
Aust. J. Math. Anal. Appl.
Vol. 17 (2020), No. 2, Art. 18, 10 pp.
AJMAA

ESTIMATES OF NORMS ON KREIN SPACES

SATHEESH K. ATHIRA, P. SAM JOHNSON AND K. KAMARAJ

Received 6 May, 2020; accepted 9 October, 2020; published 21 December, 2020.

DEPARTMENT OFMATHEMATICAL AND COMPUTATIONAL SCIENCES, NATIONAL INSTITUTE OF

TECHNOLOGY KARNATAKA , SURATHKAL , MANGALURU 575 025, INDIA .
athirachandri@gmail.com

DEPARTMENT OFMATHEMATICAL AND COMPUTATIONAL SCIENCES, NATIONAL INSTITUTE OF

TECHNOLOGY KARNATAKA , SURATHKAL , MANGALURU 575 025, INDIA .
sam@nitk.edu.in

URL: https://sam.nitk.ac.in/

DEPARTMENT OFMATHEMATICS, UNIVERSITY COLLEGE OFENGINEERING ARNI, ANNA UNIVERSITY,
ARNI 632 326, INDIA .
krajkj@yahoo.com

ABSTRACT. Various norms can be defined on a Krein space by choosing different underlying
fundamental decompositions. Some estimates of norms on Krein spaces are discussed and a few
results in Bognar’s paper are generalized.

Key words and phrases:Krein space ; Fundamental decomposition;J-norm.

2010Mathematics Subject Classification.46C05, 46C20.

ISSN (electronic): 1449-5910

c© 2020 Austral Internet Publishing. All rights reserved.

https://ajmaa.org/
mailto: Author <athirachandri@gmail.com>
mailto: <sam@nitk.edu.in>
https://sam.nitk.ac.in/
mailto: <krajkj@yahoo.com>
https://www.ams.org/msc/


2 S. K. ATHIRA , P. S. JOHNSON AND K. K AMARAJ

1. I NTRODUCTION

LetK be a complex vector space with a Hermitian sesquilinear form defined on it. Then we
call (K, [., .]) an inner product space. An elementx ∈ K is called neutral, positive, or negative
if [x, x] = 0, [x, x] > 0, or [x, x] < 0 respectively. IfK contains positive as well as negative
elements, then it is called an indefinite inner product space, otherwise it is called a semi-definite
inner product space. We refer [3, 4] for basics on indefinite inner product spaces. The concept
of indefinite inner product was first found in a paper on quantum field theory by Dirac in 1942
[6]. Pontrjagin gave the mathematical interpretation of indefinite inner product. Bognar [2],
Hansen [7], Langer [1] et al. have investigated the notion of norm in indefinite inner product
spaces.

An indefinite inner product space(K, [., .]) is decomposable if it can be written as an orthog-
onal direct sum of a neutral subspaceK0, a positive definite subspaceK+ and a negative definite
subspaceK−:

K = K0[+̇]K+[+̇]K−.(1.1)

Then (1.1) is known as a fundamental decomposition ofK.
An indefinite inner product space(K, [., .]) is a Krein space if it can be written as an orthog-

onal direct sum of a positive definite subspaceK+ and a negative definite subspaceK− such
that(K+, [., .]) and(K−,−[., .]) are Hilbert spaces. Let a fundamental decomposition of a Krein
spaceK be given by

K = K+[+̇]K−(1.2)

andP± be the orthogonal projections ontoK±. The linear map

J = P+ − P−,

is called the fundamental symmetry corresponding to(1.2). Then

(x, y)J = [Jx, y]

is a positive definite inner product onK, calledJ-inner product corresponding to the fundamen-
tal decomposition (1.2). We can write

(x, x)J = [Jx, x] = [(2P+ − I)x, x] = 2[P+x, P+x]− [x, x].(1.3)

The corresponding norm (calledJ-norm) is denoted by

‖x‖J = (x, x)
1
2
J = [Jx, x]

1
2 .

Different fundamental decompositions induce differentJ-norms. Hence various norms can
be defined on a Krein space by choosing different underlying fundamental decompositions.

