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1. INTRODUCTION

The classical inequality of W. H. Young is
a’b'™" < va+ (1 —v)b,

wherea and b are distinct positive real numbers afd< v < 1, see [25], being also an
inequality between arithmetic and geometric mean.

There are many generalizations and refinements of Young’s inequality, see for example [1],
[2], [14], [13], [17], [4], [3], [5], [8] and references therein. Among those there is the follow-
ing local version of Young inequality, presented by the authors ih [16], which will be used to
enunciate several applications for determinant, norm and trace inequalities.

Proposition 1.1. ([16]) (a) For anya+ 5 > 1, anda € (0, 1), there isr > 0 such that for any
z,y € (1 —r,1+r),itis true the inequality

ar + Py >y +a+ 4 — 1.

(b) Foranya + 5 < 1,a € (0,1) and < 0 there isq > 0 such that for any
z,y € (1 —q,1+ q), itis true the same inequality.

Corollary 1.2. ([16]) For anya + 5 > 1 anda € (0,1), there isr > 0 such that for any
x,y € (1 —r 1+ r)itis true that

ax + By > x%yP.

It is necessary to recall some basic and well-known things about the functional calculus with
continuous functions on spectrum. As in [9], we recall that for selfadjoint operatals €
B(H) we write A < B (or B > A) if < Az,2 ><< Buz,z > for every vectorz € H,
or B — A is a positive operator. Firstly, we will consider as a selfadjoint linear operator
on a complex Hilbert spacgt; < .,. >). A fundamental role will be played bgelfand map
¢ : C(Sp(A)) — C*(A), which is ax- isometrically isomorphism between the set of all
continuous functiondefined on thepectrunof A and theC*- algebra generated by and the
identity operatorl;; on H. ¢ has the following properties: for anf, f € C(Sp(A)) and for
anya, § € C we have

(i) D(af + Bg) = a®(f) + BD(g);

(i) ®(fg) = ®(f)®(g) and ®(f) = B(f*);

(i) [| (/)] = [I/1] := suprespa /@)

(iv) @(fo) =1y and @(f;) = A, wherefy(t) = 1andfi(t) =t fort € Sp(A.)

The continuous functional calculusr a selfadjoint operatad is based on the notation

f(A):=&(f) for all feC(Sp(A)),

and on the following remark:

If A is a selfadjoint operator andl is a real valued continuous function ¢fp(A), then
f(t) > 0foranyt € Sp(A) implies thatf(A) > 0, i.e. f(A) is apositive operatoon H. In
addition, if andf andg are real valued functions otp(A) then the following property holds:

(1.1) f(t) > g(t) for any te Sp(A) implies that f(A) > g(A)
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in the operator order aB(H).

We also will need some basic, well-known properties for trace of operators. The main prop-
erties of the trace can be found in [5] and the references therein, but we mention just what we
need. For any orthonormal bagis },.; of a separable Hilbert spaé¢ the operatord € B(H)
is trace clasgf

1A =) < |Alei,e; >< oc.
i€l
The definition of|| A||; is independent of the choice of the orthogonal bési$;.;. We denote
the set of trace class operatord3(iH) by B, (H).
We will need some of the well-known properties of trace:

@) ||A]]1 = ||A*||,forany A € Bi(H)
(b) (B1(H),||-||1) is a Banach space.
(©) B(H)Bi(H)B(H) C B,(H) thatisB;(H) is a bilateral operator ideal if(H).

We consider, following [5], thérace of a trace class operater € 5,(H) to be

tr(A) = Z < Ae;,e; >,
el

where{e; };c; an orthonormal basis dfi. The previous series absolutely converges and it is
basis independent. The definition is a an extension of the usual definition of the tfdas if
finite dimensional. L

B, (H) is closed for to the-operation, andr(A*) = tr(A). If A € Bi(H) andT € B(H)
then AT, TA € Bi(H) andtr(AT) = tr(TA) and |tr(AT)| < ||A||1]|T|]. The application
tr(.) is a bounded linear functional d& (H) with ||tr|| = 1.

Many trace inequalities for matrices and operators can be found for example in [20], [22],
[23], [B],[7], [17], [24], [18], [19] and also, references therein.

2. A LOCAL YOUNG INEQUALITY FOR DETERMINANTS

We recall that if A and B are positive invertible operators on a complex Hilbert space
(H, < .,. >) then the following notationis, B = Az (A~2 BA~2)" Az is used for thaveighted
geometric mearnwherer € (0, 1). It is necessary to mention that we use the synipoas in
[10] not as in[1] and[13].

