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1. I NTRODUCTION

The classical inequality of W. H. Young is

aνb1−ν < νa + (1− ν)b,

wherea and b are distinct positive real numbers and0 < ν < 1, see [25], being also an
inequality between arithmetic and geometric mean.

There are many generalizations and refinements of Young’s inequality, see for example [1],
[2], [14], [13], [17], [4], [3], [5], [8] and references therein. Among those there is the follow-
ing local version of Young inequality, presented by the authors in [16], which will be used to
enunciate several applications for determinant, norm and trace inequalities.

Proposition 1.1. ([16]) (a) For anyα + β > 1, andα ∈ (0, 1), there isr > 0 such that for any
x, y ∈ (1− r, 1 + r), it is true the inequality

αx + βy > xαyβ + α + β − 1.

(b) For anyα + β < 1, α ∈ (0, 1) andβ < 0 there isq > 0 such that for any
x, y ∈ (1− q, 1 + q), it is true the same inequality.

Corollary 1.2. ([16]) For any α + β > 1 and α ∈ (0, 1), there isr > 0 such that for any
x, y ∈ (1− r, 1 + r) it is true that

αx + βy > xαyβ.

It is necessary to recall some basic and well-known things about the functional calculus with
continuous functions on spectrum. As in [9], we recall that for selfadjoint operatorsA, B ∈
B(H) we write A ≤ B (or B ≥ A) if < Ax, x >≤< Bx, x > for every vectorx ∈ H,
or B − A is a positive operator. Firstly, we will considerA as a selfadjoint linear operator
on a complex Hilbert space(H; < ., . >). A fundamental role will be played byGelfand map
Φ : C(Sp(A)) → C∗(A), which is a∗- isometrically isomorphism between the set of all
continuous functionsdefined on thespectrumof A and theC∗- algebra generated byA and the
identity operator1H onH. Φ has the following properties: for anyf, f ∈ C(Sp(A)) and for
anyα, β ∈ C we have

(i) Φ(αf + βg) = αΦ(f) + βΦ(g);
(ii) Φ(fg) = Φ(f)Φ(g) and Φ(f) = Φ(f ∗);
(iii) ||Φ(f)|| = ||f || := supt∈Sp(A) |f(t)|;
(iv) Φ(f0) = 1H and Φ(f1) = A, wheref0(t) = 1 andf1(t) = t for t ∈ Sp(A.)
Thecontinuous functional calculusfor a selfadjoint operatorA is based on the notation

f(A) := Φ(f) for all f ∈ C(Sp(A)),

and on the following remark:
If A is a selfadjoint operator andf is a real valued continuous function onSp(A), then

f(t) ≥ 0 for any t ∈ Sp(A) implies thatf(A) ≥ 0, i.e. f(A) is apositive operatoronH. In
addition, if andf andg are real valued functions onSp(A) then the following property holds:

(1.1) f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A)
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in the operator order ofB(H).

We also will need some basic, well-known properties for trace of operators. The main prop-
erties of the trace can be found in [5] and the references therein, but we mention just what we
need. For any orthonormal basis{ei}i∈I of a separable Hilbert spaceH, the operatorA ∈ B(H)
is trace classif

||A||1 =
∑
i∈I

< |A|ei, ei >< ∞.

The definition of||A||1 is independent of the choice of the orthogonal basis{ei}i∈I . We denote
the set of trace class operators inB(H) byB1(H).

We will need some of the well-known properties of trace:

(a) ||A||1 = ||A∗||1, for anyA ∈ B1(H)
(b) (B1(H), ||.||1) is a Banach space.
(c)B(H)B1(H)B(H) ⊆ B1(H) that isB1(H) is a bilateral operator ideal inB(H).