A different fundamental decomposition ofK say,K = K+′

1 [+̇]K−′

2 makes the norm of an
elementx larger than|[x, x]|. Roughly speaking, if the spacesK+′

1 andK−′

2 “come closer” to a
neutral setK0, these norms in general be unbounded. It is interesting to observe that how the
norm of a single element actually depends upon the choice of fundamental decomposition [1].
We end the section with some examples. In the second section, some preliminary results are
given which will be used in the sequel. The third section contains our main results concerning
estimates of norms on Krein spaces.

Example 1.1. [8] Minkowski spaceMn+1 is defined as the set of(n + 1)-dimensional column
vectorsx = (x1, x2, . . . , xn, t1)

t (t indicates the transpose of a matrix) with complex entries
and the indefinite inner product is defined by

[x, y] = x1y1 + x2y2 + · · ·+ xnyn − t1t2
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wherex = (x1, x2, . . . , xn, t1)
t, y = (y1, y2, . . . , yn, t2)

t ∈ Mn+1. ThenMn+1 is a Krein space.
A fundamental symmetry for the space is given by the matrix(

In 0
0 −1

)
,

whereIn denotes the identity matrix of ordern.

Example 1.2.ConsiderK = `2, the linear space of square-summable sequences, with

[x, y] =
∞∑
i=1

(−1)ixiyi for x = (xi)
∞
i=1, y = (yi)

∞
i=1 ∈ K.

Let K+ =
{
(xi)

∞
i=1 : xi = 0 if i is odd

}
andK− =

{
(xi)

∞
i=1 : xi = 0 if i is even

}
. Then

K = K+[+̇]K−, whereK+ andK− are complete with respect to the induced norm and henceK
is a Krein space.

Example 1.3.ConsiderK = C[−1, 1] the linear space of all complex-valued continuous func-
tions defined on the interval[−1, 1] with

[x, y] =

∫ 1

−1

x(t)y(−t)dt for x, y ∈ K.

ThenK admits a fundamental decompositionK = K+[+̇]K− whereK+ andK− the spaces of
all continuous even and odd functions on[−1, 1] respectively, are complete with respect to the
induced norm and henceK is a Krein space.

Example 1.4. [5] Let Ω be a set andΣ be aσ-algebra onΩ. Letµ+ andµ− be two mutually
singular positive measures defined onΣ. Setµ = µ+ + µ−. Define

[f, g] =

∫
Ω

fgdµ+ −
∫

Ω

fgdµ− for f, g ∈ L2(µ).

ThenL2(µ) = L2(µ+)[+̇]L2(µ−) forms a fundamental decomposition, since(L2(µ+), [., .]) and
(L2(µ−),−[., .]) are Hilbert spaces. ThusL2(µ) is a Krein space.

2. PRELIMINARIES

Theorem 2.1. [4] LetK be a Krein space. ThenK has several fundamental decompositions
with non-zero components. All norms induced by different fundamental decompositions are
equivalent and hence they induce the same topology.

Theorem 2.2. [3] Let (K, [., .]) be a Krein space. Then the following are equivalent:

(1) There exists a fundamental decomposition ofK.
(2) There exists a maximal uniformly positive ortho-complemented subspace.
(3) There exists a maximal uniformly negative ortho-complemented subspace.

Example 2.1. LetK be a two-dimensional vector space with basis{e1, e2} and an indefinite
inner product defined by[e1, e1] = 1, [e2, e2] = −1 and [e1, e2] = 0. If we takeY = span{e1},
then it is a maximal uniformly positive definite subspace and hence there exists a fundamental
decomposition ofK with K+ = Y andK− = span{e2}. ChoosingK+

n = span{(n, 1)} and
K−n = span{(1, n)} wheren > 1, we get several fundamental decompositions. The corre-
sponding fundamental symmetriesJn are given by

Jn =

(
n2+1
n2−1

−2n
n2−1

2n
n2−1

−(n2+1)
n2−1

)
.
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4 S. K. ATHIRA , P. S. JOHNSON AND K. K AMARAJ

Here we can see that the fundamental symmetriesJn satisfyJ2
n = I, [Jnx, y] = [x, Jny] and

[Jnx, Jny] = [x, y] for all x, y ∈ K.