Moreover, this notation will be used even wheis not in the interval0, 1).

Theorem 2.1.If;

(1) A, B € M, are positive definite matrices having the eigenvalues
A(A) < X (A) < .. < A\ (A)and A (B) < Xa(B) < ... < \(B),
(2) a € (0,1), 8 € R with the propertyx + 3 > 1,

(3) there isr € (0, 1) such thatl —r < 35 and 328} < 1 41,

then we have
det(aA + B) > det(AfsB),
and it is also true that:
det(aA + BB) > det(Bt,A).
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Proof. We takexr = 1, in the inequality of Corollar2a:z: + By > x2%y?, and we get
(2.1) a+py >y’ forally e (1 —r,1+7).

Now we consider the positive definite matix = A"2BA":. By a theorem of Ostrowski
([11], Theorem 4.5.9), we know that the eigenvalueé'atheck

Ai(B) An(B)
() < N(0) < M (A)

1—-r< <l+4r,

foalli=1,2,...,n.
By (2.1) we obtain,

a+ BN(C) > X (C),

foralli =1,2,....n.
Using now that the determinant of a matrix is the product of its eigenvalues, we have,

n

det(al + BAT2BA™Z) = [J(a + BN(C)) > f[ N(C) = det(CP).

=1
Multiplying by det(A2) we get,
det(Az)det(al + BA 2 BA™2)det(A?) > det(A?)det(CP)det(A?),
or using the multiplicity of the determinant, we have:
det(a A+ BB) > det (A% (A—%BA—%)M%) .
So we obtain:
det(aA + BB) > det(AfsB),

or analogously, if we use the inequality;(C) + 5 > A7 (C),(i.e. we takey = 1 in inequality
ar + By > x%yP)
we get

det(aA + BB) > det(Bt,A).

3. A LOCAL YOUNG INEQUALITY FOR NORMS

Theorem 3.1.If:

(1) A, B, X € M,, and A, B are positive definite matrices having the eigenvalues
A(A) < X (A) < ... < A\ (A)and A (B) < Xa(B) < ... < \(B),

(2) a € (0,1), 8 € R with the propertyx + 3 > 1,

(3) thereisr € (0,1) such thatl —r < A1(A), A\ (B) and A, (A),\,(B) <1+7r

then we have:
l|aAX + BXB||y > [|A*X B,

where||.||; is the Hilbert-Schmidt norm.
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Proof. Using the Spectral Theorem for the unitary matriteandl” we have,

A =Udiag(M(A), ..., \p(A)U* andB = Vdiag(A1(B), ..., A\ (B))V*.

If we setY = U*XV = (y;;), we obtainc AX + 5X B = U((aXi(A) + 6A;(B))y;;)V* and
A*X BP = U(N(A)*N;(B)Py;)V*.

We have the following inequalities by using Corollary]|1.2:

laAX+BX B3 = Y (aAi(A)+0X(B) lyig* = D (N(A)X(B)*)yssl* = ||A*X B3
i,j=1 hj=1
or
|€AX + BX B[y > [|A°X B||,.

4. A LOCAL YOUNG INEQUALITY FOR TRACE OF OPERATORS

Let B5(H) be theC*—algebra of all bounded linear operators on a complex Hilbert space
(H,< .,>)andA, B € B('H) be two positive operators. All the properties concerning the trace
of operators will be considered on separable Hilbert spaces.

Theorem 4.1.If:
(@) A, B € B(H) are positive operators
(b) a € (0,1), 8 € R with the propertyx + 3 > 1,
(c) thereisr € (0,1) suchthatl —r)l < A, B < (1+r)I,
then the following inequalities hold:

1 1 o
(4.1) allAzz|]P[lyl|* + Bl|Bzy|*[|z]]* >< A%, 2 >< BYy,y > +(a+ 5 = 1)||2] |yl [,
forall z,y € ‘H, and
(4.2) al||Azz| | + Bl Bay|]? >< Aw,x >< B,y > +(a+ 8- 1),
when||z|| = [[y[| = L.

Proof. We will use the same method as in [9]. Firstly, we use the Functional Calculus with
continuous functions on spectrum for the operatorfor allb € (1 —r,1 4+ r) andx € H.
Secondly, we use the Functional Calculus with continous functions on spectrum for the operator
B, obtaining succesively,

a<Av,x>I1+pBB <z x>><A%,c>B +(a+p-1)<z,2>1,
and then
a<Azv,x ><vy,y >+p < By,y ><x,x >>

>< A%,z >< By y>+la+pf-1)<z,0><yy>

forall x,y € H.
Using the norm, we get,

1 1 «
al|Azz[]P|ly[|* + Bl B2y|Pl|z]|* >< A%,z >< By, y > +(a + 5= 1)||=[*[|y|[?

for all z,y € H. By (4.1) we obtain immediately (4.2).
1
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Corollary 4.2. In the same hypothesis as in Theofen) 4.1 the following inequality holds:

a||[Azz|? + B||B2y||? >< A%,z >< B%y,y >,
when||z|| = ||y|| = 1.

