

0 ≤ ζ(α(xn, fxn)α(x∗, fx∗)d(fxn, fx
∗),M(xn, x

∗))

= ζ(α(xn, xn+1)α(x∗, fx∗)d(xn+1, fx
∗),M(xn, x

∗))

< M(xn, x
∗)− α(xn, xn+1)α(x∗, fx∗)d(xn+1, fx

∗),

where

(3.14)

M(xn, x
∗) = max

{
d(xn, x

∗), d(x∗, fx∗), d(xn, fxn),
d(x∗, fxn) + d(xn, fx

∗)

4

}

≤ max

{
d(xn, x

∗), d(x∗, fx∗), d(xn, xn+1),
d(x∗, xn+1) + d(xn, fx

∗)

4

}

≤ max

{
d(xn, x

∗), d(x∗, fx∗), d(xn, xn+1),

d(x∗, xn) + d(xn, xn+1) + d(xn, x
∗) + d(x∗, fx∗)

4

}
= d(x∗, fx∗) for largen.

Consequently, we have

d(xn+1, fx
∗) = d(fxn, fx

∗) ≤ α(xn, fxn)α(x∗, fx∗)d(fxn, fx
∗) < d(x∗, fx∗)(3.15)

By (3.13), (3.15) and the condition (ζ3), we get

0 ≤ lim sup
k→∞

ζ(α(xn, fxn)α(x∗, fx∗)d(fxn, fx
∗),M(xn, x

∗)) < 0.

This is a contradiction. Hence, Thereforex∗ is a fixed point off.
Suppose thatx∗ andu∗ be two fixed point points off and hencex∗, u∗ ∈ Fix(f) which is a

generalizedα-admissible-Z-contraction self-mappings of a metric space(X, d). By (3.1), we
have that

(3.16) 0 ≤ ζ(α(x∗, fx∗)α(u∗, fu∗)d(fx∗, fu∗),M(x∗, u∗)),

where
(3.17)

M(x∗, u∗) = max

{
d(x∗, u∗), d(x∗, fx∗), d(u∗, fu∗),

d(x∗, fu∗) + d(u∗, fx∗)

4

}
= d(x∗, u∗).

This together with (3.24) shows that
(3.18)
0 ≤ ζ(α(x∗, fx∗)α(u∗, fu∗)d(fx∗, fu∗),M(x∗, u∗)) = ζ(α(x∗, x∗)α(u∗, u∗)d(x∗, u∗), d(x∗, u∗)).

This is a contradiction. Thus, we havex∗ = u∗. Hencef has a unique fixed point.
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Theorem 3.2. Let (X, d) be a complete metric space,f is a generalizedα-admissible-Z-
contraction with respect toζ. Assume that

(i) f is admissible;
(ii) there existsx0 ∈ X such thatα(x0, fx0) ≥ 1;

(iii) X isα regular and for every sequence{xn} inX such thatα(xn, xn+1) ≥ 1 for all n ∈
N ∪ {0} and we haveα(xm, xn) ≥ 1 for all m,n ∈ N withm < n;

(iv) α(x, y) ≥ 1, for all x, y ∈ Fix(f).

Then f has a unique fixed pointx∗ in X.

Proof. By (ii), let x0 ∈ X such thatα(x0, fx0) ≥ 1. There existxn ∈ X such thatxn =
fxn−1 for all n ∈ N.We have by Theorem 3.1,{xn} is a Cauchy sequence such thatlim

n→∞
d(xn, xn+1) =

0. Thus lim
m,n→∞

d(xn, xm) exists and is equal to0. Since(X, d) is complete, there existsx∗ ∈ X
such that

(3.19) lim
n→∞

d(xn, x
∗) = 0

then

(3.20) 0 = lim
m,n→∞

d(xm, xn) = lim
n→∞

d(xn, x
∗) = d(x∗, x∗).

SinceX is regular, therefore there exists a subsequence{xnk
} of {xn} such thatα(xnk

, x∗) ≥
1 for all k ∈ N. Therefore

(3.21)

0 ≤ ζ(α(xnk
, fxnk

)α(x∗, fx∗)d(fxnk
, fx∗),M(xnk

, x∗))

= ζ(α(xnk
, xnk+1)α(x∗, fx∗)d(xnk+1, fx

∗),M(xnk
, x∗))

< M(xnk
, x∗)− α(xnk

, xnk+1)α(x∗, fx∗)d(xnk+1, fx
∗),

where
(3.22)

M(xnk
, x∗) = max

{
d(xnk

, x∗), d(x∗, fx∗), d(xnk
, fxnk

),
d(x∗, fxnk

) + d(xnk
, fx∗)

4

}

≤ max

{
d(xnk

, x∗), d(x∗, fx∗), d(xnk
, xnk+1),

d(x∗, xnk+1) + d(xnk
, fx∗)

4

}

≤ max

{
d(xnk

, x∗), d(x∗, fx∗), d(xnk
, xnk+1),

d(x∗, xnk
) + d(xnk

, xnk+1) + d(xnk
, x∗) + d(x∗, fx∗)

4

}
= d(x∗, fx∗) for largek.

