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2 S. K. ATHIRA, P. S. DHNSON AND K. KAMARAJ

1. INTRODUCTION

Let IC be a complex vector space with a Hermitian sesquilinear form defined on it. Then we
call (K, [.,.]) an inner product space. An element K is called neutral, positive, or negative
if [z,2] =0, [z,2] > 0, or [z,z] < 0 respectively. IfK contains positive as well as negative
elements, then it is called an indefinite inner product space, otherwise it is called a semi-definite
inner product space. We refer [3, 4] for basics on indefinite inner product spaces. The concept
of indefinite inner product was first found in a paper on quantum field theory by Dirac in 1942
[6]. Pontrjagin gave the mathematical interpretation of indefinite inner product. Bagnar [2],
Hansen([7], Langer [1] et al. have investigated the notion of norm in indefinite inner product
spaces.

An indefinite inner product spadé, [., .|) is decomposable if it can be written as an orthog-
onal direct sum of a neutral subspact a positive definite subspaé&™ and a negative definite
subspacéC:

(1.1) K =K [HKTHK.
Then [1.1) is known as a fundamental decompositiok of

An indefinite inner product spadé’, |, .]) is a Krein space if it can be written as an orthog-
onal direct sum of a positive definite subspdcte and a negative definite subspace such

that(K*, [.,.]) and(K—, —[.,.]) are Hilbert spaces. Let a fundamental decomposition of a Krein
spacelC be given by
(1.2) K=K +K™
and P* be the orthogonal projections onmté*. The linear map
J=P"— P,

is called the fundamental symmetry correspondin(Ltg). Then

(xvy)J = [J!L‘,y]

is a positive definite inner product @@, called.J-inner product corresponding to the fundamen-
tal decompositior] (1]2). We can write

(1.3) (v,2); = [Jz,z] = [2P" — Iz, z] = 2[PTx, PTx] — [z, 2].
The corresponding norm (callednorm) is denoted by

|z]l; = (z,2)2 = [Jz,2]3.

Different fundamental decompositions induce differémorms. Hence various norms can
be defined on a Krein space by choosing different underlying fundamental decompositions.

A different fundamental decomposition &f say, K = K [+]K; makes the norm of an
elementr larger than[z, z]|. Roughly speaking, if the spacks” andC;" “come closer” to a
neutral setC?, these norms in general be unbounded. It is interesting to observe that how the
norm of a single element actually depends upon the choice of fundamental decomposition [1].
We end the section with some examples. In the second section, some preliminary results are
given which will be used in the sequel. The third section contains our main results concerning
estimates of norms on Krein spaces.

Example 1.1.[8] Minkowski spacé//""! is defined as the set 6f, + 1)-dimensional column
vectorsz = (x1,19,...,T,,t1)" (¢t indicates the transpose of a matrix) with complex entries
and the indefinite inner product is defined by

[z, y] = 2171 + 22Uz + -+ + Ty — tils
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wherer = (1,72, ..., Tn, 1) ¥y = (Y1, Y2, - - -, Yn, t2)' € ML, ThenM ™! is a Krein space.
A fundamental symmetry for the space is given by the matrix

L, O
0 —-1)°
wherel,, denotes the identity matrix of order

Example 1.2. ConsiderC = /5, the linear space of square-summable sequences, with
ey = (Vg for o= ()2, y = (1), € K.
i=1
Let Kt = {(z;)2, : z; = Oifiisodd; and K~ = {(z;)%2, : x; = 0if iis ever}. Then
K = KT [+]K~, whereK T and K~ are complete with respect to the induced norm and héhce
is a Krein space.

Example 1.3. Considerk = C[—1, 1] the linear space of all complex-valued continuous func-
tions defined on the interval1, 1] with

1
2, y] = / SOyt for 2,y € K.
-1

Thenk admits a fundamental decompositith= K [+]X~ whereX* and K~ the spaces of
all continuous even and odd functions fefl, 1] respectively, are complete with respect to the
induced norm and hendé€ is a Krein space.

Example 1.4.[5] LetQ2 be a set and be ac-algebra on(). Lety, andyu_ be two mutually
singular positive measures defineddnSety = p, + p_. Define

frg = /Q fgdp, — /Q Jgdu for f.ge L(u).

ThenL?(p) = L?(p, )[+]L?*(p_) forms a fundamental decomposition, siféé(x. ), [.,.]) and
(L*(u_), —[.,.]) are Hilbert spaces. Thuk?(u) is a Krein space.

2. PRELIMINARIES

Theorem 2.1.[4] Let K be a Krein space. Thek has several fundamental decompositions
with non-zero components. All norms induced by different fundamental decompositions are
equivalent and hence they induce the same topology.