We consider, following [5], thetraceof a trace class operatorA ∈ B1(H) to be

tr(A) =
∑
i∈I

< Aei, ei >,

where{ei}i∈I an orthonormal basis ofH. The previous series absolutely converges and it is
basis independent. The definition is a an extension of the usual definition of the trace ifH is
finite dimensional.
B1(H) is closed for to the∗-operation, andtr(A∗) = tr(A). If A ∈ B1(H) andT ∈ B(H)

thenAT, TA ∈ B1(H) andtr(AT ) = tr(TA) and |tr(AT )| ≤ ||A||1||T ||. The application
tr(.) is a bounded linear functional onB1(H) with ||tr|| = 1.

Many trace inequalities for matrices and operators can be found for example in [20], [22],
[23], [5],[7], [17], [24], [18], [19] and also, references therein.

2. A LOCAL YOUNG INEQUALITY FOR DETERMINANTS

We recall that ifA and B are positive invertible operators on a complex Hilbert space
(H, < ., . >) then the following notationA]νB = A

1
2 (A−

1
2 BA−

1
2 )νA

1
2 is used for theweighted

geometric mean, whereν ∈ (0, 1). It is necessary to mention that we use the symbol]ν , as in
[10] not as in [1] and [13].

Moreover, this notation will be used even whenν is not in the interval(0, 1).

Theorem 2.1. If:

(1) A, B ∈ Mn are positive definite matrices having the eigenvalues
λ1(A) ≤ λ2(A) ≤ ... ≤ λn(A) andλ1(B) ≤ λ2(B) ≤ ... ≤ λn(B),

(2) α ∈ (0, 1), β ∈ R with the propertyα + β > 1,

(3) there isr ∈ (0, 1) such that1− r < λ1(B)
λn(A)

and λn(B)
λ1(A)

< 1 + r,

then we have

det(αA + βB) > det(A]βB),

and it is also true that:

det(αA + βB) > det(B]αA).
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Proof. We takex = 1, in the inequality of Corollary 1.2:αx + βy > xαyβ, and we get

(2.1) α + βy > yβ, for all y ∈ (1− r, 1 + r).

Now we consider the positive definite matrixC = A−
1
2 BA−

1
2 . By a theorem of Ostrowski

([11], Theorem 4.5.9), we know that the eigenvalues ofC check

1− r <
λ1(B)

λn(A)
≤ λi(C) ≤ λn(B)

λ1(A)
< 1 + r,

fo all i = 1, 2, ..., n.
By (2.1) we obtain,

α + βλi(C) > λβ
i (C),

for all i = 1, 2, ..., n.
Using now that the determinant of a matrix is the product of its eigenvalues, we have,

det(αI + βA−
1
2 BA−

1
2 ) =

n∏
i=1

(α + βλi(C)) ≥
n∏

i=1

λβ
i (C) = det(Cβ).

Multiplying by det(A
1
2 ) we get,

det(A
1
2 )det(αI + βA−

1
2 BA−

1
2 )det(A

1
2 ) ≥ det(A

1
2 )det(Cβ)det(A

1
2 ),

or using the multiplicity of the determinant, we have:

det(αA + βB) ≥ det
(
A

1
2 (A−

1
2 BA−

1
2 )βA

1
2

)
.

So we obtain:

det(αA + βB) ≥ det(A]βB),

or analogously, if we use the inequalityαλi(C) + β > λα
i (C),( i.e. we takey = 1 in inequality

αx + βy > xαyβ)
we get

det(αA + βB) > det(B]αA).