3. M AIN RESULTS

Theorem 3.1. [1] Assume thatK is a Krein space such that[., .] is indefinite and letx ∈ K,
x 6= 0. Then the following holds.

(i) If [x, x] 6= 0, then

(3.1)
{
‖x‖J : J is a fundamental symmetry

}
= [|[x, x]|

1
2 ,∞).

Moreover,
‖x‖J = |[x, x]|

1
2 if and only if x ∈ K+

J ∪ K
−
J ,

whereK = K+
J [+̇]K−J is the fundamental decomposition associated withJ .

(ii) If [x, x] = 0, then{
‖x‖J : J is a fundamental symmetry

}
= (0,∞).

Theorem 3.2.Assume that(K, [., .]) is a Krein space and let0 6= x ∈ K.

(a) If [x, x] 6= 0, then for each real numbera > |[x, x]| 12 there exists a fundamental symme-
try Ja such that‖x‖Ja = a.

(b) If [x, x] = 0, then for each positive real number a there exists a fundamental symmetry
Ja such that‖x‖Ja = a.

Proof. (a) Let [x, x] < 0 . Let K = M+[+̇]M− be a fundamental decomposition such that
x ∈M−. Choose0 6= y ∈M+ and letL+ andL− be subspaces such that

M+ = L+[+̇]span{y} M− = L−[+̇]span{x}.
Consideru(s) = sy + (1− s)x, s ∈ [0, 1]. We have[u(0), u(0)] < 0, [u(1), u(1)] > 0 and[., .]
is continuous. Hence there existss0 ∈ (0, 1) such that[u(s0), u(s0)] = 0. Let z = u(s0), then

[z, z] = 0, [y, z] = s0[y, y] > 0, [z, x] = (1− s0)[x, x] < 0.

Let v(t) = ty + (1− t)z, t ∈ (0, 1], which is a positive element fort ∈ (0, 1]. Now set

K+
t = L+[+̇]span{v(t)}

sincey andz are orthogonal toL+. Thus the orthogonal projectionP+
t ontoK+

t can be written
asP+

t = PL++Pv(t), wherePL+ is the orthogonal projection ontoL+ andPv(t) is the orthogonal
projection onto span{v(t)}. We also have

Pv(t)u =
[u, v(t)]

[v(t), v(t)]
v(t)(3.2)

for any u ∈ K. Let w(t) be a non-zero element in span{y, x} which is orthogonal tov(t)
and hence negative. WithK−t = L−[+̇]span{w(t)}, we have a fundamental decompositon
K = K+

t [+̇]K−t and a corresponding fundamental symmetryJt = 2P+
t − I. Now we get

[P+
t x, P+

t x] = [P+
t x, x] =

|[x, v(t)]|2

[v(t), v(t)]
=

(1− t)2|[x, z]|2

t2[y, y] + 2t(1− t)[y, z]
.(3.3)

From equation (1.3) we get,

(x, x)Jt =
2(1− t)2|[x, z]|2

t2[y, y] + 2t(1− t)[y, z]
− [x, x].(3.4)
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The construction of(x, x)Jt in equation (3.4) is taken from the proof of the Theorem (3.1). The
details are given for the sake of completeness of the proof.

As t varies in (0,1],(x, x)Jt takes all values in[|[x, x]|,∞). Thus‖x‖Jt takes all values in
[|[x, x]| 12 ,∞). Let a ∈ [|[x, x]| 12 ,∞) be such thata2 = b > |[x, x]|. Now let us try to find
t ∈ (0, 1] for which (x, x)J = b so that‖x‖J = a.
From (3.4) and(x, x)J = b we get,

2(1− t)2|[x, z]|2

t2[y, y] + 2t(1− t)[y, z]
− [x, x] = b.(3.5)