The following result is obtained as an application of Corol[ary 1.2 and Theprgm 3.1 for the
trace of an operator.
Theorem 4.3.1f:
(1) A, B € B(H) are positive operators anf?, Q € B;(H) with P, @ > 0.
(2) a € (0,1), 8 € R with the propertyx + 5 > 1,
(3) thereisr € (0,1) suchthatl —r)I < A, B < (1+7)1,
then the following inequality takes place:
a-tr(PAtrQ + B -tr(QB)trP > tr(PAY)tr(QB%) + (a + f — 1)tr PtrQ,
and in particular,
a-tr(PArQ + 3 -tr(QB)trP > tr(PA“)tr(QB").
Proof. If we takez = Pie, y = Q3 f wheree, f € H in the proof of Theorerh 41, we will
find,
a < AP%e,P%e >< Q%f,Q%f > 40 < BQ%f,Q%f >< P%e, Pie >>
>< APze,Pie >< BQ:f,Qzf > +a+p-1)< Pze, Pie >< Q2 f, Q2 f >,
foralle, f € H.
Let {e;}icr, and{f;};c, be two orthonormal bases @{. We take in previous inequality

e=e;, 1€ landf = f;, j € Jandthen summing ovérc I and;j € .J, we get the following
double inequality:

@Z<P%AP%61,€Z' >Z<ij7fj >+6Z<Q%BQ%f],f] >Z<P6iaei >>

el jeJ JjeJ el
>3 < PiAPlese> Y < QiBPQif fi > +
i€l JjeJ
+Ha+B-1)) < Peei>> <Qffi>.
iel jeJ
Now, using the well-known properties of trace, we obtain the desired inequality.

Next three results are several applications of Thegrem 4.3.

Corollary 4.4. If:

(1) A, B € B(H) are positive operators anf? € B;(H) with P > 0.

(2) a € (0,1), 8 € R with the propertyx + 5 > 1,

(3) thereisr € (0,1) such that(l — r)I < A, B < (1+7)I,

then the following inequality takes place:
trP[a-tr(PA) + 3 -tr(PB)] > tr(PA*)tr(PB°) + (a4 3 — 1)(tr P)?,
and in particular,
trP[a - tr(PA) + 3 - tr(PB)] > tr(PA“)tr(PB").
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Proof. We take in Theorem 4.3 = Q.
1

Corollary 4.5. If:
(1) P, Q, S, V be invertible positive operators g and P, Q S, V € B,(H).

(2) a € (0,1), 8 € R with the propertyx + 5 > 1,
(3) thereiisr € (0,1) suchthatl —r)Q <V < (1+r)Q,and(1 —r)P < S < (1+7r)P
then the following inequality takes place:
trP[a-trS + B trV] > tr(Pt,S)tr(QEsV) + (a+ B — 1)tr Ptr@,
and in particular,
trP[a-trS + B trV] > tr(Pf,S)tr(QtsV).
Proof. Takin19 into 1account our hypothesis, we see that for positive operAt@fsP*%SP*%
andB = Q 2V 2, we have
(1—-rI<A<(1+r) and (1—-7r)I <B<(1+7r)l.
From Theorem 4|3, we get
a-tr(PArQ + 3 - tr(QB)trP > tr(PA“)tr(QB) + (a + f — 1)tr PtrQ,
and in particular,
a-tr(PAtrQ + 3 - tr(QB)trP > tr(PA“)tr(QB").
Replacing hered and B above, we have,
trP(atrS + ptrV) > tr(Pf,S)tr(QigV) + (a + 5 — 1)trPtr@),

and in particular,
trP(atrS + ptrV) > tr(Pf,5)tr(QtsV),

i.e. the desired inequalities.
|

Corollary 4.6. If we consider in the above corollary only two invertible positive operafars
S € B;(H) then we have,

trPtrS(a + B) > tr(Pi,S)tr(PtsS) + (a + B — 1)(trP)?,
and in particular,
trPtrS(a+ §) > tr(P4,S)tr(Pis9S).
Proof. If we take in Corollary 45 = @ andS = V" we will obtain the desired inequality.
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