Consequently, we have

d(xnk+1, fx
∗) = d(fxnk

, fx∗) ≤ α(xnk
, fxnk

)α(x∗, fx∗)d(fxnk
, fx∗) < d(x∗, fx∗)(3.23)

for all k ∈ N. By (3.13), (3.23) and the condition (ζ3), we get

0 ≤ lim sup
k→∞

ζ(α(xn, fxn)α(x∗, fx∗)d(fxn, fx
∗),M(xn, x

∗)) < 0.
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8 ANANTACHAI PADCHAROEN AND PAKEETA SUKPRASERT

This is a contradiction. Hence, Thereforex∗ is a fixed point off. Suppose thatx∗ andu∗ be
two fixed point points off and hencex∗, u∗ ∈ Fix(f) which is a generalizedα-admissible-Z-
contraction self-mappings of a metric space(X, d). By (3.1), we have that

(3.24) 0 ≤ ζ(α(x∗, fx∗)α(u∗, fu∗)d(fx∗, fu∗),M(x∗, u∗)),

where
(3.25)

M(x∗, u∗) = max

{
d(x∗, u∗), d(x∗, fx∗), d(u∗, fu∗),

d(x∗, fu∗) + d(x∗, fx∗)

4

}
= d(x∗, u∗).

This together with (3.24) shows that
(3.26)
0 ≤ ζ(α(x∗, fx∗)α(u∗, fu∗)d(fx∗, fu∗),M(x∗, u∗)) = ζ(α(x∗, x∗)α(u∗, u∗)d(x∗, u∗), d(x∗, u∗)).

This is a contradiction. Thus, we havex∗ = u∗. Hencef has a unique fixed point.

Corollary 3.3. f : X → X be a self mapping, there existζ ∈ Z andα : X ×X → [0,∞) be
a function withα(x, y) = 1 for all x, y ∈ X such that

ζ(d(fx, fy),M(x, y)) ≥ 0 for all distinctx, y ∈ X,
where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

4

}
Thenf has a unique fixed pointx∗ in X.

4. APPLICATION

In this section, we present an application of Theorem to guarantee the existence and unique-
ness problem of solutions for some kind of nonlinear Hammerstein integral equations.

We consider nonlinear Hammerstein integral equation as follows.

(4.1) x(t) = g(t) +

∫ t

0

K(t, s)h(s, x(s))ds,

where the unknown functionx(t) takes real values.
Let X = C([0, 1]) be the space of all real continuous functions defined on[0, 1]. It is well

known thatC([0, 1]) endowed with the metric

(4.2) d(x, y) = ‖x− y‖ = max
t∈[0,1]

|x(t)− y(t)|

is a complete metric space. Define a mappingG : X → X by

(4.3) G(x)(t) = g(t) +

∫ t

0

K(t, s)h(s, x(s))ds, for all t ∈ (0, 1).

Assumption 4.1
(1) g ∈ C([0, 1]× (−∞,+∞)), g ∈ X andK ∈ C([0, 1])× ([0, 1]) such thatK(t, s) ≥ 0;
(2) h(t, ·) : (−∞,+∞) → (−∞,+∞) is increasing for allt ∈ (0, 1) such that

|h(t, x)− h(t, y)| < M(x, y) for all distinct x, y ∈ X, t ∈ (0, 1),

whereM(x, y) = max

{
|x− y|, |x−Gx|, |y −Gy|, |x−Gy|+ |y −Gx|

4

}
;

(3) max
t,s∈[0,1]

|K(t, s)| ≤ 1.
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Theorem 4.1.LetX = C([0, 1]), (X, d), G, h,K(t, s) are satisfied in Assumption 4.1, then the
nonlinear Hammerstein integral equation(4.1) has a unique solutionx∗ ∈ C([0, 1]) and for
eachx ∈ C([0, 1]) the iterative sequence{xn = Gnx} converges to the unique solutionx∗ ∈ X
of equation(4.1).

Proof. First, we show that the mappingG : X → X define by (4.2) is a Suzuki typeZ-
contraction. From condition(2) and(3), for all distinctx, y ∈ C([0, 1]), t ∈ (0, 1), we have

|Gx(t)−Gy(t)|

= |
∫ t

0

K(t, s)(h(s, x(s))− h(s, y(s)))ds|

≤
∫ t

0

|K(t, s)||h(s, x(s))− h(s, y(s))|ds

≤
∫ t

0

|h(s, x(s))− h(s, y(s))|ds

<

∫ t

0

M(x(s), y(s))ds

=

∫ t

0

max

{
|x(s)− y(s)|, |x(s)−Gx(s)|, |y(s)−Gy(s)|, |x(s)−Gy(s)|+ |y(s)−Gx(s)|

4

}
ds

≤
∫ t

0

max

{
d(x, y), d(x,Gx), d(y,Gy),

d(x,Gy) + d(y,Gx)

4

}
ds

= M(x, y)

∫ t

0

ds

= tM(x, y)

≤M(x, y).

Hence, the mappingG is a generalizedα-admissible-Z-contraction withα(x,Gx)α(y,Gy) = 1
and hence Theorem 3.1 applies toG, which has a unique fixed pointx∗ ∈ X, i.e., x∗ is the
unique solution of the nonlinear Hammerstein integral equations (4.1). For eachx ∈ X, the
sequence{xn = Gnx} converges tox∗.
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