We have[x, x] < 0, [y, y] > 0 and [y, z] > 0. So leth = [y, y]. Replacingy by y√
h

we get
[y, y] = 1. Now setA = |[x, z]|2, B = [y, y] = 1, C = [y, z], D = [x, x]. Thus from (3.4) we
get 2(1−t)2A

t2+2t(1−t)C
−D = b which implies2A(1− 2t + t2) = (b + D)(t2 − 2Ct2 + 2Ct) so that

t2[(b + D)(1− 2C)− 2A] + t[(b + D)2C + 4A]− 2A = 0,

which is a quadratic equation int whose discriminant is4C2(b + D)2 + 8A(b + D), which is
positive asb + D andA are positive. Thus there existst ∈ (0, 1] such that it satisfies equation
(3.5). Let us denote it bytb. Then the subspaces

K+
t = L+[+̇]span{v(tb)}, K−t = L−[+̇]span{w(tb)}

give a fundamental symmetry corresponding totb. We denote it byJa and hence we see that
(x, x)Ja = b and‖x‖Ja = a.
Let [x, x] > 0. Then choose a fundamental decompositionK = M+[+̇]M− such thatx ∈M+

and continue the proof as discussed above.
(b) Let [x, x] = 0. Let y be another neutral element that satisfies[x, y] = 1. Defineu =

1√
2
(x + y), v = 1√

2
(x − y). Thenx = 1√

2
(u + v), [u, u] = 1, [v, v] = −1 and[u, v] = 0. Let

K = M+[+̇]M− be a fundamental decomposition such thatM+ = L+[+̇]span{u}, M− =
L−[+̇]span{v} with some subspacesL±. Set

w(t) = u + tv, t ∈ (−1, 1).

Then[w(t), w(t)] = (1 − t2) > 0, t ∈ (−1, 1). HenceKt,+ = L+[+̇]span{w(t)} is a maximal
uniformly positive subspace. Now the projectionPt,+ ontoKt,+ can be written asPt,+ =
PL+ + Pw(t) and we get

[Pt,+x, Pt,+x] = [Pt,+x, x] =
|[x, w(t)]|2

[w(t), w(t)]
=

1− t

2(1 + t)
,

which takes all the values in(0,∞) if t varies in(−1, 1). Let a ∈ (0,∞) be such thata2 = b.

Thus from (1.3) and solving(x, x)Jt = b we get2[Pt,+x, Pt,+x] = b. That is, 2(1−t)
2(1+t)

= b and

hencet = 1−b
1+b

. Thus fortb = 1−b
1+b

,

K+
tb

= L+[+̇]span{w(tb)}

is a maximal uniformly positive subspace and hence there exists a fundamental decomposition.
We denote the corresponding fundamental symmetry byJa. Hence we get that(x, x)Ja = b and
‖x‖Ja = a.

Corollary 3.3. Let0 6= x ∈ K, [x, x] 6= 0 andJ be a given fundamental symmetry. Then there
exists a fundamental symmetryK such that

‖x‖J < ‖x‖K .
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6 S. K. ATHIRA , P. S. JOHNSON AND K. K AMARAJ

Proof. Choose a positive real numberk > ‖x‖J . Then by Theorem 3.2(a) there exists a
fundamental symmetryK such that‖x‖K = k, which is greater than‖x‖J and that implies
‖x‖J < ‖x‖K .

Corollary 3.4. Let 0 6= x ∈ K be a neutral element andJ be a given fundamental symmetry.
Then there exist fundamental symmetriesK1 andK2 such that

‖x‖K1 < ‖x‖J < ‖x‖K2 .

Proof. Choose positive real numbersk1, k2 such that0 < k1 < ‖x‖J < k2. Then by Theorem
3.2 (b) there exist fundamental symmetriesK1 andK2 such that‖x‖K1 < ‖x‖J < ‖x‖K2.

Corollary 3.5. Let x be any arbitrary non-zero (neutral or non-neutral) element inK. If
‖x‖J1 < ‖x‖J2 for some fundamental symmetriesJ1 and J2, then there exists a fundamental
symmetryJ such that‖x‖J1 < ‖x‖J < ‖x‖J2.