Theorem 2.2.[3] Let (K, [.,.]) be a Krein space. Then the following are equivalent:

(1) There exists a fundamental decompositiotCof
(2) There exists a maximal uniformly positive ortho-complemented subspace.
(3) There exists a maximal uniformly negative ortho-complemented subspace.

Example 2.1. Let K be a two-dimensional vector space with ba§is, e;} and an indefinite

inner product defined ble;, e1] = 1, [ea, 2] = —1 @and|ey, e5] = 0. If we takeY = spar{e; },

then it is a maximal uniformly positive definite subspace and hence there exists a fundamental
decomposition o with K™ = Y and K~ = sparf{e;}. ChoosingK! = span{(n,1)} and

K, = spaf{(1,n)} wheren > 1, we get several fundamental decompositions. The corre-
sponding fundamental symmetriésare given by

n2+1 —2n

J = n2—1 n2—1
n 2n —(n?+1) | -

n2—1 n2—1
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Here we can see that the fundamental symmetfiesatisfyJ? = I, [J,z,y] = [z, J,y] and
[z, Jpy| = [z, y] forall z,y € K.

3. MAIN RESULTS
Theorem 3.1.[1] Assume thaiC is a Krein space such that, .| is indefinite and let: € IC,
x # 0. Then the following holds.
(i) If [x,z] # 0, then
(3.1) {H:c||J : Jis a fundamental symmeaiy: H[;z:,:c]]%,oo).
Moreover,
|||, = |[z, ]| ifandonlyif zeKFUK;7,
whereX = KF[+]K; is the fundamental decomposition associated With
(i) If [z,2] =0, then
{Ha:HJ : Jis a fundamental symmegry: (0, 00).

Theorem 3.2. Assume that/C, ., .]) is a Krein space and ldt # x € K.

(@) If [z, 2] # 0, then for each real number > |[z, z]|2 there exists a fundamental symme-
try J, such that|z||;, = a.

(b) If [z, z] = 0, then for each positive real number a there exists a fundamental symmetry
J, such that||z|| 5, = a.

Proof. (a) Let[z,z] < 0. LetK = MT[+]M~ be a fundamental decomposition such that
x € M~. Choosd) # y € M™ and letL™ and£~ be subspaces such that

Mt = LT[+]spady} M~ = L7 [+]|spadz}.

Consideru(s) = sy + (1 — s)z, s € [0, 1]. We have[u(0), u(0)] < 0, [u(1),u(1)] > 0and]., ]
is continuous. Hence there existse (0, 1) such thafu(sy), u(so)] = 0. Let z = u(so), then
[z, 2] =0, [y, z] = soly, y] > 0, [z,2] = (1 — so)[z, 2] <O.

Letv(t) =ty + (1 —t)z, t € (0, 1], which is a positive element fare (0, 1]. Now set
K/ = L [+]spardu(t)}

sincey andz are orthogonal t&£ ™. Thus the orthogonal projectiait onto ;" can be written
asP,” = P, +P,u), whereP,, is the orthogonal projection oni®, andP, is the orthogonal
projection onto spajv(t)}. We also have

[u, v(t)]
(32 oo = L, ot
foranyu € K. Letw(t) be a non-zero element in sganz} which is orthogonal ta(t)
and hence negative. Witk; = £~ [+]spaqw(t)}, we have a fundamental decompositon
K = K/ [+]K; and a corresponding fundamental symmefry= 2P," — I. Now we get

e @l (=02
B3) B B =Rl = ey o] T Pyl 2 - 0]

From equation (1]3) we get,

2(1 — t)?[[, ]|?
2y, y] + 2t(1 = 1)[y, 2]

(3.4) (x, ), = — [z, z].
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The construction ofz, z) 5, in equation[(3.}4) is taken from the proof of the Theorgm|(3.1). The
details are given for the sake of completeness of the proof.
As t varies in (0,1],(z, ), takes all values in|[z, z||, 00). Thus|z||;, takes all values in

[z, 7]|2,00). Leta € [|[z,z]|2,00) be such that? = b > |[z,z]|. Now let us try to find
t € (0,1] for which (x, ) ; = b so that||x|| ; = a.
From (3.4) andz, z), = b we get,

2(1 — t)*|[=, 2]
ly,y] + 2t(1 = t)[y, 2]
We havelz,z] < 0, [y,y] > 0 and[y, z] > 0. So leth = [y,y]. Replacingy by \/lg we get

(3.5)

— [z, x] =b.