3. A LOCAL YOUNG INEQUALITY FOR NORMS

Theorem 3.1. If:

(1) A, B, X ∈ Mn andA, B are positive definite matrices having the eigenvalues
λ1(A) ≤ λ2(A) ≤ ... ≤ λn(A) andλ1(B) ≤ λ2(B) ≤ ... ≤ λn(B),

(2) α ∈ (0, 1), β ∈ R with the propertyα + β > 1,
(3) there isr ∈ (0, 1) such that1− r < λ1(A), λ1(B) andλn(A), λn(B) < 1 + r

then we have:

||αAX + βXB||2 ≥ ||AαXBβ||2,
where||.||2 is the Hilbert-Schmidt norm.
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Proof. Using the Spectral Theorem for the unitary matricesU andV we have,
A = Udiag(λ1(A), ..., λn(A))U∗ andB = V diag(λ1(B), ..., λn(B))V ∗.
If we setY = U∗XV = (yij), we obtainαAX + βXB = U((αλi(A) + βλj(B))yij)V

∗ and
AαXBβ = U(λi(A)αλj(B)βyij)V

∗.
We have the following inequalities by using Corollary 1.2:

||αAX+βXB||22 =
n∑

i,j=1

(αλi(A)+βλj(B))2|yij|2 ≥
n∑

i,j=1

(λi(A)αλj(B)β)2|yij|2 = ||AαXBβ||22

or
||αAX + βXB||2 ≥ ||AαXBβ||2.

4. A LOCAL YOUNG INEQUALITY FOR TRACE OF OPERATORS

Let B(H) be theC∗−algebra of all bounded linear operators on a complex Hilbert space
(H, < ., >) andA, B ∈ B(H) be two positive operators. All the properties concerning the trace
of operators will be considered on separable Hilbert spaces.

Theorem 4.1. If:
(a) A, B ∈ B(H) are positive operators
(b) α ∈ (0, 1), β ∈ R with the propertyα + β > 1,
(c) there isr ∈ (0, 1) such that(1− r)I ≤ A, B ≤ (1 + r)I,
then the following inequalities hold:

(4.1) α||A
1
2 x||2||y||2 + β||B

1
2 y||2||x||2 >< Aαx, x >< Bβy, y > +(α + β − 1)||x||2||y||2,

for all x, y ∈ H, and

(4.2) α||A
1
2 x||2 + β||B

1
2 y||2 >< Aαx, x >< Bβy, y > +(α + β − 1),

when||x|| = ||y|| = 1.

Proof. We will use the same method as in [9]. Firstly, we use the Functional Calculus with
continuous functions on spectrum for the operatorA, for all b ∈ (1 − r, 1 + r) andx ∈ H.
Secondly, we use the Functional Calculus with continous functions on spectrum for the operator
B, obtaining succesively,

α < Ax, x > I + βB < x, x >>< Aαx, x > Bβ + (α + β − 1) < x, x > I,

and then
α < Ax, x >< y, y > +β < By, y >< x, x >>

>< Aαx, x >< Bβy, y > +(α + β − 1) < x, x >< y, y >

for all x, y ∈ H.
Using the norm, we get,

α||A
1
2 x||2||y||2 + β||B

1
2 y||2||x||2 >< Aαx, x >< Bβy, y > +(α + β − 1)||x||2||y||2

for all x, y ∈ H. By (4.1) we obtain immediately (4.2).
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Corollary 4.2. In the same hypothesis as in Theorem 4.1 the following inequality holds:

α||A
1
2 x||2 + β||B

1
2 y||2 >< Aαx, x >< Bβy, y >,

when||x|| = ||y|| = 1.

The following result is obtained as an application of Corollary 1.2 and Theorem 3.1 for the
trace of an operator.

Theorem 4.3. If:
(1) A, B ∈ B(H) are positive operators andP, Q ∈ B1(H) with P, Q > 0.
(2) α ∈ (0, 1), β ∈ R with the propertyα + β > 1,
(3) there isr ∈ (0, 1) such that(1− r)I ≤ A, B ≤ (1 + r)I,

then the following inequality takes place:

α · tr(PA)trQ + β · tr(QB)trP > tr(PAα)tr(QBβ) + (α + β − 1)trP trQ,

and in particular,

α · tr(PA)trQ + β · tr(QB)trP > tr(PAα)tr(QBβ).