Proof. Choosea > |[x, x]| 12 such that‖x‖J1 < a < ‖x‖J2 . Then by Theorem 3.2 the result
follows.

Corollary 3.6. LetK be a Krein space with a fundamental decomposition and a corresponding
fundamental symmetryJ . Let (xn) be a sequence of non-zero neutral or non-neutral vectors
such that(xn) converges to somex in K. Then there exists a sequence of fundamental symme-
tries (Jn) such that‖xn‖Jn →∞.

Proof. Let J1 = J . Now choose a real numbera2 > max{|[x2, x2]|
1
2 , ‖x1‖J1}. Then by

Theorem 3.2 (a) there exists a fundamental symmetryJ2 such that‖x2‖J2 = a2 > ‖x1‖J1. In a
similar way, we can findJk by choosing

ak > max
{
|[xk, xk]|

1
2 , ‖xk−1‖Jk−1

}
and by using Theorem 3.2 (a) we getJk such that‖xk‖Jk

= ak > ‖xk−1‖Jk−1
. Continuing the

process we see that‖xn‖Jn →∞ asn →∞.

Corollary 3.7. Let (xn) be a sequence of non-zero neutral elements inK. Then there exists a
sequence of fundamental symmetries(Jn) such that‖xn‖Jn → 0 asn →∞.

Proof. We havex1 6= 0, then we can find a fundamental symmetryJ1 such that‖x1‖J1 > 0.
Choose a real numbera2 such that‖x1‖J1 > a2 > 0. Then by Theorem 3.2 (b) there exists a
fundamental symmetryJ2 such that‖x2‖J2 = a2 and so we get‖x1‖J1 > ‖x2‖J2. Choose a real
numberak such that

‖xk−1‖Jk−1
> ak > 0.

Then by Theorem 3.2 (b) there exists a fundamental symmetryJk such that‖xk−1‖Jk−1
>

‖xk‖Jk
. Thus we see that(‖xn‖Jn) is a decreasing sequence which is bounded below by0 and

hence‖xn‖Jn → 0 asn →∞.

Remark 3.1. Corollaries 3.6 and 3.7 generalize the Lemma in [2] which says for a non-neutral
elementx there exists a sequence of fundamental norms(pn) such thatpn(x) →∞ asn →∞
and for a neutral elementx there exist sequences of fundamental norms(pn) and(qn) such that
pn(x) →∞ andqn(x) → 0 asn →∞.

Example 3.1. Consider the fundamental symmetryJn given in Example 2.1. Then forx =
(x1, y1) ∈ K

‖x‖2
Jn

=
(n2 + 1)((x2

1 + y2
1)− 4nx1y1

n2 − 1
.

We fixx = (2, 1). Then[x, x] = 3. Leta = 2 > |[x, x]| 12 . By solving‖x‖2
Jn

= 4, we see thatn
equals to the positive square root of the equation5n2 − 8n− 7 = 0.
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Theorem 3.8.LetK be a Krein space. Then the following are true.

(a) Let 0 6= x ∈ K be a non-neutral element,α ∈ C. Then for everyε such thatε >

|[x, x]| 12 |1− |α||, there exists a fundamental symmetryJ such that|‖x‖J −‖αx‖J | < ε.
(b) Let 0 6= x ∈ K be a neutral element,α ∈ C. Then for everyε > 0, there exists a

fundamental symmetryJ such that|‖x‖J − ‖αx‖J | < ε.

Proof. Suppose|α| = 1, the result is trivial. Next we asssume that|α| 6= 1.

(a) We haveε > |[x, x]| 12 |1− |α||, which implies|[x, x]| 12 < ε
|1−|α|| . Let c ∈ R be such that

|[x, x]| 12 < c < ε
|1−|α|| . Then by Theorem 3.2 there exists a fundamental symmetryJ

such that‖x‖J = c which implies‖x‖J < ε
|1−|α|| so that we get|‖x‖J − ‖αx‖J | < ε.