ly,y] = 1. Now setd = |[z,2]|?, B = [y,y] = 1, C = [y,z], D = [,z]. Thus from [3.4) we
get 204 — D = bwhich implies2A(1 — 2t +12) = (b+ D) (12 — 202 + 2Ct) s that

t*[(b+ D)(1 —2C) — 2A] + t[(b+ D)2C + 4A] — 2A = 0,

which is a quadratic equation inwhose discriminant igC?(b + D)? + 8A(b + D), which is
positive ash + D and A are positive. Thus there exists (0, 1] such that it satisfies equation
(3.9). Let us denote it by,. Then the subspaces

K =L [+Hsparv(ty)}, K, = L7 [+spa{w(ty)}
give a fundamental symmetry corresponding;toWe denote it byJ, and hence we see that
(x,x),, = bandl|z||;, = a.
Let [z, x] > 0. Then choose a fundamental decompositioa: M*[+] M~ such thatr € M

and continue the proof as discussed above.

(b) Let [z,z] = 0. Lety be another neutral element that satisfies)] = 1. Defineu =

Tle+y),v=J5(r —y). Thenz = S5 (u+v), [u,u] = 1, [v,0] = —1 and[u,v] = 0. Let

K = M*[+]M~ be a fundamental decomposition such thdt™ = L£*[+]spaqu}, M~ =
L~ [+]spadv} with some subspaces®. Set

w(t) =u+tv,t € (—1,1).
Then[w(t),w(t)] = (1 —t*) > 0,t € (—1,1). Hencek; ., = LT[+]spaqw(t)} is a maximal
uniformly positive subspace. Now the projectiéh, onto K, ;. can be written as’, ;, =
Pr. + P,y and we get
[z, w®) _ 1-t
[w(t),w®)]  2(1+1)’
which takes aII the values ift), oo) if ¢ varies in(—1,1). Leta € (0, c0) be such that* = b.
Thus from ) and solvingr z);, = bwe get2[P, .z, P, z] = b. That |s,§8+§ b and
hencet = 177. Thus fort, = 1=,

[Piyx, P, x] = [P, 1o, 2] =

Ky, = L7 [+]spa{w(t,)}

is a maximal uniformly positive subspace and hence there exists a fundamental decomposition.
We denote the corresponding fundamental symmetry,byience we get thdt:, x) ;,, = b and
], = a. u

Corollary 3.3. Let0 # = € K, [z, z] # 0 andJ be a given fundamental symmetry. Then there
exists a fundamental symmetkysuch that

[l < llzllx-
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Proof. Choose a positive real numbér > ||z||,. Then by Theorem 3|2(a) there exists a
fundamental symmetryx” such that||z||x = k, which is greater thafjz||, and that implies
]l < lzl[x- u

Corollary 3.4. Let0 # = € K be a neutral element and be a given fundamental symmetry.
Then there exist fundamental symmetigsand K> such that

el < lllls < |zl

Proof. Choose positive real numbeks, k, such that) < k; < ||z||; < ke. Then by Theorem
(b) there exist fundamental symmetri€sand K, such that|z||x, < ||z|l; < ||z x,- &

Corollary 3.5. Let = be any arbitrary non-zero (neutral or non-neutral) elementkin If
x|, < |lx||;, for some fundamental symmetriégsand .J,, then there exists a fundamental
symmetry/ such thatl|x||;, < ||z|; < ||z||-

Proof. Choosen > |[z,z]|2 such that|z||;, < a < ||z||,. Then by Theore.2 the result
follows.

Corollary 3.6. Let K be a Krein space with a fundamental decomposition and a corresponding
fundamental symmetry. Let(z,) be a sequence of non-zero neutral or non-neutral vectors
such that(x,,) converges to somein K. Then there exists a sequence of fundamental symme-
tries (J,,) such that|z,|| s, — oo.

Proof. Let J; = J. Now choose a real number > max{|[z2, 5]|2, ||z, }. Then by
Theorenj 3.R (a) there exists a fundamental symmétisuch thaf|zs|| 5, = a2 > ||z1],,. Ina
similar way, we can find/;, by choosing

ar > max {|[zy, 7] |2, |21 ]ls, }

and by using Theorefn 3.2 (a) we gatsuch that|z.| s, = ax > ||2x_1[ls,_,. Continuing the
process we see that, ||, — oo asn — oco. i

Corollary 3.7. Let(x,,) be a sequence of non-zero neutral elements.irThen there exists a
sequence of fundamental symmetfiés) such that|z,||;, — 0 asn — oc.