Proof. If we takex = P
1
2 e, y = Q

1
2 f wheree, f ∈ H in the proof of Theorem 4.1, we will

find,
α < AP

1
2 e, P

1
2 e >< Q

1
2 f, Q

1
2 f > +β < BQ

1
2 f, Q

1
2 f >< P

1
2 e, P

1
2 e >>

>< AP
1
2 e, P

1
2 e >< BQ

1
2 f, Q

1
2 f > +(α + β − 1) < P

1
2 e, P

1
2 e >< Q

1
2 f, Q

1
2 f >,

for all e, f ∈ H.
Let {ei}i∈I , and{fj}j∈J be two orthonormal bases ofH. We take in previous inequality

e = ei, i ∈ I andf = fj, j ∈ J and then summing overi ∈ I andj ∈ J, we get the following
double inequality:

α
∑
i∈I

< P
1
2 AP

1
2 ei, ei >

∑
j∈J

< Qfj, fj > +β
∑
j∈J

< Q
1
2 BQ

1
2 fj, fj >

∑
i∈I

< Pei, ei >>

>
∑
i∈I

< P
1
2 AαP

1
2 ei, ei >

∑
j∈J

< Q
1
2 BβQ

1
2 fj, fj > +

+(α + β − 1)
∑
i∈I

< Pei, ei >
∑
j∈J

< Qfj, fj > .

Now, using the well-known properties of trace, we obtain the desired inequality.

Next three results are several applications of Theorem 4.3.

Corollary 4.4. If:

(1) A, B ∈ B(H) are positive operators andP ∈ B1(H) with P > 0.
(2) α ∈ (0, 1), β ∈ R with the propertyα + β > 1,
(3) there isr ∈ (0, 1) such that(1− r)I ≤ A, B ≤ (1 + r)I,

then the following inequality takes place:

trP [α · tr(PA) + β · tr(PB)] > tr(PAα)tr(PBβ) + (α + β − 1)(trP )2,

and in particular,

trP [α · tr(PA) + β · tr(PB)] > tr(PAα)tr(PBβ).
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Proof. We take in Theorem 4.3,P = Q.

Corollary 4.5. If:

(1) P, Q, S, V be invertible positive operators onH andP, Q S, V ∈ B1(H).
(2) α ∈ (0, 1), β ∈ R with the propertyα + β > 1,
(3) there isr ∈ (0, 1) such that(1− r)Q ≤ V ≤ (1 + r)Q, and(1− r)P ≤ S ≤ (1 + r)P

then the following inequality takes place:

trP [α · trS + β trV ] > tr(P]αS)tr(Q]βV ) + (α + β − 1)trP trQ,

and in particular,
trP [α · trS + β trV ] > tr(P]αS)tr(Q]βV ).

Proof. Taking into account our hypothesis, we see that for positive operatorsA = P− 1
2 SP− 1

2

andB = Q− 1
2 V Q− 1

2 , we have

(1− r)I ≤ A ≤ (1 + r)I and (1− r)I ≤ B ≤ (1 + r)I.

From Theorem 4.3, we get

α · tr(PA)trQ + β · tr(QB)trP > tr(PAα)tr(QBβ) + (α + β − 1)trP trQ,

and in particular,

α · tr(PA)trQ + β · tr(QB)trP > tr(PAα)tr(QBβ).

Replacing hereA andB above, we have,

trP (αtrS + βtrV ) > tr(P]αS)tr(Q]βV ) + (α + β − 1)trP trQ,

and in particular,
trP (αtrS + βtrV ) > tr(P]αS)tr(Q]βV ),

i.e. the desired inequalities.

Corollary 4.6. If we consider in the above corollary only two invertible positive operatorsP,
S ∈ B1(H) then we have,

trP trS(α + β) > tr(P]αS)tr(P]βS) + (α + β − 1)(trP )2,

and in particular,
trP trS(α + β) > tr(P]αS)tr(P]βS).

Proof. If we take in Corollary 4.5,P = Q andS = V we will obtain the desired inequality.
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