(b) We have|1−|α|| > 0, which implies ε
|1−|α|| > 0. Let c ∈ R be such that0 < c < ε

|1−|α|| .
Then by Theorem 3.2 there exists a fundamental symmetryJ such that‖x‖J = c which
implies‖x‖J < ε

|1−|α|| so that we get|‖x‖J − ‖αx‖J | < ε.

Theorem 3.9. Let x and y be orthogonal non-neutral elements of a Krein spaceK with a
fundamental decompositionK = K+[+̇]K−. If x andy are linearly independent and if

dim(K+) > 1, dim(K−) > 0, [y, y] > 0(3.6)

or

dim(K−) > 1, dim(K+) > 0, [y, y] < 0(3.7)

then there exists a sequence of fundamental symmetries(Jn) such that‖y‖Jn

‖x‖Jn
→ 0 asn →∞.

Proof. The case (3.7) can be reduced to (3.6) by passing to the inner product[u, v]′ = −[u, v]
whereu, v ∈ K. Thus we consider only the case (3.6). From the hypothesis, we can find at least
two positive elementsx1, x2 and a negative elementy1 in K such that

K = L+
1 [+̇]span{x1}[+̇]span{x2}[+̇]L−2 [+̇]span{y1},

whereL+
1 andL−2 are positive and negative subspaces respectively.

We now first discuss the case when[x, x] > 0. Choosex1 = y and andx2 = x√
[x,x]

so

that [x2, x2] = 1 and choosey1 such that[y1, y1] = −1. We can find a neutral elemente1 =
s0x2 + (1− s0)y1 for somes0 ∈ (0, 1). Takev(tn) = tnx2 + (1− tn)e1 wheretn = 1

n
, n > 1.

Then[v(tn), v(tn)] = tn
2 + 2s0tn(1− tn) > 0 and[v(tn), x1] = 0. Set

Kn
+ = L1[+̇]span{x1}[+̇]span{v(tn)}.

Thus the orthogonal projectionPn
+ ontoKn

+ can be written as

Pn
+ = PL1 + Px1 + Pv(tn)

wherePL1 is the orthogonal projection ontoL1, Px1 is the orthogonal projection onto span{x1}
andPv(tn) is the orthogonal projection onto span{v(tn)}, which has the form

Pv(tn)z =
[z, v(tn)]

[v(tn), v(tn)]
v(tn).

Choosing a non-zero elementu(tn) in the span{x2, y1}, which is orthogonal tov(tn), we get
a fundamental decompositon withKn

+ andKn
− = L2[+̇]span{u(tn)} and a corresponding

fundamental symmetryJn = 2Pn
+ − I. For a vectorz ∈ K we have

‖z‖2
Jn

= [Jnz, z] = [(2Pn
+ − I)z, z] = 2[Pn

+z, z]− [z, z].
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Let us calculate‖y‖2
Jn

. Sincex1 = y we havePn
+y = Px1y = y. Thus‖y‖Jn = [y, y]

1
2 for all

n > 2. Let us find‖x‖Jn.We have

Pn
+x2 = Pv(tn)x2 =

[x2, v(tn)]

[v(tn), v(tn)]
v(tn) =

tn + s0(1− tn)

tn
2 + 2s0tn(1− tn)

v(tn),

which implies

[Pn
+x2, x2] =

tn + s0(1− tn)

tn
2 + 2s0tn(1− tn)

[v(tn), x2]

= 1 +
s0

2

tn
2 + 2s0tn(1− tn)

+
tn − 2

tn
2 + 2s0tn(1− tn)

.

And hence‖x‖Jn = |
√

[x, x]|‖x2‖Jn →∞ asn →∞. Thus ‖y‖Jn

‖x‖Jn
→ 0 asn →∞.

We now discuss the case when[x, x] < 0. We takey1 = x√
|[x,x]|

so that[y1, y1] = −1. Choose

x2 such that[x2, x2] = 1. Proceeding as above we find‖y‖Jn = [y, y]
1
2 for all n > 2 and‖y1‖Jn

as follows. We have

Pn
+y1 = Pv(tn)y1 =

[y1, v(tn)]

[v(tn), v(tn)]
v(tn) =

tn + s0(1− tn)

tn
2 + 2s0tn(1− tn)

v(tn).

which implies

[Pn
+y1, y1] =

s0 − 1

tn
2 + 2s0tn(1− tn)

[v(tn), y1]

= 1 +
s0 − 12

tn
2 + 2s0tn(1− tn)

+
tn − 2

tn
2 + 2s0tn(1− tn)

.