Proof. We havez; # 0, then we can find a fundamental symmefiysuch that||z,||; > 0.
Choose a real numbes, such that|z;||;, > a» > 0. Then by Theorer 32 (b) there exists a
fundamental symmetry, such that|z|| 5, = a2 and so we getz,||;, > ||z2||;,- Choose a real
numbera; such that

lzk_1lls,_, > ax > 0.

Then by Theorem 3|2 (b) there exists a fundamental symméatrsuch that||zy, | ;,_, >
|zk||s.- Thus we see thdt|x,|| s, ) is a decreasing sequence which is bounded belowdyd
hencel|z,||;, — 0asn — oco. i

Remark 3.1. Corollaried 3.p and 3|7 generalize the Lemma n [2] which says for a non-neutral
elementr there exists a sequence of fundamental nopwn$ such thap,,(x) — co asn — oo

and for a neutral elementthere exist sequences of fundamental nofms and(g,,) such that
pn(x) — o0 andg,(z) — 0 asn — oo.

Example 3.1. Consider the fundamental symmetfy given in Examplé¢ 2|1. Then far =
(z1,1) €K

2| = (n* + 1)((2] + 1) — dnaiy
In nz—1 '

We fixz = (2,1). Then[z, z] = 3. Leta = 2 > [[z,z]|2. By solving||z|5 = 4, we see that

equals to the positive square root of the equatioh — 8n — 7 = 0.
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Theorem 3.8.Let K be a Krein space. Then the following are true.

(@) Let0 # = € K be a non-neutral element; € C. Then for every such thate >
[z, z]|2|1 — |a|, there exists a fundamental symmetrguch that ||z, — [|az]|,| < e.

(b) Let0 # = € K be a neutral elementy € C. Then for every > 0, there exists a
fundamental symmetty such that||z||; — ||az] /] < €.

Proof. Supposea| = 1, the result is trivial. Next we asssume that # 1.
(a) We have > |[z, z]|2|1 — |al|, which implies|[z, z]|z < ay- Lete € R be such that

[z, 2]z < ¢ < - 'Then by Theorer 32 there exists a fundamental symmktry
such that|z||; = ¢ which implies||z||; < oy SO that we getl|z|| s — |laz|/| <e.
(b) We havel —|«af| > 0, which implies;—; > 0. Letc € R be such thah < ¢ < 7.

Then by Theorer-z there exists a fundamental symmkesych that|z||; = ¢ which

implies ||z[|; < =55y so that we gefiz|l; — [lax]l,] <e.

Theorem 3.9. Let = and y be orthogonal non-neutral elements of a Krein spacavith a
fundamental decompositida = X [+]K~. If  andy are linearly independent and if

(3.6) dim(K*) > 1,dim(K~) > 0,[y,y] > 0
or
(3.7) dim(K~) > 1,dim(K") > 0,[y,y] <0

then there exists a sequence of fundamental symméttjesuch that”i”jn — 0asn — oo.

Proof. The case[(3]7) can be reduced|to [3.6) by passing to the inner pradutt= —|u, v]
whereu, v € K. Thus we consider only the cage (3.6). From the hypothesis, we can find at least
two positive elements;, z, and a negative element in X such that

K = L{[+]spar{z:}[+|spad{z2}[+]L; [+]spar{y: },
whereL; and£, are positive and negative subspaces respectively.
We now first discuss the case whenz] > 0. Chooser; = y and andz, = —*— so

V [wa]

that [z, z5] = 1 and choosey; such thatly;,y;] = —1. We can find a neutral elemeat =
sor2 + (1 — so)y; for somes, € (0,1). Takev(t,) = t,z2 + (1 — t,)e; wheret,, = %, n > 1.
Then[v(t,), v(t,)] = t,? + 2sot,(1 — t,) > 0 and(v(t,), z1] = 0. Set
Ko™ = Li[+]spar{z:}[+]spadv(t.)}.
Thus the orthogonal projectiafl, ™ ontoK,,* can be written as
Pn+:PE1 +PCE1+P’U(tn)
whereP;, is the orthogonal projection ontd,, P,, is the orthogonal projection onto span }
andP,,) is the orthogonal projection onto sparit,,) }, which has the form
[z, v(tn)]
———= ().
[v(tn), v(tn)]
Choosing a non-zero elementt,,) in the spaﬂjxg,yl} which is orthogonal ta(¢,,), we get

a fundamental decompositon wit,* and,,~ = L,[+]spadu(t,)} and a corresponding
fundamental symmetry,, = 2P, — I. For a vector: € K we have

?,n = [Jo2,2] = [P, — )2,2] = 2[P." 2, 2] — [2, 2].