Thus‖x‖Jn = |
√
|[x, x]||‖y1‖Jn →∞ asn →∞. And hence‖y‖Jn

‖x‖Jn
→ 0 asn →∞.

Theorem 3.10.Let x and y be linearly independent elements of a Krein spaceK which are
non-orthogonal. Ify is neutral, there exists a sequence of fundamental symmetries(Jn) such
that ‖y‖Jn

‖x‖Jn
→ 0 asn →∞.

Proof. Since [y, y] = 0, there exists a sequence of fundamental symmetries(Jn) such that
‖y‖Jn → 0 asn → ∞. We first discuss the case whenx is non-neutral. By Theorem 3.1 we
have {

‖x‖J : J is a fundamental symmetry
}

= [|[x, x]|
1
2 ,∞).

So for all n,‖x‖Jn ≥ |[x, x]| 12 . We get
(

1
‖x‖Jn

)
is bounded and hence we can conclude that

‖y‖Jn

‖x‖Jn
→ 0 asn →∞.

We now discuss the case whenx is neutral. Let[x, y] = k. Sincex andy are non-orthogonal,
k 6= 0. By replacingy by y

k
we get[x, y] = 1. Let

x1 =
1√
2
(x + y), y1 =

1√
2
(x− y),

then

x =
1√
2
(x1 + y1), y =

1√
2
(x1 − y1), [x1, x1] = 1, [y1, y1] = −1, [x1, y1] = 0.

LetK = M+[+̇]M− be a fundamental decomposition such that

M+ = L+[+̇]span{x1},M− = L−[+̇]span{y1}
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with some subspacesL±. Setv(tn) = x1 + tny1, tn ∈ (−1, 1). Then

[v(tn), v(tn)] = 1− tn
2.

We haveK+
tn = L+[+̇]span{v(tn)} is a maximal uniformly positive subspace and hence there

exists a fundamental decomposition ofK with K+ = K+
tn. Now the projectionP+

tn ontoK+
tn can

be written as
P+

tn = PL+ + Pv(tn).

Thus

[P+
tnx, x] =

|[x, v(t)]|2

[v(tn), v(tn)]
=

1− tn
2(1 + tn)

,

from which we get

‖x‖Jn

2 = [Jnx, x] = 2[Pn
+x, x]− [x, x] =

2(1− tn)

2(1 + tn)
→∞

if we choose(tn) such thattn → −1 asn →∞. Similarly we get

‖y‖Jn

2 =
1 + tn
1− tn

→ 0

if we choose(tn) such thattn → −1 asn →∞. Thus we see that‖y‖Jn

‖x‖Jn
→ 0 asn →∞.

Example 3.2. Consider the two dimensional real Minkowski spaceK = R2 with the inner
product[x, y] = x1y1 − x2y2 wherex = (x1, x2), y = (y1, y2) ∈ R2. Consider the fundamental
decompositions withK+

n = span{(n+1
n

, n−1
n

)} andK−n = span{(n−1
n

, n+1
n

)} wheren > 1. Then
we get

‖x‖2
Jn

=
1

4
[(2n + 2/n)(x2

1 + y2
1) + 4x1y1(1/n− n)].

Let y = (1, 1) andx = (1, 0). Then‖y‖2
Jn

= 2
n

and‖x‖2
Jn

= 1
2
(n + 1

n
). Thus ‖y‖Jn

‖x‖Jn
→ 0 as

n →∞.

4. CONCLUSION

Different fundamental decompositions on a Krein space induce different norms and there are
fundamental symmetries corresponding to given fundamental decompositions. Hence the norm
of a single element actually depends upon the choice of fundamental decomposition. Several
estimates of norms of elements in the Krein space have been derived with illustrative examples
and a few results of Bognar are also generalized in the paper.
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