Pz =

Iz
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Let us calculaté{y|? . Sincez; = y we haveP,™y = P,,y = y. Thus||y|/,, = [v, y}% for all
n > 2. Letus find||z|| 5, .We have

[xQ’ U(tn)]

v . tn + 80(1 — tn)
o), ot

Cta? + 250t (1 —ty,)

U(tn)v

Pn+x2 = Pv(tn)x2 =

which implies
tn + 30(1 — tn)
tn)s
tn? + 250t (1 — t,) [v(tn), 2]
802 i tn -2
tn2 + 250tn(1 — tn) a2 4 2s0t,(1 —t,)’

[P’n,+x27 l’g] -

=1+

And hence|z|;, = [/, 2]|||22]|,, — 00 asn — co. Thus{“i= — 0 asn — oc.
We now discuss the case whignz] < 0. We takey; = —=2— so thaty,, 3] = —1. Choose

|[z,]|
x9 such thatxs, 25| = 1. Proceeding as above we fifid|| 5, = [y,y]% foralln > 2 and||yi]|,
as follows. We have

o vltn)] oyt soll =)
[0(t,),v(t,)] "t + 2s0ta(1 — t,)

Pn+y1 = Pv(tn)yl = U(tn>-

which implies

S0 —1
Pn+ ’ = tn),
Pyl = ¥ 250tn(1 — 1) [v(tn), 41
S0 — 12 tn -2

=14

tn? + 280t (1 — t,,) + tn2 + 250t (1 —t,)

Tlhus||x||Jn = [\/Ilz, #]llllyall, — 00 asn — oo. And hencei — 0 asn — oo.

Theorem 3.10.Let z and y be linearly independent elements of a Krein sp&chich are
non-orthogonal. Ify is neutral, there exists a sequence of fundamental symmeétfjesuch

that ”g'l'ljn — 0 asn — oo.

Proof. Since[y,y] = 0, there exists a sequence of fundamental symmefrigs such that
lylls. — 0asn — co. We first discuss the case wheris non-neutral. By Theorefn 3.1 we
have

{||xHJ . J is a fundamental symmet}y: [|[, x]|2, 00).
So for all n, ||z||;, > |[z,z]|2. We get(W) is bounded and hence we can conclude that

.7,

We now discuss the case wheis neutral. Lefx, y] = k. Sincer andy are non-orthogonal,
k # 0. By replacingy by £ we get[z,y| = 1. Let
1 1
T =—=T+Y),y1=—=@—Y),

then

1 1
r=—(x1 + Y = —=(z1 — Jx, 2] =1, |y, = —1, |z, =0.
\/5( 1 yl) Yy \/5( 1 3/1) [$1 1] [3/1 y1] [ 1 yl]

Let K = M™[+] M~ be a fundamental decomposition such that
Mt = LF[+]spadzi }, M~ = L7 [+]spaq{y: }
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with some subspace®. Setv(t,) = z1 + t,y1, t, € (—1,1). Then

[v(t,), v(t,)] = 1 — t,°.
We havek’;” = L*[+]|sparfv(t,)} is a maximal uniformly positive subspace and hence there
exists a fundamental decompositiontofwith K+ = K . Now the projectionP;” ontok; can
be written as

Pt—:: = PL+ + Pv(tn)‘

Thus
[, 0] 1—tn

]
[(tn), v(ta)] 201+ t0)’

[P;:ZL’, :L‘] -

from which we get

2(1 —1t,
lells.? = Unza] = 2By a,a] = o] = 51— oc
if we choos€(t,,) such that,, — —1 asn — oco. Similarly we get
1+1
2 n
= 0
Il = 1= =

if we choosegt,,) such that,, — —1 asn — oo. Thus we see th lim 0 asn — oo,

xHJn
|

Example 3.2. Consider the two dimensional real Minkowski space= R? with the inner
product[z, y] = x1y; — Toys Wherex = (z1,23), y = (y1,v2) € R Consider the fundamental
decompositions with = spar{ (2, 2=1)} and K, = spar{(**, =)} wheren > 1. Then
we get

|2]l7, = 7 [(2n + 2/n) (2} + yi) + dz1y1(1/n — n)].

R

Lety = (1,1) andz = (1,0). Then|ly|3 = 2 and|z[} = 3(n+ 7). Thus”ZHJ" — 0 as
n — oo.

4. CONCLUSION

Different fundamental decompositions on a Krein space induce different norms and there are
fundamental symmetries corresponding to given fundamental decompositions. Hence the norm
of a single element actually depends upon the choice of fundamental decomposition. Several
estimates of norms of elements in the Krein space have been derived with illustrative examples
and a few results of Bognar are also generalized in the paper.
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